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Abstract: 

 

Microsimulation is well known as a tool for static analysis of tax and transfer 

policies, for the generation of programmatic cost estimates, and dynamic 

analyses of socio-economic and demographic systems.  However, 

microsimulation also has the potential to contribute to longitudinal data analysis 

in several ways, including extending the range of outputs generated by a model, 

addressing several defective-data problems, and serving as a vehicle for 

missing-data imputation.  This paper discusses microsimulation procedures 

suitable for several commonly-used statistical models applied to longitudinal 

data.  It also addresses the unique role that can be played by microsimulation in 

longitudinal data analysis, and the problem of accounting for the several sources 

of variability associated with microsimulation procedures. 
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Résumé 

 

La micro-simulation est bien connu comme un outil pour l'analyse statique des 

politiques d'impôts et de transfert, pour l’estimation des coûts des programmes, 

et pour l’analyse dynamique des systèmes socio-économiques et 

démographiques. Cependant, le micro-simulation offre également des 

possibilités intéressantes pour l'analyse de données longitudinale, y compris le 

développement d’autres  produites du modèle, la possibilité d’adresser des 

problèmes de données déficientes, et comme véhicule pour l'imputation de 

données manquantes. Cet article discute des procédures de micro-simulation 

appropriées à plusieurs modèles statistiques qui utilisent des données 

longitudinales. Il adresse également le rôle unique qui peut être joué            par 

la micro-simulation dans l'analyse de données longitudinale, et le problème posé 

par les multiples sources de variabilité dans les procédures de micro-simulation. 

 

 

Key Words:  Longitudinal data analysis, dynamic models, event history analysis,       

                     microsimulation, Imputation 

 

 

 

 

 

 

 

 

Microsimulation Defined 
 

The term “microsimulation” encompasses a variety of methodological tools and 

techniques that are finding growing use in empirical social science applications.  

The growth in the number and variety of such applications makes the task of 

organizing and summarizing the field a great challenge.  This paper does not 

attempt to provide an overview of those applications; a recent book by Gilbert 

and Troistzch (1999) does an excellent job of that.  Rather, the emphasis is on 

ways that microsimulation can serve the needs of the data analyst – for which 

we might substitute the term ‘model builder’ – rather than the model user.  

Furthermore, the focus is on longitudinal rather than cross-sectional data 

analysis. 

 

Microsimulation can be described as a collection of tools that facilitate a 

particular approach to working with a model.  The essence of that approach is 

(1) the use of randomization in the assignment of values to the units studied – 

i.e. in ‘prediction’ – and (2) the use of individual units of analysis.  This 

description does not, admittedly, go far towards isolating a recognizable set of 



The Role of Microsimulation in Longitudinal Data Analysis 

 315

 

analytical tools.  One textbook states that simulation is a way of “... driving [a] 

model with certain (typically random) inputs and observing the corresponding 

outputs” (Bratley, Fox and Schrage 1987:2).  Moreover, while rather obvious, it 

bears stating that microsimulation presupposes the existence of a model, as well 

as the availability of specific values for all its parameters, even if those values 

are considered ‘provisional’ or ‘interim.’   Thus the specification of a model 

must precede microsimulation, and parameter values must be obtained either by 

statistical estimation or other means (including assumption, borrowing from 

other sources, or pure guesswork). 

 

In view of the preceding paragraph, a suggested definition for microsimulation 

relevant for social science applications is the following: microsimulation 

consists of drawing a sample of realizations of a prespecified stochastic process. 

Microsimulation thus entails the generation of data (a set of realizations).  

Again, the model (the prespecified stochastic process) must be known in 

advance.  The generated data will look like ‘real’ data, and can, therefore, be 

analyzed and summarized just like real data, although I will argue below that 

additional and specialized techniques should be used to account for the 

uncertainty inherent in microsimulation. 

 

The definition offered here is general enough to encompass a diverse set of 

empirical applications in the social sciences.  Microsimulation is well known as 

a tool for static analysis of tax and transfer policies, and for the generation of 

cost estimates for proposed legislation (see, for example, Lewis and Michel 

1989; Orcutt et al. 1986; or Haveman and Hollenbeck 1980).  There are also 

several examples of efforts to develop large-scale dynamic models of socio-

economic and demographic outcomes in multiple domains, such as births, 

deaths, marriages and divorces, education, labor force behavior, incomes, 

savings, retirement, health, and household arrangements. These include the 

DYNASIM (Orcutt et al. 1976; Zedlewski et al. 1990) and CORSIM (Caldwell 

1999) projects in the U.S., Statistics Canada’s DEMOGEN model (Wolfson 

1989), the NEDYMAS (Nelissen 1995) in the Netherlands, and the models 

developed by the Sonderforschungsbereich 3 group in Germany (e.g., Galler 

1989) and at NATSEM in Australia (Harding 1993; King et al. 1999), among 

others.  A common characteristic of these efforts is the incorporation of model 

elements from several non-overlapping data sources, drawn from different 

samples, possibly drawn at different times. 

 

Microsimulation has received much attention from demographers, especially to 

study reproduction (e.g., Barrett 1971; Ridley and Sheps 1966) and the 

composition and evolution of kin groups (e.g., De Vos and Palloni 1989; 

Goldstein 1996; Ruggles 1987; Wachter 1987, 1997; Wolf 1988).  The works 

just cited are narrower in scope than those cited in the preceding paragraph, 

since they simulate fewer outcomes (at most, birth, death, marriage and 

divorce). 
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However, in all the applications cited above, the emphasis is primarily on the 

simulation itself, and on the outputs generated by the simulation, rather than on 

the process of model development, estimation, and assessment.  A goal of this 

paper is to argue that the microsimulation approach has much to offer in these 

prior steps of the modeling process, the steps that might precede the integration 

of disparate model elements into a large-scale, possibly policy-directed system-

level application.  At the same time, it is difficult to draw a line between 

research in which the model, rather than the simulation, is of primary emphasis. 

