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Abstract 

 

This paper merges two parallel developments since the 1970s of new statistical 

tools for data analysis: statistical methods known as hazard models that are used 

for analyzing event-duration data and statistical methods for analyzing 

hierarchically clustered data known as multilevel models. These developments 

have rarely been integrated in research practice and the formalization and 

estimation of models for hierarchically clustered survival data remain largely 

uncharted. I attempt to fill some of this gap and demonstrate the merits of 

formulating and estimating multilevel hazard models with longitudinal data. 
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Résumé 

 

Cette étude intègre deux approches statistiques de pointe d'analyse des données 

quantitatives  depuis les années 70: les méthodes statistiques d'analyse des 

données biographiques ou méthodes de survie et les méthodes statistiques 

d'analyse des données hiérarchiques ou méthodes multi-niveaux. Ces deux 

approches ont été très peu mis en symbiose dans la pratique de recherche et par 

conséquent, la formulation et l'estimation des modèles appropriés aux données 

longitudinales et hiérarchiquement nichées demeure essentiellement un champ 

d'investigation vierge. J'essaye de combler ce vide et j'utilise des données réelles 

en santé publique pour démontrer les mérites et contextes de formulation et 

d'estimation des modèles multi-niveaux et multi-états des données biographiques 

et longitudinales. 

 

 

Key Words:  Longitudinal survival processes,  multilevel models, unobserved 

                     heterogeneity, frailty models.  

 

 

 

 

 

 

Introduction 
 

Longitudinal studies in the social and biomedical sciences have been major 

instruments for measuring compositional and structural changes in individual 

and group behaviour. Of interest in this paper are two parallel developments of 

statistical tools since the 1970s for analyzing longitudinal data. One has focused 

on statistical methods, known as hazard models, for analyzing event-duration 

data generated by failure-time processes (Cox, 1972; Kalfleisch and Prentice, 

1980; Baltagi, 1995). The other has centred on statistical methods, known as 

multilevel models, for analyzing hierarchically clustered data (Mason et al., 

1983; Bryk and Raudenbush, 1992; Goldstein, 1999; Snijders and Bosker, 1999; 

Heck and Thomas, 2000). These two developments have rarely been integrated, 

and research practice that formulates and estimates models for hierarchically 

clustered survival data is still under development.  

 

This study formulates hierarchically clustered survival models and demonstrates 

the importance and relevance of using those models for data analysis, with 

applications to real-life event-duration data from Africa. The next section 

outlines some general issues in modelling survival or duration-response data 

within a multilevel framework, and briefly describes multilevel event-duration 

data to be used for illustrative purposes. Then, I shall outline the general 

formulations of the hierarchically clustered survival models, followed by 

illustrations for analyzing hierarchically clustered longitudinal single spell 
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survival data (with an application to the study of child survival) and multiple 

spell survival data (with an application to the study of maternal health). Finally, 

I shall formulate the model for discrete state space, and apply it to examine 

individual, familial and area influences on infant mortality for different 

geographic regions in Africa.  

  

 

Multilevel Event-duration Data or  

Hierarchically Clustered Survival Data 

 
The expression “multilevel event-duration data” or “hierarchically clustered 

survival data” refers to data with explanatory/outcome variables and the timing 

and sequencing of events for individuals situated in both time and contexts. 

Generally speaking, such multilevel survival data are rarely, if ever, collected in 

surveys or population laboratories, despite growing efforts in longitudinal data 

collection. There is a need for contextual longitudinal surveys through which 

information is collected over time, contexts and states occupied by the 

individuals in the sample. When such data are available for analysis, it is 

essential that researchers have a good understanding of the complexities of data 

organization involved as well as the methods for multilevel modelling of failure-

time processes. 

 

The most frequent type of data available for multilevel survival analysis are 

multilevel life histories. These can be repeated measurements at discrete and 

fixed occasions on the same individuals several times during an observation 

period, or multi-occasion measurements that include retrospective questioning 

on the timing of events and capture contextual, compositional, and structural 

changes experienced by individuals and various groups they constitute. The time 

intervals and the number of occasions may vary across individuals.  

