
 
 
Complicity: An International Journal of Complexity and Education 
Volume 16 (2019), Number 1 • pp. 1-19 
 
  1 

 

FEATURE ARTICLE 
 

Toward a Learning Progression of Complex Systems 
Understanding 

SUSAN A. YOON 
University of Pennsylvania (USA) 

SAO-EE GOH 
Ministry of Education (Singapore) 

ZHITONG YANG 
Educational Technology Services (USA) 

Recent research on what students know about complex systems shows that they typically have challenges in 
understanding particular system ideas such as nonlinearity, complex causality, and decentralized control. 
Yet this research has yet to adopt a systematic approach to learning about complex systems in an ordered 
way in line with the Next Generation Science Standards’ call for learning pathways that guide teaching and 
learning along a developmental continuum. In this paper, we propose that learning progressions research 
can provide a conceptual framework for identifying a learning pathway to complex systems understanding 
competence. As a first step in developing a progression, we articulate a sequence of complex systems ideas, 
from the least to most difficult, by analyzing students’ written responses using an item response theory 
model. Results show that the easiest ideas to comprehend are those that relate to levels or scales within 
systems and the interconnected nature of systems. The most difficult ideas to grasp are those related to the 
decentralized organization of the system and the unpredictable or nondeterministic nature of effects. We 
discuss implications for this research in terms of developing curricular content that can guide learning 
experiences in grades 8–12 science education. 

 
With the launch of the Next Generation Science Standards (NGSS) in 2013, arguably a new era of 
science education has been ushered in for K–12 classrooms in the United States. As we translate 
the standards into curricular and instructional materials, it is prudent to take stock of the research 
on learning in particular scientific areas in order to build classroom experiences that can support 
knowledge development over time (National Research Council [NRC], 2007). This effort would 
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also be in line with the focus on learning progressions in the NGSS. Among the crosscutting 
concepts in the NGSS, student learning challenges in understanding systems and system models 
constitute an area of science education research that has experienced recent growth. Crosscutting 
concepts are meant to connect canonical content domains such as biology and chemistry for 
which learning progressions have been proposed. However, we argue that content within a 
crosscutting concept can also be ordered in a learning progression to facilitate learning. Within 
the science education literature, learning about systems phenomena has most notably been 
anchored in the study of complex systems (Grotzer et al., 2015; Wilensky & Rand, 2015; Yoon, 
2011; Yoon, Goh, & Park, 2018), which investigates how interactions between system components 
at lower scales give rise to higher scale processes and structures (Sweeney & Sterman, 2007; 
Wilensky & Reisman, 2006; Yoon, 2008). The way that schools of fish move through the water and 
herds of ungulates roam the savannah provide vivid examples of how individual actions and 
interactions lead to large-scale patterns. 
 A number of studies over the last 20 years have revealed challenges students have in 
learning about complex systems. We know, for example, that while students can identify relevant 
structural components, accurately describing causal behaviors of systems is more challenging 
(Hmelo-Silver, Marathe, & Liu, 2007). Other studies have found that students have difficulties 
learning about scientific phenomena that emerge from nonlinear or nonsequential processes (Chi 
Roscoe, Slotta, Roy, & Chase, 2012). Students also have difficulty understanding that control of 
processes in complex systems is often decentralized (Resnick, 1996; Yoon, 2008) and fail to see 
how system components are interconnected and interrelated (Ben-Zvi Assaraf & Orion, 2010). 
Although several studies have promoted the learning of particular complex systems concepts 
(e.g., Klopfer et al., 2009; Levy & Wilensky, 2009), we have yet to systematically determine a 
learning approach to address the learning challenges associated with complex systems in a 
comprehensive way (Hmelo-Silver & Azevedo, 2006). 
 Learning progressions methodology offers one such systematic approach to structuring 
the learning of various complex systems ideas. Learning progressions are defined as sequences of 
ordered descriptions that illustrate the learning pathways students can take to improve 
conceptual competence in science (Alonzo & Steedle, 2008 Consortium for Policy Research in 
Education [CPRE], 2009). For example, in biology, Mohan, Chen, and Anderson (2009) identified 
levels of increasing sophistication in students’ perceptions of carbon-transforming events (e.g., 
combustion, respiration) in complex socio-ecological systems. These ordered descriptions 
represent a research-informed framework for structuring the learning of core scientific ideas 
(NRC, 2007, 2012). Curriculum and instructional activities can in turn be mapped onto the 
learning progressions to influence what, how, and when science concepts are learned throughout 
the learner’s academic career (Gotwals & Songer, 2010; Songer, Kelcey, & Gotwals, 2009). 
 This study extends the research on learning progressions by focusing on complex systems 
ideas grounded in high school biology content. Our long-term goal is to design valid curricular 
and instructional activities based on a hypothesized learning progression of core structures and 
mechanisms found across complex systems. As a first step in the construction of a hypothesized 
learning progression, in this paper we report on exploratory work that investigates a conceptual 
sequence of complex systems ideas, from the least to the most difficult, by analyzing a diverse 
group of students’ written responses to questions about a hypothetical ecological scenario. The 
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following research question underpins this study: What concepts within the topic of complex 
systems do students find more or less challenging to understand? 