 

Gilbert and Troitszch (1999) draw a distinction between “statistical” models and 

‘simulation’ models.  The former consists of one or more mathematical 

expressions that include parameters, the numerical values of which are obtained 

through estimation based on empirical data.  Assessment of a statistical model 

can depend, in part, on a comparison of the estimated model’s predictions with 

their real-world counterparts.  In contrast, a simulation model may take the form 

of a computer program, and the output of the model might consist of artificial 

data; here, assessment of the simulation model might depend in part on a 

comparison of the simulated data to its real-world counterpart.  Gilbert and 

Troitszch (1999) include ‘microanalytic simulation models’ – more simply, 

‘microsimulation’ – as a subtype of simulation.  The present paper focuses on 

microsimulation techniques, which are necessarily used in, but distinct from, 

microsimulation models, and tries to point out the ways in which these 

microsimulation techniques can play a role in the development of what Gilbert 

and Troitszch (1999) call ‘statistical models.’  Thus it attempts to link what 

might otherwise be viewed as quite different categories of modelling efforts. 

 

With respect to the role of microsimulation in model development, two types of 

activity come immediately to mind, Monte Carlo investigation of the sampling 

distributions of various statistical estimators (Mooney 1997), and the recently 

developed simulated maximum-likelihood and method-of-moments estimators 

of high-dimensional latent-variable or discrete-choice models (e.g., McFadden 

1989).  While these techniques are of great importance, they will not be 

considered here.  Also, by the above definition of microsimulation, the multiple-

imputation approach to dealing with missing data (Rubin 1987) can be viewed 

as a type of microsimulation.  Indeed, below I suggest that analytical results 

from the multiple imputation literature can be extended to deal with the several 

sources of uncertainty present in microsimulation output data.  

 

There is a final distinctive way in which microsimulation differs from the 

‘production’ of a model. Normally, a model construction involves the following 

sequence of steps: (1) specification, that is, identifying the fixed, variable, and 

parametric elements of the model, and the relationships among them, in some 

formal statement. (2) Itemizing assumptions, particularly those concerning the 

nature of any stochastic elements of the model. And, (3) obtaining statistical 

estimates of the parametric elements. In order to conduct microsimulation it is 

necessary to bring in a fourth element, namely the ‘baseline’ (in a static or cross-
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sectional simulation) or the ‘initial conditions’ (in a dynamic, or longitudinal, 

simulation).  The initial conditions can be chosen arbitrarily, and might 

represent a single ‘representative’ or otherwise interesting individual, or they 

may be an empirical representation of (i.e. a sample from) a large population. 

 

In the following sections of this paper I provide specific examples of types of 

models that lend themselves to the microsimulation approach, discuss several 

ways that microsimulation can serve the data analyst, and suggest a few specific 

procedures to be incorporated into microsimulation exercises.  These discussions 

are guided by a few basic principles,  namely: 

 

• microsimulation should be viewed as an exercise in taking one’s model 

seriously.  That is to say, any assumptions that are imposed during the 

specification and estimation steps must, as well, be imposed in the 

microsimulation algorithm.  And, if the microsimulation output 

produces a finding that is sharply at odds with known facts, then it is 

not adequate to ‘adjust’ (or ‘calibrate’) the microsimulation; rather, one 

must return to the model, prepared to respecify it and to reestimate its 

parameters (see also Klevmarken 1998, p. 22); and, 

 

• microsimulation is fundamentally an exercise in sampling.  

Accordingly, it is important to worry about the sampling distribution of 

any microsimulation outputs.  However, in contrast to the process of 

generating an empirical sample from a real and finite population, 

microsimulation can be viewed as the generation of a sample from a 

hypothetical but infinite population.  Furthermore, in a microsimulation 

the model parameters are generally a sample from a sample space, the 

random numbers used in assigning simulated values are a sample from 

the infinite population of random numbers, and the initial conditions 

are often a sample from a real, finite population.  Each is a distinct 

source of sampling variability.  One can push this observation even 

further, noting that the random number generator, the model 

specification, and the microsimulation algorithm are all selected, albeit 

not at random, from sets of alternative choices.  However, the latter 

sources of uncertainty or error will not be considered here. 

 

 

Canonical Forms of Models 

and Appropriate Simulation Algorithms 
 

There are many types of statistical models suitable for longitudinal data.  Here I 

will list a few important classes of models that are particularly suitable for use in 

a microsimulation.  In each case, one or more suggested simulation algorithms 

are also given. 
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Models of Duration and of Event Sequences   

 

Duration (alternatively, ‘event-history,’ or ‘failure-time,’ or ‘survival-time’) 

models, have developed rapidly and achieved widespread application in recent 

decades.  Under this heading I include only those models in which time is 

considered a continuous variable; discrete-time models are discussed below.  In 

the simplest such model, interest focuses on the time elapsed from one specified 

event (e.g., becoming married, or being born) to the next event (e.g., becoming 

divorced, or widowed; dying).  Closely related are models of the number of 

events occurring in a specified time interval.  As pointed out by Klein and 

Moeschberger (1997), models of duration can be grouped into two classes: the 

accelerated failure-time model, and models of the hazard, or rate, of occurrence 

of an event. 

