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In addition to qualitative methods presented in chaos and complexity theories in educational 
research, this article addresses quantitative methods that may show potential for future research 
studies.  Although much in the social and behavioral sciences literature has focused on computer 
simulations, this article explores current chaos and complexity methods that have the potential to 
bridge the divide between qualitative and quantitative, as well as theoretical and applied, human 
research studies. These methods include multiple linear regression, nonlinear regression, 
stochastics, Monte Carlo methods, Markov Chains, and Lyapunov exponents. A postulate for post 
hoc regression analysis is then presented as an example of an emergent, recursive, and iterative 
quantitative method when dealing with interaction effects and collinearity among variables.  This 
postulate also highlights the power of both qualitative and quantitative chaos and complexity 
theories in order to observe and describe both the micro and macro levels of systemic emergence.    

 

Introduction 
Chaos and complexity theories are numerous, and, for the common reader of complexity 
texts, it is easy to develop a personal panacea for how chaos and complexity theories 
work. However, this journal highlights the different definitions and approaches 
educational researchers introduce to describe the phenomena that emerge during the 
course of their research. Converse to statements from outside observers, complexity 
theory in its general forms is not complicated, it is complex, and when looking at the 
micro levels of phenomena that emerge we see much more sophistication or even 
messiness. It draws from numerous observations and analyses, constructing a more 
holistic interpretation of social events regarding teaching and learning.  Certainly debate 
has ensued among this group of scholars who write for Complicity for many years on 
whether method even has a place in chaos and complexity theories firmly rooted in the 
social and behavioral sciences.  This special issue will draw out that continued dialogue.  

In qualitative research in the social sciences, a growing body of research methods is 
developing that can be integrated into educational research frameworks (Hesse-Biber & 
Leavy, 2008). In quantitative research in the social sciences, little exists that posits 
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complexity theory in the framework of “numbers.” Although we often base our 
metaphorical lenses upon the theoretical constructs of physics, mathematics, and 
biology, we equally encounter the difficulties of reconciling methods we borrow from 
these disciplines that perhaps can form bridges to the educational research community 
in the study of humans. Amidst the numerous frameworks for understanding chaos and 
complexity theories, it is the purpose of this paper to focus specifically on quantitative 
methods. This article investigates the power of post hoc quantitative methods which are 
concurrently emergent, recursive, and iterative at the point of analysis, including 
probability analysis, regression, and other tools of analysis. Although space is limited for 
detailed examples of each method, I integrate a working example of post hoc analysis 
using a regression model. Moreover, this article suggests ways of viewing complexity 
methods in educational research as multi-faceted in providing a holistic view of chaos 
and complexity theories.   

Quantitative methods 

Multiple linear regression 
Regression analysis has become an extremely popular tool for analysis in research 
methods involving multiple independent variables. The regression line, for which it is 
named, is composed of data points in two dimensional with one axis representing 
expected cumulative probabilities and the other axis representing observed cumulative 
probabilities. Multiple linear regression is not a good fit with chaos and complexity 
theories, because it follows the regression line in a linear format in order to arrive at 
generalization (figure 1).  Oftentimes it is used as a model for prediction where Analysis 
of Variance (ANOVA) or Analysis of Co-Variance (ANCOVA) would serve this purpose 
in much better form, since ANOVA and ANCOVA are designed specifically for tests of 
significance of variables as predictors of dependent variables. However, multiple 
regression has often been emphasized by statisticians in the social and behavioral 
sciences as a model that should be used to confirm or explain phenomena or even to 
build theory. Therefore, intrinsically, regression analysis at the surface provides great 
potential for chaos and complexity theories research methods, because the model 
incorporates a large number of variables, can handle different types of variables from 
categorical to interval, calculates interaction effects between variables, and, when used 
appropriately, is confirmatory or explanatory in nature. Extending the concept of 
interaction effects, moderated multiple regression takes into account one or more 
moderator variables that change the influences of the independent variables on 
dependent variables, resulting in several different outcomes (Aguinis, 2004). A 
moderator variable, by definition, “affects the direction and/or strength of the relation 
between an independent or predictor variable and a dependent or criterion variable” 
(Baron & Kenny, 1986). In a nutshell, the moderator variable, serves as a bridge between 
an independent variable and a dependent variable. As an example, in the case of a 
person’s political party preference influencing attitudes toward children’s social 
programs, gender may serve as a moderator variable, where women might support 
these programs regardless of their political affiliation. The very concept of moderation 
during multiple regression shows how complex interactions can be among and between 
different variables and, perhaps, reinforces how our knowledge of every variable a priori 
in human studies is extremely difficult if not impossible. However, regression analysis 
has to be used in different ways than we typically find in the research literature in order 
to incorporate the broad, rich, and diverse data sets that exist within the chaotic world.   
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Figure 1: Regression Line 