 

Conventional multilevel analysis of longitudinal data has centred on describing 

and attempting to explain the average pattern of changes over time and its 

between-individuals variation (for a review, see Yang and Goldstein, 1996). A 

weakness of this approach is that time is used simply as another explanatory 

variable without recognition of its special nature as the domain in which 

qualitative changes in states take place in a dynamic way within specific 

contexts. Features and complexities of longitudinal data create additional 

difficulties in analyzing changes over exposure time using conventional 

multilevel approaches. Most processes are both duration- and context-

dependent. Therefore, models that explicitly recognize state and duration 

dependencies and the possibility of an autocorrelation structure among the error 

terms within a multilevel survival framework are called for. Obviously, further 

complications arise when one is interested in modelling multilevel longitudinal 

event-duration data in the presence of dropouts. 
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As for illustrations, I shall take advantage of the data from Enquête sur la 
Mortalité Infantile et Juvénile (EMIJ), collected prospectively by the United 

Nations’ Institut de Formation et de Recherche Démographiques (IFORD) 

based in Yaounde (Cameroon). A representative sample of 9,774 children born 

to 9,592 resident women of Yaounde who gave birth throughout the year 1978 

were followed for two years or until the death of the newborn or other form of 

losses to observation. The first stage of data collection was the constitution of 

the sample of children born to resident mothers during a 12-month period. The 

second stage consisted of seven rounds of follow-up interviews at 1, 4, 8, 12, 16, 

20, and 24 months post-partum. Evaluative studies of these data show that they 

are of good quality and can help us in our understanding of influences on 

maternal and child health within a multilevel framework (Kuate-Defo, 1992). 

These repeated measurements on child survival provide an opportunity to 

illustrate the modelling of single-spell multilevel duration data.  

 

Besides collecting information on infant and child mortality, the EMIJ also 

collected information on women's health (or maternal health), namely the 

episodes of illness experienced by women following childbirth. Morbidity for 

each woman was assessed using qualitative and quantitative descriptions of 

illness, including symptoms, as reported by the women to female interviewers. 

Classification of causes of morbidity was based on lay reporting, a procedure 

generally followed in longitudinal population-based studies (Halabi et al., 1992). 

Following the baseline health status at the time of childbirth, the episodes of 

illnesses were collected prospectively over a-two year period, at 1, 4, 8, 12, 16, 

20 and 24 months postpartum. Contrary to the conventional study of women's 

health only at/around birth, this life-cycle information enables us to study 

maternal health over a two-year postpartum period. This is consistent with 

empirical evidence from many studies that have shown that full recovery from 

childbirth encompasses more than restoration of pre-pregnancy physiological 

state and generally takes more than 6 months (Kuate-Defo, 1997). These 

repeated measurements data provide a useful source for illustrating the 

modelling of multiple-spell multilevel duration data.  

 

The second data set used for illustrations in this paper comes from the most 

recent Demographic and health Surveys of 15 African countries with 

comparable information on putative risk factors of infant and child mortality at 

the child-level, mother-level, household-level, and community-level. These 

countries are: Morocco (for North Africa), Côte d’Ivoire, Burkina Faso, Mali, 

Senegal, Niger, and Nigeria (for West Africa), Cameroon and Central Africa 

Republic (for Central Africa) and Kenya, Malawi, Uganda, Tanzania, 

Madagascar and Zimbabwe (for East and Southern Africa). The data were 

pooled by these geographic regions and country dummies were introduced in the 

models to account for country-specific attributes. In these surveys, each sample 

comprises women aged 15-49 at the time of interview, and provides a complete 

birth history for all live births. Moreover, in-depth information on breastfeeding, 

ante-natal and post-natal care practices, morbidity, nutritional status and 
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mortality was provided for live births that occurred during a five-year period 

preceding the survey date. I have restricted the analyses to children born within 

the three-year period preceding the survey date to minimize the impact of 

compositional and structural changes on estimated parameters within a 

multilevel framework. This was necessary especially when defining 

communities such that they represent the most elementary real-life 

administrative units (districts) of residence rather than relying on clusters 

defined by the sampling frame for data collection purposes that are not 

statistically meaningful for capturing random parameter variation across 

individuals and their community of residence.  