 

A duration model often considers only a single random variable, that is, a single 

elapsed time between events, but that random variable is typically an element of 

a life-cycle process in which numerous events, of several types, can occur.  In 

either case, it is common to formulate a model of duration with reference to the 

instantaneous rate of occurrence of an event (or, of leaving a state), i.e. the 

hazard.  A general expression for a multiplicative hazard model, expressed in 

logarithmic form, is where i denotes an individual, j and k denote the last and the 

next event types, respectively, f0jk(t) is the (log) ‘baseline’ hazard (involving 

some parametric function of elapsed time, t, and possible ‘duration 

dependence’), and Xi is an array of predetermined (but possibly time-varying) 

variables.  The term gjk(Hi) expresses the possible dependence of the current 

duration interval on any of several aspects of the history of the process.   

 

  

 

 

Heckman and Borjas (1980) identify several conceptually distinct types of this 

history-dependence, including lagged duration dependence (the dependence of 

the current hazard rate on the duration of a prior completed duration, in the same 

or some other state) and occurrence dependence (a count of the number of prior 

visits to the state, or an indicator that  

 

some state has ever been visited).  The term zi represents ‘unmeasured 

heterogeneity’ – the combined influence of all relevant but unmeasured factors.  

Equation (1) represents the simplest special case, namely one in which 

unmeasured factors are person-specific but time-invariant.  There may also exist 

spell-type specific,  family- or other group-specific, or place-specific 

unmeasured heterogeneity.  The existing literature includes numerous examples 

of these models, including some employing parametric random-effects ‘frailty’ 

models (e.g., Manton et al. 1986) and the multinomial mixture model developed 

  
lnh ijk(t |Xi, h i , zi ) = f0jk (t) + Xi jk + gjk(Hi ) + jkzi            (1)
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by Heckman and Singer (1984).  In equation (1), Bjk and jk are unknown 

parameters, while f0jk( . ) and gjk( . ) contain additional unknown parameters. 

 

From the hazard function one can derive the conditional (on k) survival function, 

Sijk(t), which gives the probability that i will remain in state j for at least t time 

units prior to experiencing event k, or 

 

 

 

and the density function for completed durations—the “failure density”, 

 

 

 

 

If the random process being modeled is associated with only one type of event, 

then the j and k subscripts in equations (1) - (3) can be dropped, and (3) fully 

determines the sample paths of the process.  If, however, multiple “causes of 

death (failure)” or destination states are explicitly represented, then one can 

decompose the probability that the time to the next state is Tij and the next state 

entered is k as follows: 

 

 

 

where Xn is the most recent event (the current state occupied), Xn+1 the next state 

entered, and tn the elapsed time between the most recent and the next events (see 

Berman, 1963; Wolf 1986). 

 

Examples of applications of duration or event-history models in demography, 

economics, sociology and other social sciences are numerous.  Virtually all 

demographic models employing life tables, whether of the simplest single-

decrement type, or the more complex multiple-decrement, or even more 

complex ‘multistate’  types, can be viewed as special cases.  In the simplest such 

cases hazards are treated as constant within time intervals but dependent on age, 

and measured and unmeasured covariates are disregarded.  In more complex 

models, such as the semi-Markov marital-status dynamic models found in 

Ravanera, Rajulton and Burch (1993) or Wolf (1986), hazards depend on both 

  
Sijk (t) = exp( h ijk(x)dx )

0

t
    (2)

    
f ijk(t) = Sijk (t) hijk (t)          (3)

Pr (Xn+1 =k,tn =T |Xn = j )

=
d

dT
exp( hijk (w)dw )

hijk (T)

hijk (T)
k

      (4)                     
0

t

k
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age and the time since the last event. 

 

There are various ways that models based on continuous-time event hazards can 

be simulated.  In a simple model with only one type of event (e.g, the time 

between the formation of governments in postwar Italy; the time between 

occurrences of crimes at a fixed location) it is sufficient to simulate times based 

on the survivor function, equation (2).  In particular, one can  

 

(a) draw a random number z* from the uniform [0, 1] interval; 

(b) find t* such that S(t*) = z*.   

 

In practice, one often can obtain satisfactory results by finding integers [t*] and 

[t*]+1 such that S([t*] + 1)  [  z*  [  S([t*]) and interpolating between them. In a 

multistate model one can follow the preceding steps to find the time to next 

event, but using the “overall” survivor function [the first term on the right hand 

side of (4)].  One can then  

 

(c) draw a second random number y*;   

(d) divide the unit interval into K subintervals, representing the K 

possible destination states, [0, hij1(t*)],[hij1(t*), hij1(t*) + hij2(t*)], 

.… ,[�k = 1,.. , K – 1 hijk(t*), �k = 1, ,K  hijk(t*)];  

(e) assign as j*, the simulated next state entered, the index of the 

interval that contains y*.   

 

The latter algorithm is discussed more extensively in Wolf (1986). 

 

An alternative to the multiplicative hazard model is the accelerated failure time 

model, expressed as 

 

 

 

where Tij is the length of a type-j episode for individual i, Xi and Bj are as 

defined above, j is a scaling factor, and T0j is a random variable from a 

specified distribution (e.g., normal or gamma).  Equation (5) models failure- 

(survival-) times directly, rather than indirectly through the hazard function as in 

equation (1).  A person-specific random effect could presumably be added to the 

right hand side of equation (5). Examples of the usage of this model include 

Wolfson et al. (1990), who modeled survival after age 65 as a function of long-

run average earnings, and Christofides and McKenna’s (1996) analysis of job 

tenure. 

 

 

 

 

    
lnTij = X i j + j lnT0 j (5)
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Microsimulation of the accelerated failure-time model is straightforward, 

requiring   

 

(a) drawing a random number from the specified distribution for T0j;  

(b) computing the implied value of lnTij  given Xi and the estimated 

values of Bj and j 

(c) exponentiating the result, thereby obtaining a simulated value Tij*.   

