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Abstract

The Brass mortality model is based on a strong linear relationship between the logits

of the survivorship probabilities of any two life tables. This strong empirical
relationship justifies the construction of model life tables from any life table taken as
a standard, by manipulating the values of the parameters of the linear equation. The
purpose here is to show that a boundary condition exists for this model which has so
far gone unnoticed. The simple exercise of fitting and testing the goodness of fit of
the model does not reveal this boundary condition. That can only be found through
an investigation of other forms of relationships between life tables which must also
be true if the linear model holds.” One such’investigation leads to the restriction that
the slope of the Brass model must be equal to one.. This restriction not only reduces
the number of parameters of the linear equation from two to one but also allows the
equation an alternative and simpler expression. It can be shown that the reciprocals
of the survivorship functions are linearly related with the restriction that the slope
and the intercept coefficients must add up to one. Empirical tests of this revised
model seem quite encouraging, and suggest scope for further improvement,

Résumé

Le modéle de mortalité Brass est basé sur une forte relation linéaire entre les logits
des probababilités de survie de deux tables de vie quelconques. Cette forte relation
empmque justifie la construction de tables de vie modéles 4 partir de toute table de
vie prise & titre de norme, en manipulant les valeurs des paramétres de I'équation
linéaire. L'objectif est ici de démontrer l'existence d'une condition-limite pour: ce
modéle, laquelle n'a pas été notée jusqu'ici. Le simple exercice consistant 4 ajuster et
a tester le modele ne révéle pas cette condition. Elle ne peut étre trouvée qu'au terme
d'une investigation portant sur d'autres formes de relations entre les tables de vie, qui
doivent également étre vraies si le modéle linéaire tient. Une investigation de ce
type aboutit 4 la restriction dictant que la pente du modéle Brass doit étre égale 4 un.
Cette restriction ne limite pas seulement le nombre de paramétres de I'équation
linéaire de deux & un, elle donne également lieu 4 une autre expression plus simple:
On peut démontrer que les réciproques des fonctions de survie sont liées de fagon
linéaire, & condition toutefois que la pente et les coefficients de la coordonnée i
l'origine donnent un. Les tests empiriques de ce modéle révisé semblent prometteurs
et pourraient donner lieu 4 d'autres améliorations.
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The Problem

In an empirical demoristration, Brass (1975) has shown that the logits of any
two life table survivorship functions are highly correlated and accordingly,
the relatmnslup between the two can be expressed in terms of a linear
equation as
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In (1) £4(x) and £ () are the observed or the given probabilities of survival
from birth to age x in the two life tables and € stands for the error
component, 'I'herefo:e, from any given or standard life table with known
£,(x) values, other life tables can be generated for appropriate combinations
of the values of the parameters a and b. The parameters have been found to
vaty in a systematic manner with levels of mortality such that in most cases
a decreases and b increases with increase in life expectancy (Keyfitz, 1991).
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The purpose of this note is to demonstrate the existence of a boundary
condition in (1) which has hitlierto gone unnoticed. What follows next is the
derivation of this condition and the restriction 1t imposes on the parameters a
and b,

The Boundary Condition
To that end, we begin by dropping the error term €, replacing £,(x) by its

expected value £(x) and dlﬁ'erentlatmg both sides of (1) with respect to x.
The operation produces
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" is the force of mortality at age x corresponding to the first life table with £(x)
as the survivorship function at age x. A similar expression can be written
with £(x) for the force of mortality p(x) of the standard table. Simplifying
(2), we get
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Since (5) holds for all x, it must also be true for x = 0 at which the right hand
side of (5) assumes the indeterminate form of 0/0 since £(0) = £,(0) = 1. It
can, however, be determined from its limiting value as x—0 by applying the
well known L'Hospital's rule. Thus, we first write the limiting value of (5)
as
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Next, we differentiate the numerator and the denominator of the righthand
side of (6) with respect to x to get the limiting valueas -
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from which we get

b=1 T ®)

The boundary condition set by (5) at x = 0 therefore reduces the number of
parameters of the Brass model from two to only one.
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The Reduced Model

Note that with b = 1, (5) can be written as
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An alternative expression for (1) can next be derived by first writing

a=/tnk (10)

In that case, given b=1, (1) can be written as
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Equation (12) describes a linear relationship between the reciprocals of the
survivorship functions of two life tables which of course meets the boundary
condition at x = 0 as it should. It may also be noted that the slope and the
intercept coefficients of the straight line add up to unity. Note from (10) that
k is always nonnegative although it may be greater or less than unity,
depending on whether the mortality rates of the standard life table are less or
greater than those of the other. This may be seen by rearranging (12) as