Theoretical Considerations 
The conceptual framework of this research lies at the intersection of what we know about how 
students reason about complex systems and what we know about learning progressions in 
science education. In the following sections, we first discuss known challenges in understanding 
complex systems before illustrating how considering a progression of sophistication of ideas as a 
methodology can help address these challenges.  

Understanding Complex Systems 

Students typically have misconceptions about complex systems (Ben-Zvi Assaraf & Orion, 2005; 
Hmelo, Holton, & Kolodner, 2000; Jacobson & Wilensky, 2006). They tend to adopt a linear 
approach when thinking about the relationships among system components when in fact a 
nonlinear approach is warranted (Gotwals & Songer, 2010; Hogan, 2000; Riess & Mischo, 2010; 
Sweeney & Sterman, 2007). That is, they incorrectly perceive single cause-and-effect relationships 
in which small actions lead to small effects. However, a complex system, with its multiple 
connections among components, can often result in an exponential action that gives rise to 
widespread effects at different system levels. Gotwals and Songer (2010), for example, found that 
students struggled with reasoning about how a disruption in one part of a food chain could affect 
a different part of the food chain that was not directly connected to the first part.  

Grotzer and colleagues also found that students often reason about immediate effects 
rather than cascading or indirect effects. They fail to realize that a change in one population can 
have impacts on populations that are not directly linked through domino-like or cyclic complex 
causal relationships (Grotzer & Basca, 2003; Grotzer et al., 2015). Grotzer and Tutwiler (2014) 
outlined a number of characteristics of complex systems that may contribute to these learning 
challenges. For example, some phenomena, such as climate change, occur across large spatial 
scales that involve distance between causes and effects. This makes covariation relationships 
difficult to understand because causes and effects exist in different attentional frames of the 
learner. Chi and colleagues (2012) similarly argue that major challenges in learning stem from 
students’ difficulties in understanding complex causality and nonlinear dynamics. They state that 
students tend to understand and reason using direct-causal schema in which they attribute 
behaviors and outcomes to immediate one-to-one interactions, rather than reasoning with 
emergent schema that recognizes that the interconnected and web-like nature of systems will 
produce non-linear effects. 

Other researchers have found that students generally incorrectly believe that systems are 
controlled by a central agent or component, and that systemic patterns are intentionally designed 
with predetermined functions (Penner, 2000; Resnick, 1996; Taber & Garcia-Franco, 2010). In 
other words, students are unable to recognize that often control in systems is decentralized and 
that structures or behaviors at higher levels emerge from lower level system activities. For 
example, population trends of predators and prey in healthy ecosystems are able to stay in 
equilibrium because of the collective interactions of the predators and prey. The emergent nature 
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of these lower level interactions between predators and prey manifests in the higher level state of 
equilibrium. Researchers argue that this attribution of centralized control and intentionality to 
system processes is due to students’ inability to reason about how the scientific phenomenon in 
question functions or exists at different scales, such as at microscopic and macroscopic levels 
(Levy & Wilensky, 2009, 2011; Wilensky & Resnick, 1999). 

In a series of studies Ben-Zvi Assaraf and colleagues have revealed that a common 
challenge for elementary and junior high school students is identifying components that comprise 
a system and understanding how those components are interrelated or exist as an integrated 
whole (Ben-Zvi Assaraf & Orion, 2010; Ben-Zvi Assaraf & Orpaz, 2010). Hmelo-Silver, Marathe, 
and Liu (2007) found that novices (middle school students and pre-service teachers) attend only 
to the superficial structural components of a system rather than the mechanisms that drive global 
system patterns that experts (biology researchers in their study) more easily recognize. 
Additionally, Wilkerson-Jerde and Wilensky (2015) found that the concept of nondeterminism or 
probablisitic behavior in systems is challenging for students to grasp.  

Despite the valuable information these studies provide, they examine single aspects of 
complex systems understanding (e.g., nonlinearity, decentralized control, interrelatedness, and 
complex causality). From a learning progressions perspective, it is conceivable that some concepts 
are more challenging to learn than others. Several studies have already articulated analytical 
frameworks that encompass multiple complex systems ideas and beliefs (Hmelo-Silver & Pfeffer, 
2004; Hmelo-Silver et al., 2007; Jacobson, 2001; Jacobson, Kapur, So, & Lee, 2011; Yoon, 2008, 
2011). For example, Jacobson and his colleagues (2001) developed a framework that delineates 
distinct categories of complex systems ideas. Using this framework in an expert–novice study, he 
discovered that pre-college students tend to believe that systems operate in reductive, centralized, 
and predictable ways, whereas science experts describe phenomena as nonreductive, 
decentralized, and nonlinear. We adapt this framework and evolutions of it (Jacobson et al., 2011, 
Yoon, 2008, 2011) to analyze levels of understanding for various ideas of complex systems. In 
doing so, we unpack and reveal the relative levels of difficulties that can eventually inform the 
development of a learning progression. 