 

This model also suggests an alternative algorithm for event-based simulation of 

a competing-risks model.  In such a model there are J latent times, Ti1*, ... , TiJ* 

each corresponding to the time until occurrence of event-type 1, ... , J 

respectively, but what is observed is only Tij , the minimum of the set of latent 

failure times (David and Moeschberger 1978).  The other latent times are 

censored by the occurrence of failure due to event-type j. An algorithm for the 

simulation of this process simply repeats the simulation algorithm given above, 

for times Ti1*, ... , TiJ*, then chooses as the “observed” outcome the minimum of 

the set of simulated latent times.  This approach avoids the need to evaluate 

several hazard functions. 

 

 

Linear Models for Continuous Outcomes 

 

When continuous outcomes for individuals are observed two or more times in 

panel data, analysts may model the sequence of outcomes using a generalization 

of the classical linear model,  

 

 

 

 

where i indexes individuals, j represents the j
th

 outcome, and ij is a person-

specific and outcome-specific factor.  The disturbance eijt may be a simple ‘pure 

noise’  factor, or may be generalized to exhibit serial correlation.  One example  

of such a model is the longitudinal earnings model presented in Lillard and 

Willis (1978), in which the ijs are treated as normally-distributed random 

effects and the eijt exhibit first-order autocorrelation; for additional examples see 

Hsiao (1986).  Microsimulation of models like (6) is straightforward depending 

on the distributions assumed for the person-specific factors and the disturbances.  

Given predetermined values for ij and Xi, one must (a) draw a random number 

e* from the distribution of the disturbances, then (b) make appropriate 

substitutions into (6) to obtain y*, the simulated value of yijt. 

 

 

 

    
yijt = ij + X it + eijt (6)
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Models for Discrete-outcome Panel Data  

 

A third class of models deals with a series of discrete-coded outcome variables, 

in the simplest case binary-coded (0, 1) variables.  For such binary variables, a 

general probability expression for the observed outcome is  

 

 

where Yijt is the observed outcome, F is a specified cumulative distribution 

function, and other notation is as defined above.  The most common choices for 

F are the normal (i.e. the Probit model) and the logistic (i.e. the logit model).  

Alternatively (but equivalently) the outcomes can be viewed as generated by 

latent index functions.  The logit and probit models can be derived as instances 

of utility-maximizing choices over a set of discrete alternatives, in which the 

utility to i of choice j at time t is given by 

 

 

 

where the u’s have independent Type I extreme-value distributions [that is, F(u) 

= exp(-exp(-u))] in the logistic case (see McFadden 1973) or a multivariate 

normal distribution in the Probit case (Hausman and Wise 1978).  The model is 

completed with the assumption that the observed choice offers greater utility 

than the other available choices, i.e. Yijt = 1 � Vijt = max[Vi1t, ... , ViJt]. A related 

derivation for the binary Probit model views the linear index XijtB as a 

‘stimulus,’ an unobserved standard normal variate as a person-specific 

‘threshold,’ eijt, and supposes that the outcome or ‘response’ is observed if the 

stimulus exceeds the threshold, or, equivalently, while Yijt = 0 otherwise (Finney 

1971). 

 

 

 

In equations (7)-(9), individual-specific intercepts have been included.  If a 

specified distribution is assumed for these intercepts, conditionally independent 

of Xijt, a random-effects logit or Probit model results.  The existing literature 

includes several alternative distributional assumptions for these random effects, 

particularly for the panel logit model, including the normal (Firth and Payne, 

1999), gamma (Conaway 1990), uniform (Beggs 1988), binomial (Engberg et al. 

1990; Zenger 1993), and the nonparametric discrete distribution suggested by 

Heckman and Singer (1984), which has been applied to  discrete-response panel  

 

 

 

    
Pr[Yijt =1] = F ( ij + X it ) (7)

    
Vijt = ij + X ijt + uijt           (8)

    
Yijt = 1 if i + X ijt + eijt > 0    (9)
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data (e.g., Reader 1993).  The logistic version of equation (7) has been widely 

used as a discrete-time duration (or event-history) model (Allison 1982), in 

many if not most cases without including a person-specific intercept (i.e., 

ignoring the possibility of unmeasured variables that persist from period to 

period). 

 

There are numerous examples of empirical applications of the many varieties of 

models included in the above formulations.  Pollard and Wu (1998) use the 

logistic discrete-time event-history framework (without unmeasured 

heterogeneity, i.e. person-specific intercepts) in their study of age at first 

marriage in Canada, while Ham and Rea (1987) use the logistic discrete-time 

event-history model with discrete unmeasured heterogeneity as suggested by 

Heckman and Singer (1984) in their study of the duration of unemployment in 

Canada.  In the former study, unmarried persons contribute as many as 25 

person-years of at-risk experience to the analysis, while in the latter they 

contribute as many as 260 person-weeks of exposure over a 5-year period. 

 

The probability expression (7) and the latent-variable specifications (8) or (9) 

correspond to two different approaches to microsimulation for discrete-time 

discrete-outcome models.  The first algorithm entails 

 

(a) computing the probabilities that Yijt = 0 or 1 (or, in a multinomial 

application,  

       0,1, ...,J), and then  

(b) drawing a random number z* from the uniform [0, 1] distribution.  

 

The simulated outcome Yijt* is assigned as the value of the subinterval in which 

z* falls (using subinterval definitions analogous to those discussed earlier for the 

competing-risks hazard model).  Alternatively, one could  

 

(a) randomly select values ei1t*, ei2t*, ...  from the appropriate random 

distribution;  

(b) compute the implied values Vijt*, and then  

(c) assign as j* the maximum of the set Vi1t*, Vi2t*, ... .   

 

Pudney and Sutherland (1993) refer to these alternative algorithms as ‘interval’ 

and ‘structural’ approaches, respectively. 