1 1.1
= (1-_.) + e

£

which expresses the reciprocal of £,(x) as a linear function of the reciprocal
of £(x). Here the slope coefficient turns out to be the reciprocal of . Thus,
the model does not allow for any crossover between the survivorship
functions of any two life tables, which has become a controversial issue in
recent times (Nam, 1993). This may also be seen by writing (12) as

X 14
w5 - Ahek 14
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from which it can be seen that for all x, £(x) > £ (%) when 0 <k <1 and £(x)
< £4x) when k > 1. Incidentally, a rectangular distribution for 4(x) is
obtained when k=0. Since the equation that results after differentiation of
both sides of (12) with respect to %, is .

. |
- 1e-L >0
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it follows that £(x) is a decreasing function of k for any given £ (). This may
be seen in Figure 1 where the model 4¢x) functions have been derived for
several values of k.

Figure 1. Observed and Expected l(x) Values for Varying
Levels of k. Mexico (1970} is the Standard Table.
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Note also, that the model does not allow for any crossover for the mortality
rates either. This follows from (9) accordmg to which for all x, u(x) < py(x),
when £(x) > £,(x) and vice versa.
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An investigation of the nature of the model survivorship functions at the
other end of the life span seems to be in order at this point. For that we

rewrite (14) as
&)
e = _—:_—

Observe that both £(x) and £,(x) must vanish together meaning that the life
span remains the same at all levels of mortality which should not be viewed
as an unrealistic restriction on the model. Incidentially, the restriciton may
be seen to hold on the original Brass model as well (see eq. 1).

Estimates of k

~ In order to estimate the parameter & we first rewrite (12) as
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and then find the line of best fit of 1/Z,(x)-1 on 1/¢(x)-1 with zero intercept.
It is quite possible that the estimate of % thus obtained may not
simultaneously minimize the sum of squares of differences between the given
and the estimated values of Z,(x). Consequently, we have taken the next step
towards that goal by using either of those estimates of k as the initial or trial
solution for the standard computational program for nonlinear regression.
At this point, it is felt that since the variance of £,(x)

Vo)) = £,06) (1-64x)) %)

is a function of x, the minimization of the sum of squares may preferably be
carried on with weights proportional to the reciprocal of the respective
variances. The operational procedure for the estimation of % therefore,
requires the minimization of

E = Y (£40) - €))H(Eox) (1-€4(x))) (19)

In practice however, the best solution of ¥ may be obtained from (19) without
either of the trial solutions. An arbitrary initial value of 0.7 for example for
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k is enough for the SPSS nonlinear regression program to find the best
solution. ,

Experiment with Models

Life tables of three countries covering the wide range of life expectancy were
selected and were subjected to graduation by Brass's two parameter, as well
as the present single parameter, model. The experiment was repeated twice
by selecting two different standard life tables covering the range of life
expectancies. See Table 1 for values of the parameters and information
about the standards used.

Table 1. Estimates of the Parameters of the One-Standard and Two-Standard Models.

One-Standard Model Two-Standard Model
Standard Guatemala England & Wales Both Guatemala and
Country (Males) (1972-73, 53.8) (1982-84, 71.5) England and Wales

k k c d

Botswana . 1.06281 6.70403 .83795 1.12307
(1980-81, 52.7)
Bahrain .52507 2.39343 32388 . .88029
(1976-81, 63.3)

Japan 16551 67599 - 02397 .58906
(1984, 74.4) .

Note:  Figures inside parenthesis are year and life expectancy in that order.
Source: United Nations. 1985 Demographic Yearbook.

Not unexpectedly, the quality of fit of the model to the actual life tables
seems to depend on the closeness of the given life table with the standard life
table. This may be seen in Figure 2 for the three life tables for males. The
female comparison is quite similar and is not shown here.
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Figure 2. Observed and Expected |(x) Values from the Brass
and One-Standard Models for Selected Male Life
Tables.

Guatemala is the Standard Table.
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Figure 2 (continued). Observed and Expected I(x) Values
from the Brass and One-Standard Models for
Selected Male Life Tables.
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This is true for both models, although Brass's two-parameter model has a
slight edge over the one parameter model in spite of its failure to meet the
boundary condition. Accordingly, we chose to enlarge the one parameter to
a two parameter model by entering two instead of one standard life table
without altering the functional form of the equation. This can be
accomplished by defining a two-standard model as a linear compound of two
single standard models given by

1 } 1
@ ! ecr) b+ (e(x) D - (20)

where £(x) and £4x) stand for the survivorship functions of two standard
‘tables:—Thejustification-of such—a-procedure-stems-from-thefact-that-the
function 1/¢(x) of any two life tables are highly correlated. Consequently, the
multiple correlations between 1/4(x) of any life table and a linear compound
of the same of any other % life tables must be a nondecreasing function of k.
As will be shown later, k=2 is sufficient for the present exercise since it
brings that multiple correlation sufficiently close to unity. ,

Ags before, we proceed with the estimation of the parameters ¢ and d by the
method of least squares for linear regression with zero intercept. The
estimates of the parameters ¢ and 4 are then used as trial solutions to
minimize E as shown in (19).