Learning Progressions 

Learning progressions provide a systematic approach to organizing curriculum and instructional 
activities that represent cognitive pathways and skills students are likely to follow over a period 
of time in mastering scientific concepts (Alonso & Steedle, 2006; NRC, 2007). Learning 
progressions structure the sequences based on what cognitive researchers know about science 
learning from empirical research findings (CPRE, 2009). Research on learning progressions is still 
somewhat new to the field of education and more rigorously conducted studies to provide 
evidence of improved teaching and learning is needed (CPRE, 2009). However, the growing 
interest in learning progressions to support curriculum and instruction in science education is 
evidenced in the number of researchers in multiple educational scientific domains who are 
interested in advancing the state of the art (see Alonzo & Gotwals, 2012 for a list of education 
researchers). Furthermore, while we acknowledge the need for testing the learning progressions 
that underpin the NGSS, the fact that these standards were based in a learning progressions 
pedagogy provides more support for their examination and use. However, the NGSS themselves, 
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do not articulate a comprehensive list of complex systems ideas that should be sequenced in a 
progression. For the cross-cutting concept of Systems and System Models, the standards suggest the 
following levels of learning: 
 

In grades K-2, students understand that objects and organisms can be described 
in terms of their parts and that systems in the natural and designed world have 
parts that work together. 
 
In grades 3-5, students understand that a system is a group of related parts that 
make up a whole and can carry out functions its individual parts cannot. They 
can also describe a system in terms of its components and their interactions. 
 
In grades 6-8, students understand that systems may interact with other systems; 
they may have sub-systems and be a part of larger complex system. They can use 
models to represent systems and their interactions–such as inputs, processes, and 
outputs–and energy, matter, and information flows within systems. They also 
learn that models are limited in that they only represent certain aspects of the 
system under study. 

 
In grades 9-12, students investigate or analyze a system by defining its 
boundaries and initial conditions, as well as its inputs and outputs. They use 
models to simulate the flow of energy matter and interactions within and 
between systems at different scales. They also use models and simulations to 
predict the behavior of a system and recognize that these predictions have 
limited precision and reliability due to the assumptions and approximations 
inherent in the models. They also design systems to do specific tasks. 

 
In these standards, the use of general language such as “inputs, processes, and outputs” does not 
provide teachers with an understanding of what entails an input, process, or output. Moreover, 
students should know how systems behave in order to be able to interpret models or simulations 
of complex phenomena. These system behaviors are not spelled out in the standards. Thus, 
although the present research is not, as yet, anchored in classroom practice, which is required for 
testing and validation (Shavelson & Kurpius, 2012), this study represents important initial steps 
to hypothesize a learning progression, with details about central complex systems characteristics 
that represent the substance of what students should learn about complex systems.  
 To date, there have been three published works on learning progressions on biology topics 
related to complex systems concepts (Gotwals & Songer, 2010; Mohan et al., 2009; Songer et al., 
2009). These studies have collectively ascertained that students’ learning of biological systems, or 
the development in the way they think about systems, follows a trajectory. However, these 
progressions address particular science content, such as ecosystems and biodiversity, rather than 
a more generalized complexity perspective. Ben-Zvi Assaraf and Orion (2005, 2010) have also 
examined students’ development of systems thinking abilities. Although they have not 
characterized their work in terms of learning progressions, they have constructed a hierarchical 
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model of the stages by which students reason about complex systems. They explain that at the 
most rudimentary level, students were able to identify the components of a system and processes 
within the system. At the intermediate level, students were able to identify relationships between 
system components, and could organize the systems’ components, processes, and their 
interactions within a framework of relationships. At the most sophisticated level students could 
perceive hidden system components, make predictions about how the system evolves, and 
explain how current systems emerge in relation to its history. However, their stage model 
comprises a subset of essential complex systems components as identified in Jacobson (2001). A 
sequence, or markers, for learning about other equally salient ideas, such as decentralization and 
emergence, is also necessary to ensure that students acquire an adequate overall understanding. 
 To begin to develop a learning progression on complex systems concepts, researchers 
must first differentiate a comprehensive set of ideas in terms of greater or lesser difficulty. Such 
delineation can help organize the sequence of ideas to be learned. There are generally two broad 
approaches to constructing initial learning sequences (CPRE, 2009). The first approach begins by 
conjecturing a possible sequence from existing literature and then validating it. For example, 
Songer and colleagues (2009) first hypothesized their learning progression on biodiversity from 
literature reviews and then tested the validity of the progression by comparing student learning 
outcomes in a control–treatment study. The second approach starts by analyzing a cross-sectional 
sample of students’ responses that provide indicators of their understanding and then derives 
the levels of sophistication or difficulty from the analysis. For instance, Mohan and colleagues 
(2009) first analyzed almost 300 upper elementary and high school students’ written accounts of 
the biogeochemical processes of carbon cycling in socio-ecological systems for distinct levels of 
sophistication, and then constructed their progression based on these levels. The latter approach 
presents an advantage when existing literature does not tell us much about which ideas and 
concepts should be learned before others. In our exploratory study, we adopt this more inductive 
approach in locating the initial sequence of a complex systems learning progression. 

Methods 

Context and Participants 

This study was part of a larger research project funded by the US National Science Foundation. 
We designed and developed curriculum and instructional activities using computational 
modeling tools for high school biology content to promote student learning of complex systems. 
While these activities were being constructed and tested, we focused concurrently on building 
the learning progression that informed them. To begin with, we developed eight open-ended, 
short-answer questions, so that we had two such questions for each of four biology units that 
were part of the larger study. These questions were developed by PhD-level biology content 
experts, while others were selected from the OECD Programme for International Student 
Assessment (PISA; 2006). We wanted to administer this test to students in grades 8 to 12 who had 
already learned some biology content in order to determine the range of conceptual difficulties.  