 

 

What Microsimulation Offers the Data Analyst 

 
While microsimulation plays a role in some estimation techniques, and has 

proven to be of interest in the policy development and planning arenas, it also 

offers some potential advantages during the process of model development.  

Three areas in which microsimulation can make such a contribution are 

discussed below. 
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Extending the Range of Model Outputs  

 

One advantage frequently noted with respect to microsimulation is its ability to 

produce estimates of the full distribution of an outcome, in addition to the 

expected value that can be produced analytically in most types of models.  The 

full distribution for some dependent variable must itself be represented by 

summary statistics such as deciles or some other percentiles, graphically in the 

form of a density histogram, or some scalar indicator such as a Gini coefficient.  

However, for comparatively simple models, e.g. models depicting a single 

outcome (of any of the forms discussed above) microsimulation is unlikely to be 

able to provide any outcome measures that cannot also be obtained analytically. 

 

For more complex models, such as a ‘multistate’ model in which several 

possible transitions can occur, certain summary indicators, or transformations of 

the underlying process, cannot be obtained analytically, or can be obtained only 

at great cost, or require numerical approximations to which microsimulation 

could be seen as a low-cost alternative.  For example, in a semi-Markov (or 

Markov renewal) model, even in the absence of age dependence, certain 

outcomes that can be formally expressed with respect to the underlying hazards 

– such as the state probabilities (that is, the probability that an individual is in 

state j at time t) or the renewal function (that is, the expected number of events 

of a given type between time t and t + w) – do not have closed-form expressions 

except in the simplest (and least realistic) cases, such as that of no duration 

dependence.  In general, if one wished to compute what the model predicts one 

of those outputs to be, the choice is between numerical inversion of Laplace 

transformations or microsimulation (Wolf 1986).  Furthermore, if one wished to 

compute the state probabilities for a number of states j = 1, ... , J and a sequence 

of times 1, 1 + 1, 1 + 2, ... , then it would be necessary to go through the 

numerical-inversion process for every desired combination of state and time, 

whereas at least in principle a single run of a microsimulation program would 

provide sufficient output data to compute all the desired quantities.  Moreover, 

the desired quantities can be obtained through the application of simple 

summary statistics to the microsimulation output.  Note, however, that using 

microsimulation may introduce extra variance into those summary statistics, a 

topic discussed below. 

 

Several examples of the use of microsimulation to generate a variety of 

indicators of model output can be found in the existing literature.  For example, 

Dick et al. (1994) estimate a set of hazard functions describing transitions 

between nursing home and community-based residence, and from each 

residential setting to death, from age 65 onwards.  They then use 

microsimulation to generate several indicators of life-cycle experience that 

depend on the full set of estimated hazards, including the number of times 

admitted to a nursing home, and the duration of time spent in both the 



The Role of Microsimulation in Longitudinal Data Analysis 

 325

 

community and in nursing homes, prior to death. For each indicator, means, 

medians, and selected percentile figures are presented.  Similarly, Moffitt and 

Rendall (1995) use microsimulation to develop summary indicators of women’s 

lifetime experience as a family head, based on estimated hazard functions for 

entry into and exit from family headship.   Wolf and Levy (1984) develop a 

model of job retention that includes two hazard functions, one each for jobs with 

and without pension coverage.  They use microsimulation to generate a sample 

of lifetime employment histories, including outcomes such as the timing of 

vesting of pension benefits. The latter two examples are conditional simulations, 

in the sense that mortality is ignored. In all three cases cited, the use of 

microsimulation greatly extends the range of implications generated by the 

estimated model. 

 

The ability of microsimulation to generate a data base in which numerous 

summary indicators of the estimated underlying model are implicit has led to 

several attempts to develop goodness-of-fit measures based on microsimulation 

output. Tuma et al. (1979) provide perhaps the first example of this use of 

microsimulation. They present a model of transitions among three states 

(partnered – whether maritally or informally – unpartnered, and attrited from the 

longitudinal study) based on a covariate-dependent but time and duration-

independent continuous-time model.  They compute, for each individual in the 

data file, selected state probabilities and mean event-counts, as well as finite-

interval transition probabilities, and compare those predictions to their observed 

counterparts in the data.  They note that the observed outcomes to which the 

predictions are compared were not used directly in estimating the model 

parameters, thus illustrating an important benefit of microsimulation.  Heckman 

and Walker (1987), in a similar vein, present 
2
 goodness-of-fit statistics for 

simulated versus observed event-count outcomes, as well as several other ex 

post tests of data generated by microsimulation versus data used in parameter 

estimation. 

 

 

Investigate Various Defective-data Problems   

 

A second area in which microsimulation can prove helpful to the data analyst is 

in examining the potential seriousness of various data shortcomings, and, by 

extension, evaluating various procedures intended to correct for those 

shortcomings.  Two such ‘defective data problems’ are errors or incompleteness 

in retrospective data, and attrition from a panel sample, both of which should 

generally lead to biased parameter estimation. 

 

Large-scale population surveys frequently collect retrospective event-history 

data, and in panel surveys some such retrospective data is often collected for 

between-interview events.  For example, Canada’s 1995 General Social Survey 

data obtained marital-history data used by Polland and Wu (1998) to estimate a 

model of age at first marriage.  Data of this type is, obviously, provided only by 
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persons who have survived to 1995 and are therefore able to be interviewed.  

The estimated model can be supposed to pertain to the full cohort of persons 

defined by a particular age, or age range, in 1995 only if prior losses from that 

cohort due to mortality are unrelated to the phenomenon being modeled.  Yet 

there is ample evidence that mortality and marital status (and, by implication, 

marital transitions) are related, calling into question the parameters of marriage-

dynamics models estimated using retrospective data. 