As noted earlier, the one-standard or the single parameter model produces a
good fit when the levels of mortality of both the standard and the given life
tables do not differ greatly from one another. Common sense therefore,
dictates that the best result from the two-parameter model can be obtained
when the two-standard tables are selected from the two ends of the life
expectancy continuum. Accordingly, Guatemala, with a life expectancy of
54 years, and England and Wales, with a life expectancy of 73 years were
selected for testing the two-standard model. The quality of fit may be seen in
Figure 3 where for purposes of comparison, the logit model of Brass has also
been shown for which Mexico, with a life expectancy of 63 years, has been
chosen as standard. The choice of Mexico is guided by the fact that its life
expectancy is close to the average of the same of the countries selected for
the two-standard model.

Clearly, the two-standard model seems to produce a better fit than the Brass
logit model with both having two parameters.

75



S. Mitra

Figure 3. Observed and Expected l{x) Values from the Brass (Standard
is Mexico) and Two-Standard (Guatemala, and England
and Wales) Models for Selected Male Life Tables.
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In order to judge the quality of a model, one can come up with several
objective measures of goodness of fit. One such measure can be generated
from the index that Heligman and Pollard (1980) used to minimize, in order
to estimate the parameters of their model curve for probabilities of dying.
An equivalent version of that index in our example will be

| £
X Y @

As such, s2 provides a measure of departure of the observed from the
expected values of survivorship function in relative térms, although its
magnitude depends on the number of data points » used for its derivation.
Also, the measure being comparable to the variance is not linear.
Accordingly, we have chosen to define a measure such as root mean square
deviation given by

¢ = s @2)

which is linear as well as independent of the number of data points.
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In general, the quality of a model can usually be studied by constructing an
index that measures the equality of the observed and the expected values.
Certainly, e accomplishes that objective to a certain extent. It assumes the
smallest value of zero when the fit is perfect but unfortunately its upper
boundary is indeterminate. Accordingly, we have chosen to provide another
measure which has earlier been used in a similar experiment (Mitra and
Denny, 1993). That measure is based on the linear regression of the
expected on the observed values where we look not only at the magnitude of
the correlation coefficient R, but also at the values of the slope m and the
intercept A. Under ideal conditions, both the correlation as well as the slope
should be equal to one, and the intercept should be equal to zero. For the
three life tables the values of all these measures may be seen in Table 2.

Table 2. Estimated Values of the Indices e, R, m and h for the Three Life Tables.

Index
Country Model e R m h
Botswana : " Brass 08375 99635 96550 02527
Two-Standard 05776 99894 1.00208 -.00143
Bahrain Brass .03488 .99890 1.01540 -.00822
Two-Standard .01118 99993 99762 .06 165
Japan Brass .04497 99887 96411 02953
Two-Standard .02050 99925 97701 01876

From the figures and Table 2, it is obvious that the two standard model fits
the life tables quite well and performs better than the logit model of Brass.
While the quality of the logit model has the disadvantage of its being
influenced by the choice of the standard, the two-standard model appears
free from such defect since the standards can be chosen to cover the entire
range of variation of the life expectancy.

Summary and Concluding Remarks
The limits set by the boundary condition on the parameters of Brass's model

involving the logits of the life table survivorship function £(x) led us to the
development of an alternative model. This model, based on a linear
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relationship of the reciprocals of the £(x) function of a given table with the
same of two other appropriately chosen standard life tables, has shown
encouraging results. For improving the quality of fit we have chosen the
method of nonlinear regression to estimate the expected values rather than
inverting the expected values of the reciprocals of 4(x) from its linear
. Tegression equation. It is certainly possible that Brass's model subjected to
similar treatment will produce a better fit but was not explored since it failed
to meet the boundary condition.

We would conclude by noting that the three life tables chosen for this
experiment show a tendency for both the parameters ¢ and d to be positive.
Also, both parameters seem to decline with increase in life expectancy of the
given life table, Further experiment with a large number of life tables will
reveal the patterns of variation in these two parameters from a historical as
well as from a global perspective.
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