 

Nonlinear regression 
Nonlinear regression perhaps moves us closer toward a tool for investigating complex 
and chaotic phenomena, since it is designed to explore curvilinear relationships.  
Whereas linear regression models of significance follow the regression line tightly, non-
linear regression models do not. They have a curvilinear relationship to the regression 
line and subsequently, to each variable in the model (figure 2). Rather than being specific 
to the point of reduction, nonlinear regression iteratively compares relationships among 
variables and computes correlations rather than predictions respectively. Although some 
researchers in the social and behavioral sciences might argue for data transformations or 
“quantifying the roughness of a curve” (Green & Silverman, 2000, p. 4) when data 
becomes messy, it is actually the nonlinear and nongeneralizable aspects of data in its 
raw forms that provide insights into quantitative applications in human studies. In time 
series analyses, Guastello (2011) notes that nonlinear regression is particularly useful in 
helping to discover which variable(s) contribute dramatically to bifurcation points 
through the incorporation of the Lyapunov exponent discussed later in this paper.  
Interestingly, Csikszentmihalyi’s (1990) work on flow was explored by Guastello, 
Johnson, and Rieke (1999), and these authors found that, by using nonlinear regression, 
one could show “that the level of flow experience is a chaotic process over long-enough 
periods of time” (Guastello, 2011, p. 289).    
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Figure 2: Nonlinear regression 
 

Probability analysis 

Stochastics 
Chaotic systems differ from deterministic, even dynamical systems, in the amount of 
information that is required to observe and define chaos. As Stark (2001) observes, 
however: 

Unfortunately, in many real problems one has only the sketchiest information about 
what these variables are, and one certainly has no hope of observing them all.  Instead, 
one typically has a time series of one or more observables of the system, whose 
relationship to the state variables is at best uncertain.  (Stark, 2001, p. 81).   

And it is this relationship between known and unknown variables that lend stochastic 
models to research methods in chaos and complexity theories. Stochastics and 
probability analysis have been at the heart of research in chaos and complexity theories 
for many years. Gleick (1987) used the term to act as a bridge between determinism and 
chaos; Prigogine and Stengers (1984, p. 276; Prigogine, 1996) incorporated stochastics to 
characterize and distinguish “intrinsic randomness” and “intrinsic reversibility” from 
deterministic systems; Waldrop (1992) used observation in non-normal stochastic time 
series in economics to reveal complexity theory.   

The power of stochastics methods for understanding chaotic and complex 
phenomena is that they can incorporate many variables in a phase space similar to what 
Prigogine (1996) describes, where the arrow of time is a contributing factor in 
understanding emergent phenomena.  In a three dimensional model with the absence of 
time, phase spaces play no role.  However, when the arrow of time is introduced into a 
four dimensional model, multiple phase spaces are present, and each phase space 
represents a possible trajectory of systemic outcomes. One might say that a stochastic 
model casts a net, bringing in many random variables while analyzing the influence of 
each variable, each subset of variables, and each group of variables between and among 
each other.  A picture describing likely outcomes is then presented at the point of 
analysis (figure 3), where I would contend the deterministic chaos of Poincaré (1890) is 
then revealed. In his approach, certain boundary controlling conditions limit a chaotic 
system from ever reaching unbounded chaos, thereby showing that these particular 
system outcomes can be determined a priori to observations over time. My argument 
here is that deterministic chaos still avoids the richness of chaos theory, as it protects 



DONALD L. GILSTRAP 

 61 

potential outcomes from occurring by placing each variable within boundary conditions 
that rule out anomalies. Equally, when several stochastic models are applied to the same 
data sets, yet with different boundary parameters, then probability analysis becomes 
much richer by viewing outcomes at a macro level of emergent subsets.  As an example, 
in figure 3 each elevation or declination in the model represents an emergent subset; 
however, a true picture of the systemic outcomes can only be seen when viewing all of 
the subsets simultaneously. 