 

Microsimulation could be used to investigate the degree of seriousness of such 

bias. For example, to the equations for marital-status transitions could be added 

equations for mortality, incorporating alternative assumptions regarding both the 

effects of unmeasured variables on the selection into a marital state, and the 

selection by mortality out of that state.  Simulated counts of marital events based 

on such a model could then be compared to external information on the 

occurrence of marital events over time, information of the type generally readily 

available from vital records.  An admitted problem of this approach is that it 

becomes difficult, even impossible, to distinguish problems due to recall error in 

the dating of past events from those due to selective losses from a cohort due to 

mortality. 

 

One particular form of incompleteness in event-history data is that of left 

censoring, which gives rise to various forms of ‘initial conditions’ problems.  

For example, spells in progress at the beginning of an observation period are 

described by a different probability distribution than are fully-observed spells 

(Cox 1967).  The problem is greatly magnified in models that explicitly 

incorporate unobserved heterogeneity (Heckman 1981).  A number of 

approaches have been proposed for dealing with variant forms of initial 

conditions problems. Moffitt and Rendall (1995), for example, incorporate 

analytic probability expressions for the initial conditions directly into their 

estimation, which is feasible in view of the fact that their model is driven 

exclusively by age.  In more complicated situations, however, such as those in 

which observed and unobserved factors interact selectively over the life cycle, 

microsimulation of the probabilities governing initial values may be more 

feasible than analytic solutions. 

 

A second data problem for which microsimulation might prove useful is dealing 

with outcomes whose values are unobserved due to respondent attrition from a 

panel study.  If a model of the joint dynamics of some outcome of interest, as 

well as the continued presence of a respondent in the sample (i.e. the 

complement of attrition) could be developed, with a common dependence of 

those two (or more) variables on one or more unobserved factors, then the 

estimated model could be used to simulate the distribution of responses among 

attriters, i.e. the responses otherwise unrecorded in the original data.  Such an 

exercise is closely related to missing-value imputation in general, to which we 

now turn. 
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Imputing Missing Values  

 

Given the claimed close association between microsimulation and missing-value 

imputation, it is not surprising that one of the apparent benefits of 

microsimulation is that of supplying values for otherwise missing variables, 

allowing, in turn, richer subsequent analyses.  In one example of such an 

application, Laditka and Wolf (1998) presented a discrete-time model of 

functional-status transitions (e.g. transitions among states defined as 

‘unimpaired,’ ‘moderately impaired,’ ‘severely impaired’ and ‘dead’).  The 

model was estimated using data from the Longitudinal Study of Aging (LSOA), 

in which subjects’ functional status was observed at intervals of, on average, 27 

months.  Thus the estimation problem was that of identifying an embedded 

Markov chain (cf. Singer and Spilerman 1974).  Laditka (1998) used that 

estimated model of functional-status transitions to impute a sequence of monthly 

functional-status values to respondents to the National Long-term Care Survey 

(NLTCS), in which functional status is known only for the month of interview in 

waves I (1982), II (1984) and III (1989).  Thus, a respondent inteviewed in all 

three years provided, at most, observed values of three out of about 84 monthly 

values of functional status.  Laditka (1998) simulated monthly sequences of 

functional statuses using microsimulation techniques, then went on to estimate a 

model of month-by-month probabilities of nursing home admission and 

discharge based on the imputed data values, pooling person-months of (observed 

plus imputed) data.  Although multiple replications of the imputation-estimation 

steps would be advisable in order to correct the final-stage parameter estimates 

for imputation variance, Laditka (1998) performed only a single replication of 

the imputation step. 

 

 

Caveats 

 
The claimed advantages of microsimulation come at a price.  The 

microsimulation approach has both substantive and procedural limitations.  

Among the drawbacks or limitations of the microsimulation methodology are: 

 

• everything is endogenous.  In order to make individual-level 

predictions from a dynamic model it is necessary to have updated 

values of explanatory variables at each temporal step in the simulation 

algorithm.  Thus, variables taken as exogenous in the estimation stage, 

and whose values are therefore treated as predetermined, become 

problematic in a microsimulation if their value is not fixed over time.  

For example, the model of age at marriage found in Pollard and Wu 

(1998) contains among its explanatory variables several individual 

attributes that change over the life cycle, including educational 

attainment, current student status, current employment status, and 

current pregnancy status.  All these variables are observed in the data, 
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and therefore present no problem for estimation, in the discrete-time 

hazard model approach used by Pollard and Wu.  However, if someone 

wished to simulate the subsequent marital experience of young 

unmarried women found in the database, or simulate marital histories 

for some other population, real or hypothetical, then it would be 

necessary to develop auxiliary equations with which to simulate 

educational, employment, and pregnancy histories.  Alternatively, the 

analyst might assume a prespecified time-path for all time-varying 

explanatory variables, and condition the dynamic microsimulation on 

that set of predetermined time paths, but this greatly limits the scope of 

the exercise. 

 

• ‘difference’ estimators generally won’t work.  Fixed-effect 

specifications have been proposed for a number of the panel-data 

models discussed above.  In the linear panel-data model [represented by 

equation (6)] the person-specific intercepts can be treated as fixed 

effects, and estimated as coefficients on person-specific dummy 

variables (which requires, however, that all other time-invariant 

variables be dropped from the model).  For the panel logit model [a 

special case of equation (7)] Chamberlain (1980) has proposed a 

‘difference’ estimator that eliminates the fixed effects from the model.  