 

 

General Formulation of Hierarchically  

Clustered Survival Models 
 

When appropriate event-duration data are available and coupled with relevant 

multilevel data, survival models provide the best strategy for analyzing 

processes of qualitative changes in states (transitions) and their multilevel 

determinants in terms of fixed effects and random parameter variations across 

individuals and groups. Since the late 1970s, various attempts have been made 

to formulate statistical methods for analyzing failure-time processes in the 

presence of multilevel correlated observations (Clayton, 1978; Vaupel et al., 

1979; Heckman and Singer, 1985; Adam et al., 1990; Sastry, 1997; Kuate-Defo, 

1998; Kuate-Defo, 2001).  

 

Let there be N states an individual can occupy at any moment of time in a given 

context. Suppose that there are three-levels (i, j and k) of hierarchically clustered 

survival data for a sample of individuals (e.g., a sample of children nested within 

families, and families nested within area of residence or communities). Let  tijk  

be the survival time that elapses before the i-th child (level 1) belonging to the  

j-th family (level 2) in the k-th area of residence or community (level 3) makes a 

transition from state l to state m.  

 

In a single-level analysis, if individuals initiate the failure-time process in state l, 
there are (N-1) latent times with densities 

 

      
    
f lm

(t lm
) = hlm

(t lm
) exp hlm

(u)du0
t lm[ ] (m = 1, ..., N ; m l ) (1)  

 

where     f
lm

(.) is the density function of times to transition from state l to state m, 

and     h
lm

(.) is the associated hazard function.  

 

 

 

 

 



Empirical Research and Applications – Barthélémy Kuate-Defo 

 540

The joint density of the (N-1) latent transition times is given by 

 

         

    

h lm

m =1
m l

N
(t lm

) exp hlm
(u )du0

t lm[ ]                     (2)  

In a three-level framework considered above, let kjkijk ,,  be the random 

coefficients at the child-level, the family level and the community level, 

respectively. Ignoring the multistate situation for now, if the random effects are 

assumed to operate multiplicatively on the baseline hazard, they are interpreted 

as relative risks and the general multilevel hazard model can be written as 

follows  

 

fijk(tijk;Zijk; ijk;X jk; jk;Yk; k ijk , jk , k) =

fijk (tijk;Zijk; ijk) +

f jk( tjk;X jk; jk ) +

fk (tk;Yk; k )

 

 

 

 

 

 

 

 

f ( ijk ) f ( jk ) f ( k)

                     (3) 

 

where ijkZ is a 1 x K vector of level-1 exogenous (time-invariant or time-

varying) variables associated with survival time ijkt  for the i-th child belonging 

to the j-th family living in the k-th area of residence or community. ijk  is a K x 

1 vector of coefficients that may represent both fixed effects and random effects 

of explanatory variables. 
  
X jk  is a 1 x L vector of level-2 exogenous (time-

invariant or potentially time-varying) variables associated with survival time 

jkt  for the j-th family living in the k-th community. jk  is a L x 1 vector of 

associated coefficients that may represent both fixed effects and random effects 

of explanatory variables.   Yk  is a 1 x M vector of level-3 exogenous (time-

invariant as well as potentially time-dependent) covariates.   k  is a M x 1 vector 

of associated coefficients.  

 

Following Heckman and Singer (1985), Goldstein (1999) and Kuate-Defo 

(2001), the multilevel hazard function can be parameterized in a general way 

(without level-specific or cross-level interactions) and written as 
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hijk(tijk Zijk(tijk);X jk( tjk );Yk( tk); ijk; jk; k) =

exp

Zijk( tijk) ijk + X jk (t jk) jk +

Yk (tk ) k

 

  

 

  
+

1

(t 1 1)

1

 

  

 

  
+ 2

( t 2 1)

2

 

  

 

  
+

ijk(tijk) + jk (t jk) + k (tk )

 

 

 

  

 

 

 
 

 

 

 

  

 

 

 
 

, 2 > 1 0

                       (4) 

 

Duration dependence is captured by the two terms 

    

t 1 1

1

and 

    

t 2 1

2

.  