The downfall to stochastic methods, however, is that they need a starting point.  In 
human studies, we have no choice as researchers but to subjectively choose that point as 
an encapsulation of one or more individuals’ lives. Granted, this is often the case in 
much of the research we conduct in educational settings, whether qualitative or 
quantitative, but, at the same time, this paradox seems to be a critical element in 
understanding how chaotic and complex phenomena emerge. Equally, stochastics are 
not used to predict but are rather observations of momentum or critical moments in data 
sets to which we should pay attention.     
 

 
Figure 3: Stochastics 

 

Monte Carlo methods 
One commonly used quantitative research method, particularly for modeling and 
simulation, is the Monte Carlo method.  Interestingly, the name Monte Carlo originated 
during the Los Alamos Laboratory experiments of the 1940s, where information was 
shrouded in secrecy. One of the researchers, Stanislaw Ulam, supposedly chose this 
pseudonym, since his uncle use to like to gamble in the casinos of Monte Carlo 
(Grinstead & Snell, 1997; Metropolis & Ulam, 1949).  The difficulty of linear probability 
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analysis is that it usually takes into account random variables on one linear trajectory.  
The Monte Carlo Method utilizes several sets of random variables from many different 
trajectories over a period of time and then calculates probability outcomes. One of the 
benefits of this method is that it allows the researcher to average more accurately and 
more efficiently different system states over time. In computer science, this type of 
modeling is particularly useful, since, during the Gaussian [normal] distribution, large 
and frequently dispersed integrands (e.g. computer programming code functions that 
need to be integrated in order to create code libraries), are difficult to compute.  Monte 
Carlo provides a way to average data at probabilistic intervals over time rather than 
through discrete time units. Equally, in cases where a large number of variables are 
difficult to include in mainstream quantitative models, Monte Carlo provides a means to 
randomly sample from or randomly generate variables of probable interest over time 
(Bar-Yam, 1997; Lemieux, 2009; Liang, Liu, & Carroll, 2010). 

Since Monte Carlo methods seem particularly well suited for large data sets and 
computer simulated modeling – which we have seen overwhelmingly in the largest 
body of research on quantitative methods in chaotic and complex systems – I do not 
want to develop this in too much in detail. However, it is important to note that Monte 
Carlo methods provide a bridge between stochastics and Markov Chains, which will be 
discussed in the following section.  We are able to integrate these methods into large-
scale projects in education, from looking globally at education financing (Lemieux, 2009) 
to understanding large numbers of frequency distributions in an iterative fashion (Liang, 
Liu, & Carroll, 2010). Mortgage backed securities, which take 20 to 30 years to mature, 
are difficult to project with loglinear models because this long time span opens the 
model up to multiple emergent anomalies. Liemieux (2009) showed that the imminent 
failures of mortgage backed securities could also be seen, using more complex Monte 
Carlo analyses that would incorporate several different random variable sets at various 
states of a security’s development, and subsequently making analysis much more robust 
and comprehensive. Likewise, frequency distributions are static in nature in linear 
models. However, Liang, Liu, and Carroll (2010) showed that, by using several samples 
from within a larger population sample, one can continually see emerging frequency 
distributions when they are iteratively drawn from a changing population sample over 
time. 