To recruit students to participate in our study, we enlisted the support of science teachers 
with whom we had previously worked in another study. We targeted different kinds of schools 
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(including magnet, public, and charter) to account for differences in science learning experience, 
and asked teachers to nominate generally moderate- to high-achieving students. All students 
were recruited from a large urban school district in the northeastern United States. Two days 
prior to the implementation, a researcher went to the teachers’ classes and gave a short 
presentation on the goals of the study and the roles of the students (should they agree to 
participate). Those who participated were initially encouraged by their teachers to take part in 
the study but were ultimately self-selected. Their involvement lasted about 1 hour after school, 
during which they answered open-ended questions on the biology test. The students were given 
as much time as they required to answer the questions. In total 44 students of various ethnicities 
participated in the study. There were 20 males and 24 females in grades 8 (5 students), 9 (13 
students), 10 (14 students), and 12 (12 students). Recruitment and data collection occurred over 3 
months.  

Data Sources, Coding, and Analyses 

For this paper, we present the analysis of student responses to the following question: 

Imagine a flock of geese arriving in a park in [your city], where geese haven’t lived before. 
Describe how the addition of these geese to the park affects the ecosystem over time. 
Consider both the living and non-living parts of the ecosystem. 

This question, written by an expert in biology, sought to elicit students’ understanding of 
biology and complex systems in an ecological context. 
 A content analysis of the students’ responses was performed using six categories of 
complex systems understanding—predictability of effects, scaling effects, networked interactions, 
multiple causes, order, and dynamic processes—derived from Jacobson’s (2001; Jacobson et al., 
2011) and Yoon’s (2008, 2011) studies. Table 1 provides more details of the coding scheme used 
in the content analysis. To account for variation in students’ understanding of the complexity 
ideas, responses were coded six times (once for each category) for four levels of increasing 
sophistication: Completely Clockwork (Level 1), Somewhat Clockwork (Level 2), Somewhat 
Complex (Level 3), and Completely Complex (Level 4). Clockwork responses are those that 
show deterministic, linear, single-cause, non-networked, centralized, or static system 
interactions or states, whereas complex responses are those that demonstrate nondeterministic, 
nonlinear, multiple causes, networked, decentralized, or dynamic system interactions or states. 
These categories were derived from a literature review of core complex systems characteristics 
identified in scientific studies and presented in Jacobson (2001). Yoon (2008) subsequently 
parsed the categories into four levels of understanding to determine whether students’ ideas 
improved over time in a curricular intervention.  The categories and levels have been further 
validated in other studies (Jacobson, 2011; Yoon, 2011) to demonstrate both the salient nature of 
these ideas as core complex systems content and growth in the levels of understanding students 
are able to achieve after instruction.  
 After the coding manual was constructed and vetted, its reliability was assessed with 
two independent doctoral student raters coding 20% of the written responses. An acceptable 
inter-rater agreement of 0.8 was achieved collectively across categories using the Cronbach 
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alpha reliability test. The remainder of the responses were subsequently coded by the first two 
authors using the coding scheme, with any discrepancies discussed.  
 
Table 1  
Complex Systems Category Code Descriptions 
 

Category Completely 
clockwork (Level 
1) 

Somewhat 
clockwork (Level 
2) 

Somewhat 
complex (Level 
3) 

Completely 
complex (Level 4) 

Deterministic 
effects 
The emphasis is 
the 
predictability of 
the effects 
caused by the 
variable in 
question. 

Response shows 
that the way in 
which a variable 
operates or affects 
other variables is 
completely 
predictable or 
deterministic. No 
alternative is 
offered in the 
response.  
 

Response shows 
that the way in 
which a variable 
operates or affects 
other variables is 
somewhat 
predictable or 
deterministic. 
There are 1–2 
possibilities 
suggested in the 
response. 

Response shows 
that the way in 
which a variable 
operates or 
affects other 
variables is 
somewhat 
unpredictable or 
nondeterministic. 
There are 3–4 
possibilities 
suggested in the 
response.  

Response shows 
that the way in 
which a variable 
operates or affects 
other variables is 
unpredictable or 
nondeterministic. 
There are many 
possibilities 
suggested in the 
response and that 
patterns might 
emerge over time.  

Scaling effects 
Three 
components are 
considered: (i) 
the relative scale 
of outcomes 
caused by 
action; (ii) the 
cascading effects 
or 2nd order 
impacts or 
ripple effects of 
the action; and 
(iii) the time 
scale at which 
changes happen. 

Response indicates 
(i) small actions 
only lead to small 
effects; (ii) there is 
a sense that the 
action causes 
localized changes 
only; and (iii) the 
changes are 
immediate and do 
not sustain for a 
long time. 

Response contains 
one complex 
component (out of 
three) of the 
scaling effects. 
(See Level 4) 

Response 
contains two 
complex 
components (out 
of three) of the 
scaling effects. 
(See Level 4)   

Response 
indicates (i) small 
actions can lead to 
large effects; (ii) 
the action can 
produce both 
localized changes 
(one-to-one) and 
cascading (ripple) 
effects; and (iii) 
the changes can 
take place both 
immediately and 
over a long period 
of time. 