For panel Probit models fixed-effects estimators are available only in 

special cases (Borjas and Sueyoshi 1993).  The advantage of the fixed-

effects estimators is that they relax the assumption, required for 

virtually all random-effects estimators, that the person-specific effects 

are uncorrelated with other components of the model, in particular the 

included covariates. The disadvantage of the fixed-effects estimators, 

for purposes of microsimulation, is that they make difficult, or even 

impossible, any out-of-sample simulations. In particular, if an equation 

or set of equations has been estimated using a fixed-effects 

specification, then out-of-sample simulations are possible only if (a) 

numerical values for the full set of empirical fixed effects can be 

recovered, and (b) it is possible to impute, in some fashion, the 

numerical values of fixed effects from the estimation sample to records 

in the simulation sample.  Either or both of these conditions may, 

however, fail to be realized. 

 

• software limitations.  While there exist several choices, and at least a 

few widely available general-purpose statistical software systems, with 

which to estimate many if not all the standard types of statistical 

models for use with panel or longitudinal data, there are few choices 

facing the potential microsimulator.  Thus the analyst is likely to have 

to develop an original program in order to realize the claimed 

advantages of the microsimulation technique. 
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• limited inferential theory.  The summary statistics computed on 

microsimulation output clearly depend on data, on parameters, and on 

additional sources of ‘sampling’ variability of a rather specialized 

nature.  Yet little attention has been paid so far to the problem of 

uncertainty, or sampling variation, or of interval estimation in the 

context of microsimulation.  We turn to this issue below. 

 

 

Uncertainty Analysis of Predictions from Microsimulations 
 

Although much effort has gone into the development and application of 

microsimulation models in demography, economics, and policy analysis, 

relatively little attention has been paid to the issue of uncertainty surrounding 

the point estimates produced by microsimulation.  In the words of Klevmarken 

“... in current practice the inference aspects [of micro simulation models] have 

been neglected.  One has been satisfied if the model runs and approximately 

tracks observed data.” (Klevmarken 1998:1) Pudney and Sutherland (1994) 

provide analytic expressions for the variances of predictions from a static 

microsimulation model, recognizing three sources of variability: classical 

sampling error (that is, error associated with the use of a sample rather than the 

entire population for the initial or baseline conditions), Monte Carlo errors 

associated with the particular stream of random numbers used to make 

stochastic assignments, and parameter uncertainty.  Klevmarken (1998) 

mentions the same three sources of uncertainty, and discusses the errors 

produced by microsimulation in the context of model validation.  He suggests 

replication as a means of dealing with Monte Carlo variation, and either 

randomization over parameters or sample reuse methods such as the bootstrap to 

deal with parameter uncertainty.  Wolf and Laditka (1997) provide an 

illustration of the former approach, while Calhoun (1997) provides an 

illustration of the latter (although Calhoun studies a deterministic life-table 

model rather than a stochastic microsimulation model).  Cohen’s (1991) 

suggestions are similar in several respects to those found in Klevmarken’s later 

(1998) paper.  Cohen suggests (1) the bootstrap as a means to estimate classical 

sampling variance, and (2) randomization over the estimated distribution of 

parameters to deal with parameter uncertainty.  He also suggests using (3) the 

multiple imputation method to deal with data errors in the base or starting 

population caused by statistical matching, although it is not entirely clear how 

the three techniques are to be combined.  The procedures suggested below build 

upon and extend the ideas first presented in Cohen (1991). 

 

It is also worth noting that several authors advocate the usage of methods to 

reduce the variability of microsimulation output; this is particularly true in 

textbook treatments of operations research applications (e.g., Bratley et al. 

1987).  van Imhoff and Post (1998) echo this advocacy of variance-reduction 

techniques in the context of microsimulation models for demographic 

projections.  The desire to minimize variation in simulation outputs appears to 
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be motivated by an assumption that the mean is the only summary statistic of 

interest once the microsimulation has been completed.  Yet if, as noted before, 

one of the advantages of microsimulation is its ability to provide information on 

the entire distribution of outcome values as well as their expected value, then in 

the context of stochastic microsimulation these variance-reduction techniques 

seem to be misguided and limiting. 

 

In addition to the three sources of variance identified by Pudney and Sutherland 

(1994) and Klevmarken (1998), at least two additional sources of uncertainty 

can be identified.  The first [mentioned by Cohen (1991)] consists of imputation 

error found in the starting-population data base.  It is rare for any microdata file 

produced through sampling to be without missing-data fields, arising from both 

item and unit nonresponse.  A common solution to missing-data problems is to 

impute values to the missing fields, a process that inevitably introduces error 

and, therefore, uncertainty about summary statistics based on the data.  McNally 

and Wolf (1996) discuss another type of data-base imputation error: in their 

study, the starting population for a microsimulation is developed by pooling 

observations from two different household surveys that happen to come from 

partially-overlapping sampling frames.  However, it is not possible to tell which 

observations from file B come from that part of the population that is also 

represented in file A.  Therefore, McNally and Wolf develop a random-

assignment procedure for choosing observations for pooling such that the final 

data file can be supposed to represent the desired population without any 

duplication. 

 

Another source of uncertainty that is present in microsimulation output results 

from the analyst’s ignorance about the true value of any ‘unmeasured 

heterogeneity’ factors imputed to individual observations in the data file.  This is 

a special case of the more general missing-data problem. 

 

Microsimulation shares with the multiple-imputation (MI) methodology 

presented in Rubin (1987) three important features. First, some sort of model is 

developed with which to predict an otherwise unknown value of some variable. 

Second, that prediction depends, in part, on the value of a randomly-selected 

variate. And third, the process is repeated several statistically independent times. 

In the case of MI, a number of repetitions of the random-assignment algorithm 

are performed in order to adjust any computed summary statistics for imputation 

variance.  In other words, the analyst must be prepared to accept a penalty, in the 

form of larger standard errors, for making guesses at the values of otherwise 

missing data fields.  In the case of microsimulation, replications of the 

microsimulation – multiple “runs” of the software – are generally performed in 

order to average out any Monte Carlo variation in the summary statistics. 