Extending Monte Carlo methods to living systems, Bar-Yam (1997) poignantly 
addressed the application of the model when integrating evolutionary theory and 
phenomenology.  In his view, we are able to observe phenomena and describe those 
systemic events through the concept of the fitness landscape.  Those variables that have 
a high probability of influencing the evolution of a system can be randomly sampled 
over time, and subsequent correlations emerge. That being the case, we might 
distinguish between classical and quantum Monte Carlo methods. Classical methods 
seek out probability distributions.  In some ways, we might be able to identify these 
same types of highly probable, influential variables in education – such as No Child Left 
Behind or consecutive years of difficult state budgets – and develop probability 
scenarios for coming years in how our educational systems may evolve. Quantum 
methods rely on a random walk through data over time, however.  In research settings, 
we can randomly choose variables within large data sets, such as the National Center for 
Educational Statistics (NCES), and analyze historiographical phenomena that emerge 
over time (figure 4).   
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Figure 4: Monte Carlo Simulation of Air Pollution 

 

Markov Chains 
A model that is suitable for modelling a sequence of random variables... in which the 
probability that a variable assumes any specific value depends only on the value of a 
specified number of most recent variables that precede it. (NRG, 2004).   

Russian mathematician Andrei Markov first applied the concept of Markov Chains 
during the early twentieth century in an analysis of Pushkin’s Eugene Onegin. In a 
challenge to his opponent in theoretical mathematics, Pavel Nekrasov, Markov set out to 
prove that the laws of very large numbers were not subject to complete randomness 
(known at the time as the principle of independence) but rather they contained sets of 
probabilities. Using only pen and paper:  

Markov’s sample comprised the first 20,000 letters of the poem, which is about an eighth 
of the total… In the first phase of his analysis he arranged the text in 200 blocks of 10 × 
10 characters, then counted the vowels in each row and column. From this tabulation he 
was able to calculate both the mean number of vowels per 100-character block and the 
variance, a measure of how widely samples depart from the mean… In a second phase 
Markov returned to the unbroken sequence of 20,000 letters, combing through it to 
classify pairs of successive letters according to their pattern of vowels and consonants. 
He counted 1,104 vowel-vowel pairs and was able to deduce that there were 3,827 
double consonants; the remaining 15,069 pairs must consist of a vowel and a consonant 
in one order or the other.  With these numbers in hand, Markov could estimate to what 
extent Pushkin’s text violates the principle of independence. (Hayes, 2013, p. 95).  

The legacy of this experiment continues, as this same algorithm is now used in computer 
modeling to determine both authorship and plagiarism of textual works.   

Markov Chains are applied in contemporary social sciences research in numerous 
ways, ranging from Monte Carlo methods to Hidden Markov Models analyses. They are 
used to analyze a series of variables or events over time or during a discrete unit of time.  
Much like fractal iterations, Markov Chains also rely on the values of the previous 
system state to describe the new system state (figure 5). Moreover, Markov Chains take 
into account model noises that appear as residual outliers in the normal Gaussian 
distribution, where other models simply exclude that data as anomalies (Gregson, 2010).  
Additionally, this residual noise is nonlinear and can appear in the form of a basin of 
attraction, reinforcing the data’s importance to remain within the model rather than 
removing it from the model. Equally important, Merrill (2010) proposes that Markov 
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Chains exhibit phenomena of bifurcations as observational representations of 
transitional changes from one system state to another.  In psychology, Markov chain 
methods have been used to analyze mental states that fluctuate, such as bipolar 
disorders.  In educational settings, we might also see application for this type of method 
to analyze learning and teaching phenomena such as critical reflection, where the 
learner’s mental models fluctuate between a state of equilibrium and non-equilibrium 
(Gilstrap, 2010). In particular, because Markov methods include time series analysis, the 
implications for post hoc analyses can be instrumental in describing phenomena that 
appear in chaotic and iterative forms in educational settings.   
 

 
 

Figure 5: Markov Chain 
 

Lyapunov exponent 
If all points in a neighborhood of a trajectory converge toward the same trajectory, the 
attractor is a fixed point or a limit cycle. However, if the attractor is strange, any two 
trajectories that start out very close to each other separate exponentially with time, and 
in a finite time their separation attains the size of the accessible state space… In the limit 
of infinite time the Lyapunov exponent is a global measure of the rate at which nearby 
trajectories diverge, averaged over the strange attractor.  (Mathiesen, 2013, p. 114).   