This general formulation allows 
    ijk, jk , and k  to be functions of time. By 

exponentiating the term in brackets, equation (4) ensures that the hazard 

function is positive as required since it is a conditional density function. From 

the multilevel survival formulation in (4), the survivor function at time t is  

 

    

S ijk (tijk ; ijk ; jk ; k ) =

exp hijk (u Z ijk (uijk ); X jk (u jk );Yk(uk ); ijk ; jk ; k )du
0

t ijk 
 
 

 
 
 

       (5) 

 

 

and the likelihood is more generally:                                           

 

 

    

Lijk ( ijk ; jk ; k) =

Sijk (t ijk ; ijk ; jk ; k ) if the spell is censored at t ;

and

Sijk (tijk + dt ; ijk ; jk ; k )

S (tijk ; ijk ; jk ; k ) if the event occurred in (t, t + dt )

 

 

 
 

 

 
 

       (6)   
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All the above formulations can be extended to multistate forms. The formulation 

(3) extended to the multistate multilevel hazard for the transition to state 

( =1, 2, 3,..., )  would be 

 

f
ijk
(tijk;Z ijk

; ijk;X jk; jk;Yk ; k ijk
,

jk
,

k
) =

f
ijk
(t

ijk
;Z

ijk
; ijk ) +

f
jk
( tjk;X jk

; jk) +

f
k
( t

k
;Y

k
; k )

 

 

 

 
 

 

 

 

 
 

f ( ijk) f ( jk
) f (

k
)

               (7) 

 

It follows from (4) that the multilevel multistate hazard for the transition to state 

can be parameterized in a general formulation (without level-specific or cross-

level interactions) and written as 

 

 

      

h
ijk

(t
ij k

;Z ijk ; ijk ; X jk ; jk ;Yk ; k ijk , jk , k ) =

exp

Z
ijk

(t
ijk

)
ijk

+ X
jk

(t
jk

)
jk

+

Y
k

(t
k

)
k

 

 

 
 

 

 

 
 
+

1

(t 1 1)

1

 

 

 
 

 

 

 
 
+

2

(t 2 1)

2

 

 

 
 

 

 

 
 
+

ijk
(t

i jk
) +

jk
(t

jk
) +

k
(t

k
)

 

 

 
 
 
 
  

 

 
 
 
 
 
 

 

 

 
 
 
 
  

 

 
 
 
 
 
 

,
2

f
1

0

         (8) 

 

 

This general parameterization allows for duration dependence, occurrence 

dependence, state dependence, and level dependence of parameter estimates, 

including random effects, that is, 
    ijk, jk , and k  are functions of both time and 

state. The covariates are all treated as time-dependent though some of them may 

be time-constant. This general formulation also contains nearly all of the 

commonly used hazard functions as special cases.  

 

There are several computer programs for estimating the parameters involved in 

the above multilevel formulations. The best known programs (and which I am 
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very familiar with) are: CTM (Yi et al., 1987), aML (Lillard and Panis, 2000), 

and MlwiN (Rasbash et al., 2000; Goldstein, 1999). These programs support 

multilevel (multi-process/multistate) estimation of event-duration data and 

follow a general rule for multilevel data organization: the data are always given 

at the lowest unit, that is, there is one and only one record per lowest unit. In 

CTM and aML, non-linear optimization routines are used to obtain maximum 

likelihood estimates. The MlwiN package has not yet developed such routines 

for non-linear and survival multilevel models.  

 

 

Illustration 1: Single Spell Child-survival Model 
 

As a first illustration, we consider a 2-level 2-state single-spell process of infant 

and child mortality, a non-repeatable event. The two states that a child can 

occupy during the follow-up are ‘alive’ and ‘dead’. A single spell is involved 

since a child can exit the ‘alive’ state only once after a given length of exposure 

to the risk of death. As mentioned earlier, there are eight measurement occasions 

of survival status of a child (at birth and subsequently at seven follow-up 

interviews). I focus on a hazard process in which one or more covariates change 

values between intervals, but are constant within an interval (that is, one or more 

covariates are time-varying).  