 

Given the parallels between the two methods, MI would seem to provide a basis 

for variance estimation of summary statistics computed for microsimulation 

output.    Rubin  (1987)  suggests  that  a  small   number  of  replications of the  
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imputation model be performed.  If R is the number of such replications, and 

Wr* and Sr* are a sample statistic and its variance, respectively, based on the r
th

 

replicate, then the overall value of the statistic in the presence of imputation 

error is with variance. 

 

The first term in equation (11) is the simple average of the variances produced 

over the R replications, while the second is the between-replication variance of 

the estimator adjusted by the term 1 + R
-1

, that is, the ‘imputation variance.’ 

 

 

 

A microsimulation exercise is, in many respects, analogous to a data-imputation 

exercise.  First, the data elements of interest are missing; they are, in fact, 100 

percent missing.  Secondly, predicted values for those data elements come from 

a predictive model, one that includes both deterministic and stochastic elements.  

Accordingly, the following simple procedure is suggested for developing 

variances to accompany summary statistics computed using microsimulation 

output: 

 

(a) in preparing the initial-conditions data file, carry out and retain in the 

file K of independent random replications of each imputed element (i.e. 

unit imputations and/or item imputations); 

 

(b) select K random combinations of each random ‘factor’ present in the 

microsimulation.  This will include each distinct imputed factor present 

in the starting population (above) as well as each model element that is 

subject to sampling error (e.g. regression coefficients) as well as 

random-assignment factors (e.g. error terms or random numbers used to 

make probabilistic assignments).  The ability to sample from the ex post 

distribution of parameter vectors depends, in turn, on the use of an 

estimation technique that generates such a distribution (e.g. maximum 

likelihood) and a willingness to appeal to the asymptotic nature of that 

distribution; 

 

(c) run the microsimulation program (the sampling algorithm) K times, 

each time computing the run-specific sample statistic Wk and its 

variance Sk.  At this stage, procedures to deal with departures from 

simple random sampling of the starting population, such as bootstrap or 

other resampling procedures (Cohen 1991) may need to be applied; 
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1

R
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*
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R
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(d) use equations (10) and (11) to derive the overall simulated point 

estimate and variance for each summary statistic of interest. 

 

 

The preceding steps must, however, be viewed as tentative for several reasons.  

First, it will in general be desirable to isolate the contribution to total variance of 

each of the identified sources of variability.  In order to do so effectively, some 

sort of multifactorial experimental design should be used.  For example, one can 

easily envision the circumstance of having five separate factors contributing to 

overall simulation variance.  If each factor were represented by, say, five 

randomly selected ‘levels’ there would be 5
5
 = 3,125 different possible 

combinations of factors, requiring 3,125 runs of the microsimulation program.  

Since this is clearly undesirable, and since each factor can by design be made 

orthogonal to all other factors, smaller ‘fractional factorial designs’ can be used. 

There exists a specialized literature on the application of statistical techniques, 

including experimental designs, to microsimulation (Kleijnan 1987), in which 

guidance on this approach might be found. 

 

Second, some of the ‘factors’ over which randomization can be performed are 

themselves high-dimensional vectors, e.g. vectors of regression coefficients.  

Just as the analyst might want to investigate the contribution of an individual 

factor to overall variance, it might also be desirable to determine the role of 

sampling variances of individual parameter elements.  This would, for example, 

allow the user to see the payoff to greater precision of parameter estimation.  

One problem with this objective, however, is that estimated parameters 

generally are not independent of other parameters (they have nonzero 

covariances), making it difficult to identify their unique contribution to overall 

variance.  In particular, it is likely to require numerous replications of the 

microsimulation exercise to identify these effects. 

 

Finally, an issue requiring further development is the number of replications 

(i.e., the value of K) necessary to adequately represent the ‘between’ replication 

variance due to the several sources of simulation uncertainty.  In survey-data 

item-imputation applications of the multiple-imputation technique, a small 

number (say 3-6 replications) has been viewed as sufficient.  However, in the 

microsimulation context there are both additional sources of uncertainty and 100 

percent missing information, both of which might indicate a need for increasing 

the number of replications.  Variance computations based on a small number of 

levels of each random factor might also be excessively subject to the influence 

of outliers.  Thus there remains considerable developmental work to be done on 

the problem of quantifying the uncertainty associated with summary statistics 

based on microsimulated data. 
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Summary and Conclusion 
 

Microsimulation is an increasingly familiar tool with which to investigate the 

sample paths of estimated models of socio-economic-demographic models, to 

obtain solutions to complex problems in which analytic solutions are infeasible, 

to obtain estimates of the costs and distributional implications of hypothetical 

policy regimes, and in many other applications.  This paper presents several 

examples of ways in which widely-used econometric specifications can be 

embedded in microsimulation exercises.  It also argues that microsimulation has 

a potentially important role to play earlier in the modeling process, namely 

during the process of model formulation and data analysis.  Specifically, 

microsimulation can be used to extend the range of inferences that can be drawn 

from the estimated parameters of a model, can help to solve certain types of 

defective-data problems, and can fill gaps in available data. 

 

A relatively underdeveloped area is that of quantifying the uncertainty inherent 

in summary statistics based on data produced by a microsimulation program.  I 

have argued that due to strong parallels between the multiple imputation 

methodology and the structure and procedural aspects of many microsimulation 

exercises, the multiple imputation methodology provides a natural framework 

with which to develop estimates of the variances, and therefore the confidence 

intervals, that accompany estimates based on simulated data.  There is a clear 

need for both additional theoretical work in this area, and for a range of 

experience in the application of such methods, in order to establish their 

feasibility and usefulness. 
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