During his studies of nonequilibrium motion, Russian physicist Aleksandr Lyapunov 
found that, out of randomness in very large number sets, periods of order emerged 
which are now described as the Central Limit Theorem. While conducting this research, 

he also developed a formula known as the Lyapunov exponent [ ]. In 
dynamic systems, the Lyapunov exponent suggest a visual representation of iterative 
chaotic trajectories over time in phase spaces, subscribing to the underlying 
epistemology of Prigogine’s (1996) arrow of time. In particular, the Lyapunov exponent 
helps to explain attractor patterns that are not linear in nature such as those described in 
detail in “Strange attractors and human interaction” (Gilstrap, 2005). Bertuglia and Vaio 
(2005) also provide a novel example of Lyapunov instability in relation to Malthus’ 
(1789/1999) famous population studies. In a system where we see large population 



DONALD L. GILSTRAP 

 65 

growth over time, the incorporation of the Lyapunov exponent into the formula reveals 
that growth segments in phase spaces are iterative, yet the influence of perturbations 
makes the spaces between perturbations grow exponentially over time (figure 6).  
Applied to studies of educational research, this might provide a methodological 
framework for understanding chaotic episodes in socio-politico-economical 
phenomenon over time, such as the emergence and growth of charter schools, negative 
correlations between standardized testing in math and science with reading and 
spelling, or the like.   

When viewing Lyapunov instability, we see evidence of system dynamics 
responding to initial conditions. For each perturbation, there is an unstable trajectory of 
exponential divergence measured exponentially against the original system state. As a 
result, “Lyapunov exponents... provide important quantitative information on the 
chaotic properties of the evolution of a dynamical system” (Bertuglia & Vaio, 2005, p. 
178). Translated into the theoretical constructs of attractor patterns in chaotic systems 
(Gilstrap, 2005), the following propositions emerge: 
 

1.  If all the Lyapunov exponents are negative, then we have a fixed point that behaves 
like an attractor.  Each negative Lyapunov exponent provides a measurement of the 
speed with which the corresponding state variable directs itself towards the point 
attractor. 
2.  If some exponents are nil and others are negative, then we have an ordinary attractor 
that is less simple than a fixed point, such as for example a limit cycle. 
3.  If at least one of the Lyapunaov exponents... is positive, then we are in the presence 
of evolutive dynamics which... diverge exponentially, and give rise to chaos.  Vice 
versa, we can also state that in a chaotic system at least one Lyapunov exponent is 
positive.  (Bertuglia & Vaio, 2005, pp. 174-175). 

However, Bertuglia and Vaio (2005, p. 178) caution that, if we increase the amount of 
variables we add into the complex model to a large degree, “we do not have the formal 
methods to solve a system of equations (i.e. to make a model evolve) in exact terms, the 
formally ‘exact’ theoretical orbit, basically, is nothing more than a completely abstract 
concept.”    

 One of the important aspects of Lyapunov exponents in studies in educational 
settings pertains to degrees of freedom in time series analyses. Davis (2004) has 
emphasized, “a fractal, for instance, is scale independent, meaning that its bumpiness of 
detail remains constant no matter how much it is magnified or reduced.” When we 
discuss the importance of scale independence in fractal emergence, a similar 
phenomenon exists in computing Lyapunov exponents. Unlike conservative systems 
where degrees of freedom are tightly controlled within the quantitative model that is 
selected for analysis, chaotic systems exhibit different degrees of freedom for each scale 
of observation and analysis. As Bar-Yam (1997) points out, in dissipative systems 
information is exchanged between each one of these scales which influences the 
complexity and subsequent number of Lyapunov exponents of a system. When this 
happens, “for such systems, we cannot describe the past from present information on a 
particular length scale (p. 736),” and the complexity of the Lyapunov exponents “can be 
time dependent, as it is in many irreversible processes (p. 738).”   
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Figure 6: Lyapunov Exponent and Graphical Representation 

 

A post hoc postulate of quantitative methods for complexity research:  
Multicollinearity 

In linear regression models, the concept of multicollinearity is one some debate with 
seemingly no resolution.  Multicollinearity can be defined as: 

“The situation in which two or more predictors (or subsets of predictors) are strongly 
(but not perfectly) correlated to one other, making it difficult to interpret the strength of 
the effect of each predictor (or predictor subset)” (NRG, 2003).   