Multiple causes 
The focus is on 
the number of 
causes that 
may/will 
contribute to the 
outcome(s) of an 
event. 

Response 
attributes the 
outcome(s) of an 
event to one 
cause/factor. 

Response 
attributes the 
outcome(s) of an 
event to two 
causes/factors. 

Response 
attributes the 
outcome(s) of an 
event to three 
causes/factors. 

Response 
attributes the 
outcome(s) of an 
event to four or 
more 
causes/factors. 
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Networked 
interactions 
Three 
components are 
assessed: (i) 
interdependency 
among parts in 
the system; (ii) 
nonlinearity in 
reasoning; and 
(iii) emergent 
patterns over 
scale. 

Response indicates 
that (i) the parts of 
a system are 
isolated with no 
interdependency 
among them; (ii) 
the interactions 
between parts are 
linear with no 
feedback; and (iii) 
the patterns at the 
system level are 
the same from 
those at the 
component level. 

Response contains 
one complex 
component (out of 
three) of 
networked 
interactions. (See 
Level 4.) 
 

Response 
contains two 
complex 
components (out 
of three) of 
networked 
interactions.  (See 
Level 4.) 
 

Response 
indicates that (i) 
the parts are 
interdependent; 
(ii) the 
interactions 
between parts are 
non-linear with 
feedback; and (iii) 
the patterns at the 
system level are 
emergent. 

Order 
The focus is the 
organization of 
the system or 
phenomenon – 
centralized or 
decentralized. 

Response indicates 
that the system is 
controlled by one 
central agent, that 
is, all action is 
dictated by a 
leader. Order in 
the system is 
established ‘top-
down’ or 
determined with a 
specific purpose in 
mind. 
 

Response indicates 
that the system is 
largely controlled 
by 2–3 central 
agents, (i.e., there 
are other parts that 
may dictate how 
the system 
behaves). Order in 
the system is 
established ‘top-
down.’ 

Response 
indicates that the 
system is largely 
decentralized 
and the control 
lies with 4–5 
components. 
However, there is 
little evidence to 
show that the 
order in the 
system is self-
organized. 

Response 
indicates that the 
system is 
decentralized and 
control lies with a 
myriad (more 
than 5) of parts. 
Order in the 
system is self-
organized or 
‘bottom-up’, and 
emerges 
spontaneously. 

Dynamic 
processes 
Processes refer 
to the dynamism 
of the 
mechanisms that 
underlie the 
phenomena; in 
other words, 
how the system 
works or is 
thought to work. 

Response indicates 
that the system is 
composed of static 
events. While 
perturbations in 
the system cause 
change to occur, 
the change 
terminates once an 
outcome is 
achieved (i.e., a 
definite end). 

Response indicates 
that the system is 
somewhat 
composed of static 
events with 
suggestions that 
these events take 
time to reach the 
outcome(s). 

Response 
indicates that the 
system is 
somewhat of an 
on-going process. 
Perturbations 
take a long time 
to reach the final 
outcomes, which 
are at larger scale 
than the initial 
event(s). 

Response 
indicates that the 
system is an on-
going, dynamic 
process. System 
continues to be in 
a state of flux. The 
parts adapt or 
evolve, and 
continue to do so 
accordingly. 
 

  

Below is a sample student response that received Level 3 and 4 codes for all categories of complex 
systems ideas:  
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Well if geese arrived it would probably help the ecosystem. The bird droppings might make the soil 
fertile. It would start to look a lot greener. The problem with that is erosion. The increase of plants 
and root size might cause paths or walkways to be damaged or destroyed. Statues might start to fall 
apart from the constant weight of birds. Plus, the increase of plants in amount and size make O2 
levels higher. Which could cause a warm and wet ecosystem, much similar to a swamp. Over a long 
period of time of course. (Student response, March 2011) 

In this sample, the student repeatedly used nondeterministic words, such as “might” and 
“could,” and suggested three possible effects of the geese’s arrival, which indicates his 
understanding of the unpredictable nature of the effects of the arrival of the geese (Level 3 
deterministic effects). The student suggests that the geese can cause cascading effects on the soil, 
plant population, and oxygen levels, and might even lead to large-scale and long-term effects 
such as a “warm and wet ecosystem” (Level 4 scaling effects). More than four factors (e.g., 
droppings, soil, erosion, plants, oxygen) were identified as contributing to possible outcomes 
(Level 4 multiple causes). The response also hints at an understanding of the interdependence of 
the various components in the park ecosystem, the feedback mechanisms present in the system 
(i.e., paths or walkways damaged by more plants), and the possible emergence of a systemic 
pattern (i.e., warm and wet environment) (Level 4 networked interactions). In addition, the idea of 
decentralization is clearly demonstrated as four actors (i.e., geese, plants, soil, and oxygen) are 
said to be involved (Level 3 order). Furthermore, the response implies that the perturbations in 
the park ecosystem are somewhat ongoing, and might take a long time to arrive at a final state 
(Level 3 dynamic processes). 