 

In longitudinal studies of child mortality, where there are several children per 

woman (family) for instance, one can envision a two-state multilevel 

formulation. In practical terms, at each duration of exposure d, we can define a 

response variable for each child i belonging to family j : 
 

 

    
yij (d ) =

1 if i has experienced the event of int erest

0 otherwise

 
 
 

 
 
 

     (9) 

 

For a simple illustration, suppose we have four families (mothers). The first 

mother has 2 children, with the first child dying at age 6 months and the second 

censored at 2 months. The second mother has one child censored at 2 months. 

The third mother has one child censored at 12 months. The fourth mother has 

one child dead at 2 months. The response variable is a dichotomy coded 1 if the 

child dies by survival time t, and 0 otherwise. The data organization for 

estimating a multilevel model for these data is illustrated in Table 1. 
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Table 1 

Data Organization for a Hierarchically Clustered Longitudinal 

Single-Spell Survival Model 
 

 

Level – 3 

(family) 

 

 

Level – 2 

(child) 

 

Level – 1 

(survival times) 

 

Response 

Variable 

 

1 

 

1 

 

1 

 

0 

1 1 2 0 

1 1 3 0 

1 1 4 0 

1 1 5 0 

1 1 6 = death 1 

1 2 1 0 

1 2 2 = censored 

(end of survey) 

0 

2 1 1 0 

2 1 2 = censored 

(end of survey) 

0 

3 1 1 0 

3 1 2 0 

3 1 3 0 

3 1 4 0 

3 1 5 0 

3 1 6 0 

3 1 7 0 

3 1 8 0 

3 1 9 0 

3 1 10 0 

3 1 11 0 

3 1 12 = censored 

(end of survey) 

0 

4 1 1 0 

4 1 2 = death 1 
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In the EMIJ mortality data used for the following illustration, there is almost one 

child per woman – 9774 children and 9592 mothers, such that the 

mother(family)-level and child-level provide the same information for 

estimation purposes and thus reduce the number of levels to two from three, 

namely child-level and wave-level. Moreover, because the number of interviews 

represents specific survival times for each child, there is a close correspondence 

between length of exposure to mortality risk and the number of waves. Thus, the 

wave-specific frailty (or unobserved heterogeneity) is captured by the duration 

structure of the baseline hazard. In previous works, such a model has been 

identified only under the assumption of the proportionality of hazards (Elbers 

and Ridder, 1982; Hoem, 1990), an assumption that cannot be assessed when 

unobserved variation is present (Rodriguez, 1994). We can relax the assumption 

of the proportionality of the hazards in order to identify the frailty component by 

representing the duration structure of the baseline hazard with the most familiar 

parametric forms such as exponential, Weibull or Gompertz.. This leads to a 

standard two-state random effects model that permits unobserved child-specific 

frailty to be correlated across waves or follow-up interviews, which can be 

estimated by using the algorithm developed by Heckman and Singer (1984) - an 

approach which has been favoured by recent studies (Petersen, 1995). 

Kalbfleisch and Prentice (1980), Heckman and Walker (1990) and Goldstein 

(1999) have shown that in general, a semi-parametric proportional hazards 

model does not detect some of the relationships that are apparent from fitting 

parametric models.  

 

In my experience of formulating and estimating multilevel frailty models using 

CTM and aML, parameter estimates of regressors are not sensitive to 

misspecification of the baseline duration pattern. Estimation of a two-level 

modelling with unobserved heterogeneity in CTM is performed using a finite 

mixture distribution made up of support points and weights. In addition to 

normally distributed residuals, aML offers other finite mixture distributions as 

CTM does, although the former accommodates only the univariate asymmetric 

finite mixtures (no restriction that forces symmetry of support points or weights 

around zero). This implies that one of the support points (or equivalently, the 

intercept) is not identified and must be fixed in the estimation procedure. Only 

CTM and aML support finite mixture distributions and compute appropriate 

maximum likelihood estimates, whereas MlwiN does not.  