In a nutshell, multicollinearity is determined by computing eigenvalues within the 
variable matrix that holds independent variables in constant with one another to assess 
the strength of each variable’s ability to predict the dependent variable.  An eigenvalue 
itself is merely the outcome of computing a dimensional matrix of Cartesian coordinates, 
known as an eigenvector. In the perfect Multiple Linear Regression model, all 
eigenvalues are calculated at 1. However, if several eigenvalues diverge from 1, 
multicollinearity is said to exist. In many statistical software packages, this eigenvector is 
known as the Condition Index.   

It is standard practice among many social and behavioral sciences researchers to 
deal with multicollinearity in a very cutthroat manner:  when looking at the matrix of 
variables, those that show interaction effects (typically >= 0.50) are simply discarded.  
The logic behind this is that the variables have not been properly constructed and 
defined a priori, and that is why the interaction effects exist.  As an example, one could 
argue that in a political research poll where political party affiliation showed interaction 
effects, the stronger variable chosen for the model should have been whether someone 
was active in politics in general. This might hold true for a particular study, but when 
issues such as gender, race, and socio-economic status further promote interaction 
effects among party affiliation, the logic behind variable removal begins to fall apart.  If a 
decision to remove variables from a model – some of which are critical to understanding 
– is based on the computation of an eigenvalue, then ultimately the researcher is letting 
the software make the decision for the researcher. It is as if the condition index of the 
collinearity matrix is being used as an omnibus test for rejection of variables when well 
known quantitative methods researchers have stated the opposite. As examples, Fox 
(1991), Cohen and Cohen (1983), Jacard and Turrisi (2003), and Licht (1998) have each 
turned the researcher toward descriptive analysis in the presence of multicollinearity.  
And it is this descriptive framework that emerges from quantitative models that lends 
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itself well to the methods of chaos and complexity theories. Unfortunately, the practice 
of describing variables and the subsequent phenomena that emerge at that point is 
rarely executed in quantitative studies when multicollinearity occurs, with the practice 
of variable removal being not only common but almost paramount in positivist research. 

So lets walk through exactly what we are discussing.  In figure 7, we see evidence of 
multicollinearity taking place at a few dimensions of a regression model introduced 
from this author’s previous research (Gilstrap & Dupree, 2008a, 2008b). Each of these 
independent variables [VAR] represents items such as gender, age, year in school, GPA, 
time period of instruction, semester of instruction, instructor, etc., tested against the 
dependent variable scale of reflective thinking. As referenced previously, eigenvector 
calculations lead to the presentation of the Condition Index; in this case the value is 
rather high (CI=30.325, see figure 7). Interaction effects appear to be taking place 
between [variable] VAR6 and VAR2, VAR7 and VAR1, VAR9 and VAR7, and VAR9 and 
VAR8 when held constant against the dependent variable. However, correlation analysis 
showed there were no correlations between these variables without the involvement of 
the dependent variable, or one of the independent variables is acting as a moderator 
variable, as discussed previously in this article (Aguinis, 2004). How can this be when 
some positivist methods tell us the opposite should take place? As stated previously, the 
condition index is not an omnibus test for rejection, rather here is a time when the 
researcher should move into descriptive analysis of the phenomenon that are emerging 
during the model’s calculations. 

We then performed descriptive statistic analysis for each of the variables that 
exhibited interaction effects by viewing the mean scores of each variable collectively as a 
complex system. In effect, this author introduced chaotic and complex systems 
quantitative analysis as soon as interaction effects were observed. This created an iterative 
and recursive method of observation that simultaneously led to emergent post hoc methods of 
analysis at each stage and level of description. Rather than choosing the macro level of 
description as a reductionist and generalizable framework for understanding, this 
author started with the micro level of description to provide an emergent method of 
analysis. By understanding that these variables formed a sub-group, which previously 
was not accounted for, phenomena did indeed emerge that could not be explained by 
the reductionist model. This process revealed that there are indeed sizable differences in 
mean scores when scaled at nominal, ordinal, and continuous levels. Furthermore, the 
more robust level of description of micro analysis for each of these variables and their 
interactions, the richer the level of emergent description each interacting variable and 
subgroup of variables added to a more meaningful representation of the macro level of 
observation and understanding. As an example, time of day was not a statistically 
significant variable, whereas GPA was significant. However, students who participated 
in the teaching/learning process during afternoon classes had lower mean scores 
regardless of GPA where an interaction effect was taking place, such as the interaction 
between time of day and year in school. Equally, qualitative methods were also 
conducted to see if observations from quantitative methods could contribute to the 
qualitative understanding of different emergent phenomena (Gilstrap & Dupree, 2008a, 
2008b). By returning to narratives provided by students, therefore, a much richer 
understanding of these interaction effects began to emerge. 