We coded the written responses for student understanding in each category of complex 
systems ideas. A breakdown of how their ideas scored is provided in Table 2. A simple frequency 
count shows that most of the responses were coded at a Level 2 (somewhat clockwork) or a Level 
3 (somewhat complex) understanding of various complex systems ideas, with a smaller number 
showing a Level 4 (completely complex) understanding. We conducted a one-way ANOVA for 
each of the six categories of complex systems understanding to determine whether there were 
any statistically significant differences between scores the four grade levels. The results showed 
that there was no statistically significant difference. Thus, scores from all 44 students were pooled 
together to ensure a large enough sample size for the analysis that follows. 
 Because we were interested in determining the differences in conceptual difficulties 
among the six categories of complex systems ideas, and given that the analysis used successively 
ordered rating scales (i.e., four levels of understanding), a polytomous item response theory (IRT) 
model was the most appropriate procedure to assess responses (Keller, 2005). We used the 
generalized partial credit model (GPCM; Muraki, 1992), which is a two-parameter IRT model 
developed to analyze situations where responses contain more than two ordered items. The 
items, or categories in this case, are conceptualized as a series of hierarchical levels of 
performances, where respondents receive partial credit for successfully performing at a particular 
level.  

Results 
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We rated the written responses for student understanding in each category of complex systems 
ideas. A breakdown of how they scored is given in Table 2. A frequency count shows that most 
of the responses were at a Level 2 (i.e., somewhat clockwork) or a Level 3 (i.e., somewhat complex) 
understanding of various complex systems ideas, with a smaller number showing a Level 4 (i.e., 
completely complex) understanding.  
 
Table 2  
Scoring for Each Category of Complex Systems Ideas by Grade Level 

 
Category Level 1 Level 2 Level 3 Level 4 
Grade G

8 
G
9 

G
10 

G
12 

G
8 

G
9 

G
10 

G
12 

G
8 

G
9 

G
10 

G
12 

G
8 

G
9 

G
10 

G
12 

Deterministic effects 1 6 5 4 3 2 5 4 1 4 3 4 0 1 1 0 
Scaling effects 1 3 1 3 0 3 3 5 3 2 6 3 1 5 4 1 
Multiple causes 1 4 2 4 2 4 8 5 1 3 3 2 1 2 1 1 
Networked 
interactions 

1 3 0 2 1 2 7 2 3 7 4 8 0 1 3 0 

Dynamic processes 1 5 2 3 4 4 8 7 0 3 3 1 0 1 1 1 
Order 1 3 4 7 2 4 8 2 2 5 2 3 0 1 0 0 
                            
Totals 

67 95 76 26 

  
We ran the GPCM on the 44 sets of scores, using PARSCALE 4.1. The model converged at 

a critical value equal to 0.005, and had no items fit statistical significance, indicating a good model 
fit. The mean difficulty of the six items or categories was 0.49 (SD = 0.45), and the mean 
discrimination parameter was 1.10 (SD =0.39). The categories were found to be reliable to measure 
students’ understanding of complex systems (composite reliability = 0.87). An examination of the 
total test information curve for the model indicated our test provided appropriate information 
for students with ability levels both below and above average (a continuum of ability level 
between -3 and +3). On this continuum of ability scale, 0 is set as the mean of the item difficulty 
parameter. On the positive direction toward +3, each increase indicates that the item is more 
difficult; conversely, on the negative direction toward -3, each decrease indicates that the item is 
less difficult. The total test information peaked between 0 and 1, indicating that the categories 
could measure students with slightly higher than average abilities with the most precision. In 
addition, the model was able to show how well each item could distinguish students with 
different abilities by the discrimination parameter. The discrimination parameter typically ranges 
between 0.5 and 2.5 in value (Reeve & Fayers, 2005). The larger this parameter, the more effective 
the item can distinguish students with varying levels of understanding. 

Table 3 presents the six categories, their difficulty parameters, and their discrimination 
parameters. As indicated by the difficulty parameters, the categories of ideas found to be the most 
difficult to score in (higher difficulty scores) were: deterministic effects, order, and dynamic processes. 
The category of multiple causes was found to be at the intermediate level; and networked interaction 
and scaling effects categories were the easiest (lower difficult scores). All six categories could also 
distinguish students based on their abilities, as their discrimination parameters ranged from 0.69 
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to 1.64. That is, the question is suitable for measuring the categories theorized. In addition, an 
examination of the test characteristic curves for this model indicated that the six items collectively 
provide adequate information for students with ability levels both below and above average. 
 
Table 3  
Generalized Partial Credit Model 

 
    
 
 
 
 
 
 

N = 44. 
 

The item difficulty parameters allowed us to order the six categories of complex ideas 
from easiest to hardest based on the 44 sets of responses. Items with a lower value on the item 
difficulty parameter suggests that students are more likely to understand the concept. 
Conversely, items with a higher value on the item difficulty parameter suggests that students are 
less likely to understand the concept. If we assume that differences in item difficulty correspond 
to differences in levels of sophistication in the ways that students reason and learn about various 
complex system ideas, then the results may suggest a learning progression, moving from less to 
more sophisticated understanding of complex systems concepts. Table 4 provides details about 
what a learning progression along the difficulty continuum might look like with corresponding 
student examples in each category.  

 
Table 4  
Suggested Learning Progression with Student Examples 

Complex 
Systems 

Category 

Suggested Learning Progression with Student Reasoning 
Examples 

Scaling effects  The geese may chase off other animals, which could stop them from eating 
plants they normally eat, which causes the population of these plants to 
increase. An increase of other animals that feed on these plants may then 
occur as they have more to eat. [cascading effect]. There may be 
overpopulation of the geese as they lack the natural predators [large scale]. 

Networked 
interaction 

The geese will probably help the ecosystem. First, their droppings might 
make the soil more fertile, and plants will grow better [nonlinear]. There 

Category Difficulty (SE) Slope (SE) 
Scaling effects -0.17 (.018) 1.42 (0.50) 
Networked interaction 0.04 (0.22) 1.64 (0.58) 
Multiple causes 0.54 (0.21) 1.24 (0.51) 
Dynamic processes 0.77 (0.26) 0.69 (0.39) 
Order 0.86 (0.22) 0.72 (0.98) 
Deterministic effects 0.87 (0.29) 0.91 (0.34) 
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may be more O2 as a result [interdependency]. The result of O2 and plant 
increase could cause a wet and warm ecosystem. [emergent patterns].   

Multiple causes The geese may also eat most of the grass [cause]. The caterpillars and other 
grass eaters will die or move to another ecosystem [effect/cause]. This 
would mean that the decomposers will have less to eat [effect/cause]. The 
soil may have fewer nutrients as a result, and the trees will grow less well 
[cause/effect]. The geese may also damage statues and walkways with their 
droppings [cause/effect]. 

Dynamic 
processes 

The geese may increase the competition for the same food with other 
animals. The other animals may leave the park to seek greener pastures. 
They and the geese may also simply starve, and their populations decrease. 
However, over time, with more geese in the park, the amount of nutrients 
in the soil is likely to increase as there are more decaying matter (feces and 
dead geese). This allows the park to support more producers and 
consumers. At the same time, overcrowding may occur. The lack of space 
may again decrease the populations. This process will continue on until a 
new equilibrium can be reached or the cycle can carry on indefinitely 
[continual changes]. 

Order Geese may have both positive and negative effects on the ecosystem. For 
example, they [a central actor] may decrease the amount of food available 
to other animals who preyed on the same type of food as the geese. The 
geese may also increase the amount of food available to animals who can 
eat the geese. The effects of geese on the ecosystem cannot be easily 
determined without considering the other animals and plants in the same 
ecosystem as well [while only one actor is explained, it shows evidence of 
decentralization in understanding].     

Deterministic 
effects  

Since the geese arrive at a place they haven’t ever been before, there are 
many ways they can affect the ecosystem and it is impossible to say exactly 
how [uncertainty in tone]. For example, they could drive other birds away 
so that they can lay eggs [1st alternative]. They could drive other birds away 
because they compete for the same kind of food [2nd alternative]. They 
could cause the increase of other animals [3rd alternative] who feed on 
geese. They could cause the increase of other birds [4th alternative] because 
the geese have become an alternative food source for existing predators. It’s 
really hard to tell [suggestions of complete unpredictability]. 

 
The student examples indicate a Level 4 understanding where responses at this level 

existed in the data. In cases where only Level 3 responses existed, we added more information to 
those examples to make it a Level 4 response. Beginning with the easiest category of scaling effects, 
students understand that other variables in the park would be affected with the addition of the 
geese in the park ecosystem. The next level, networked interactions, entails understanding that the 
interactions between the geese and the other variables could cause emergent changes due to 2nd 
order connections in the network and the interdependencies between the connections. In the 
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following category of multiple causes, students become aware of the multiple causes and effects 
that can contribute to these emergent changes. In the category of dynamic processes, students 
understand that these emergent changes continually happen over time and that fluctuations in 
variable populations will occur. In the next most challenging category of order, students realize 
that ecosystem changes happen because systems have decentralized organization, that is, the 
locus of control is spread across the multiple interconnected and interdependent variables. 
Finally, in the most challenging category, deterministic effects, students understand that it is hard 
to predict what would happen in the park ecosystem with the addition of the geese because of all 
the characteristics of complex systems instantiated in the previous categories, and that the 
emergent changes would need to be observed over time.  