As a result, much of what Bertuglia & Vaio (2005) were arguing theoretically was 
actually emerging in this applied research. Take, if you will, the number of descriptive 
and qualitative observations Charles Darwin observed over a period of many years, 
which led to the formulation of The Origin of Species. Had Darwin entered into his 
research with all of his variables determined and constructed a priori, the anomalies he 
encountered would never have been considered. More importantly, these very 
anomalies were at the crux of his theory of evolution. Had they been removed from a 
positivist model of linearity in favor of more robust variables, his findings would have 
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revealed little more than that the species of the Galapagos Islands did not fit into a 
generalizable model and were therefore unimportant in understanding life. And as we 
now know, this is simply untrue.   

 

Figure 7: Dimension matrix of multicollinearity 
 

Conclusion 
For the purposes of this article, I have explored the power of quantitative chaos and 
complexity methods that show potential for further understanding of educational 
research that involves humans. I then proposed an example of a quantitative method 
that has post hoc implications for chaos and complexity theorists. In a model such as 
multiple regression, what do we do when the data becomes messy? A reductionist might 
say: “simply reduce the amount of variables to make the model work cleanly”. A 
complexivist might contend: “now wait a minute, there is something happening here, 
let’s describe it”. It is true that interaction effects between variables can be the result of 
poorly defined variables at the beginning of a research project (e.g., two variables are 
very similar in nature). However, there is something unique taking place when we see 
interaction effects between variables that have little similarity.  In essence, we have 
discovered serendipitously a quasi-correlation between two entities that would 
otherwise never have been noticed; a dynamic has emerged within a system that a 
reductionist might have written off all together. Moreover, the concept of scale 
independence equally emerges in this example, since: 1) it is only when these 
independent variables are held constant against each other and simultaneously with the 
dependent variable that interactions emerge; 2) understanding these interactions cannot 
be undertaken through a generalized model, rather each interaction must be explored in 
a descriptive framework; 3) analysis of means when scaled at a more comprehensive 
level reveals how and why interactions might be taking place; and 4) understanding 
how variables influence each other at the micro level leads to an emergent and 
subsequently richer understanding of the macro level of the research study. In other 
words, emergence, rather than reduction, becomes paramount in describing the 
phenomenon revealed post hoc of the original model. 

Although we are sometime reluctant to suggest quantitative methods with our 
students when chaotic and/or complex phenomenon emerges, situations such as these 
might enable us to bridge some of the divides between qualitative and quantitative 
research. Rather than stopping at the point when the data becomes messy, perhaps we 
might step back and question whether something larger and more complex is taking 
place.  If we feel it might be, we should explore post hoc analyses to determine if chaotic 
episodes could be emerging. A situation such as in the proposed example might be a 
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particular case for this type of thinking. In effect, we have taken what appears to be a 
benign and typical regression approach and have explored it in more depth, revealing 
the emergence of additional phenomena. Continuing from the micro to the macro levels 
of this particular system, what opportunities do we then have to explore these 
phenomena through quantitative methods such as Monte Carlo methods, Markov 
chains, and Lyapunov exponents?  Do anomalies such as this example reinforce the need 
for a better understanding of the role and purpose of time in our research while equally 
challenging reversibility as a universal constant? Are methods such as these appropriate, 
and do they add new levels of analyses, which might actually lead to more robust 
methods for conducting research on chaos and complexity phenomena in the future?  It 
is my hope that this dialogue will continue among scholars of chaos and complexity 
theories in educational research.    
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