Discussion 
Previous research on student understanding of complex systems has mainly explored isolated or 
incomplete processes or structures. Our study explored what students find more or less 
challenging to understand about complex systems, in line with new science education standards 
that call for a more systematic organization of knowledge (NRC, 2012). We have proposed that 
learning progressions research can help to systematize the learning pathways students take to 
improve conceptual competence in complex systems. These learning pathways can in turn guide 
the curriculum and instructional activities in promoting complex systems learning, which is our 
ultimate goal.  
 As there was sparse literature to guide us in hypothesizing such a sequence, we adopted 
an inductive approach in constructing the progression similar to Mohan et al.’s study (2009). 
Using the GPCM, we analyzed 44 students’ written responses to a biology question concerning 
the effects of the arrival of geese on a park ecosystem, with the aim of assessing the students’ 
understanding of various complexity ideas. We acknowledge the small sample size in this 
exploratory study and the implication this has on the generalizability of claims. But we believe 
that the findings are an important initial step to describing a learning sequence from which to 
undertake more robust research. 
 We found that two of the easiest categories of ideas for students to comprehend are those 
that relate to the effects of actions in complex systems (scaling effects) and the interconnected and 
emergent nature of these systems (networked interactions). A “completely complex” understanding 
of these ideas includes the ability to reason that small actions can lead to large effects; that these 
actions can produce both localized and cascading changes; that the changes can occur 
immediately and over a long period of time; that the parts in the system are interdependent; that 
the relationships among the parts in the system are nonlinear with feedback mechanisms; and 
that the parts interact to produce emergent patterns that are not obvious at the component level. 
Students seem to experience more difficulty in interpreting that there are multiple causes that 
may contribute to the outcome(s) of a change (multiple causes), and perceiving that the system 
continues to undergo adaptation or evolution (dynamic processes). The categories of complex 
systems ideas that appear to be the most challenging to understand are order and deterministic 
effects; these complexity ideas concern the decentralized organization of the system, and the 
predictability of the effects caused by the variables of the system. 
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 Within the context of our test question, this ordered sequence of complexity ideas is valid. 
In a question that frames the complexity within an ecosystem of a park located in the students’ 
own city, the students might have found it easier to visualize the manifestation of complexity 
ideas associated with the interconnectedness and interdependency of the various plant and 
animal species in the park, as well as the cascading, emergent, and nonlinear effects the arrival of 
the geese might have on the rest of the ecosystem (i.e., the scaling effects and networked interactions 
categories). In contrast, complexity ideas in the order and deterministic effects categories are less 
“visible” (such as the decentralized nature of interactions after the geese created the initial 
perturbation); in other words, the notion that there are myriad other components (e.g., plants, 
predators, and prey to geese, climate) that may contribute to how the system is organized, and 
that it is not possible to predict with precision the effects of the arrival of the geese at the park, 
could fall well outside of students’ perceptual abilities. Chi (2005) provides another possible 
explanation, proposing that some scientific concepts and ideas may be easier to comprehend 
because of the ontological categories they belong to. Chi explains that “ontological categories 
refer to the basic categories of realities or the kinds of existence in the world, such as concrete 
objects, events, and abstractions” (p. 163). The more visible ideas of complex systems may 
represent ontologically easier categories for students to understand. 
 Our findings align well with current literature on students’ understandings of complex 
systems while also advancing the field by establishing an initial progression of the various ideas 
associated with complex systems. Previous studies have highlighted challenges in learning about 
only one or a few complex systems concepts and our results with respect to those concepts agree 
with other study findings. For example, research (e.g., Levy & Wilensky, 2009; Taber & Garcia-
Franco, 2010; Wilensky & Reisman, 2006; Jacobson et al., 2011) has shown that students tend to 
believe that complex systems are deterministic and centrally controlled. Likewise, researchers 
have observed that students tend to think linearly about relationships among the components 
(Gotwals & Songer, 2010; Hogan, 2000; Riess & Mischo, 2010; Sweeney & Sterman, 2007), have 
difficulty understanding emergent patterns that result from multiple causes (Chi et al., 2012; 
Grotzer, 2015), and do not adequately articulate an understanding of the multiple variables and 
their interrelatedness within the system as a whole (Ben-Zvi Assaraf & Orion, 2010). Collectively, 
this research has shown that when students are exposed to appropriate instruction, learning 
challenges can be overcome in these individual areas of complex systems learning.  
 The results of our study also corroborate results found in studies that reveal difficulty 
levels with a portion of complex systems ideas. For example, Hmelo-Silver and colleagues have 
consistently found that the structural components of systems (e.g., which parts or features are 
important to include in particular systems) are more easily identified than processes or behaviors 
like feedback loops (Hmelo et al., 2000; Hmelo-Silver et al., 2004; 2007).  In their hierarchical model 
of complex systems understanding, Ben-Zvi Assaraf and colleagues have shown that 
components, and then relationships, and then hidden processes that enable systems to evolve, 
comprise the hierarchy of learning difficulties from the least challenging to the most (Ben-Zvi 
Assaraf et al., 2005; 2010). In our suggested order of easiest to most difficult concepts to learn, the 
scaling, networked, and multiple causes categories, generally align with the categories of structures 
and components. Whereas the latter categories of dynamic processes, order, and deterministic effects, 
generally align with relationships and hidden processes.  Our progression also roughly supports 
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the ordering of content in the cross-cutting concept of systems and system models found in the 
NGSS. In the earlier grades, the standards emphasize components and their interactions, while 
in the upper grades, the focus is on system processes and the prediction of evolved system 
behaviors.  The added value of our suggested learning progression over other conceptions of 
relative developmental comparisons, is that it specifies particular structures (e.g., networks), 
behaviors (e.g., multiple causal factors), and processes (e.g., decentralized control) that teachers 
can apply in instruction.  

Here we conclude with an instructional sequence from the least to the most challenging 
concepts to comprehend for middle and high school students (who were the participants in our 
study). In the middle grades, the focus could be on identifying different variables and levels of a 
system and how they are connected (e.g., predator–prey interactions). Early high school students 
could build on this knowledge by learning about how system organization changes and depends 
on multiple ongoing causes (e.g., why and how predator–prey populations fluctuate over time). 
Finally, upper high school students could further develop their complex systems competency by 
investigating the decentralized probabilistic nature of scientific phenomenon (e.g., how random 
variation in a population could lead to shifts in states of equilibrium). Importantly, these levels 
or concepts within the learning progression need to be articulated in instruction as processes and 
structures that comprise a whole system.  

In subsequent studies we aim to further validate the progression with a larger sample size 
and apply it to other scientific domains such as physics and chemistry in order to determine how 
robust it is as a general complex systems heuristic. 
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