 

Table 2 shows the results of the conventional parametric hazards model (without 

random effects) as well as those of two-level parametric hazards model (with 

random effects). These two-level hazard models contain both fixed and random 

effects. The fixed effects are in the first part of the table and the random effects 

in the second part. The fixed effects represent the population mean influences on 

infant and early child mortality specific to the measured covariates. The child-

specific (or within child) random effect captured by the unobserved 

heterogeneity consists of two components, a measurement error plus the actual 

variability (heterogeneity) in the child’s capacity to survive during the follow-up  



Variables Single-level 

modelling

Two-level 

modelling

Single-level 

modelling

Two-level 

modelling

Single-level 

modelling

Two-level 

modelling

Ln(duration) -- -- -0.48 (0.05) -0.16 (0.06) -- --

Duration-dependence term -- -- -- -- -11.96 (0.82)  -8.31 (0.95)

Intercept -0.01 (0.27) -2.42 (0.45) -1.72 (0.30) -3.62 (0.64) -10.95 (0.79) -10.6 (1.74)

Female Sex -0.12 (0.08) -0.12 (0.11) -0.12 (0.08) -0.11 (0.11)   -0.12 (0.08)  -0.13 (0.10)

Age at maternity <20 years  0.08 (0.12)  0.06 (0.16)  0.08 (0.12)  0.04 (0.16)    0.08 (0.12)   0.10 (0.15)

Age at maternity >34 years  0.25 (0.16)  0.20 (0.22)  0.24 (0.16)  0.16 (0.21)    0.25 (0.16)   0.15 (0.20)

Birth order 2-3  0.03 (0.12)  0.05 (0.17)  0.04 (0.13)  0.07 (0.16)    0.06 (0.13)   0.13 (0.15)

Birth order 4+ -0.01 (0.14)  0.03 (0.18)  0.01 (0.14)  0.06 (0.18)    0.03 (0.14)   0.14 (0.17)

Mother has some education -0.15 (0.13) -0.25 (0.18) -0.14 (0.13) -0.22 (0.17)   -0.17 (0.13)  -0.19 (0.16)

Mother is married -0.17 (0.10) -0.19 (0.14) -0.18 (0.10) -0.18 (0.13)   -0.19 (0.10)  -0.17 (0.12)

Preceding sibling deceased  0.22 (0.16)  0.23 (0.23)  0.21 (0.17)  0.14 (0.22)    0.21 (0.17)   0.12 (0.21)

Medium-level family income -0.79 (0.11) -0.92 (0.13) -0.74 (0.11) -0.91 (0.14)   -0.73 (0.11)  -0.87 (0.13)

High-level family income -0.87 (0.17) -1.04 (0.20) -0.82 (0.17) -1.03 (0.20)   -0.82 (0.17)  -0.98 (0.19)

Birth weight <2500 grams  1.55 (0.09)  2.52 (0.17)  1.52 (0.10)  2.34 (0.16)    1.52 (0.10)   2.10 (0.15)

Mother has a salaried job -0.21 (0.13) -0.26 (0.17) -0.20 (0.14) -0.22 (0.17)   -0.20 (0.14)  -0.23 (0.16)

Douala-related ethnic groups  0.22 (0.14)  0.22 (0.19)  0.23 (0.14)  0.23 (0.18)    0.22 (0.14)    0.24 (0.17)

Pahouin-Beti ethnic groups  0.08 (0.10)  0.19 (0.14)  0.10 (0.11)  0.17 (0.13)    0.11 (0.11)   0.15 (0.13)

‘Others’ ethnic groups  0.17 (0.18)  0.27 (0.24)  0.19 (0.18)  0.33 (0.24)    0.13 (0.18)   0.32 (0.22)

Child fully breastfed (TVC) -0.64 (0.11) -0.68 (0.13) -0.71 (0.11) -0.55 (0.12)   -1.09 (0.11)  -0.94 (0.12)

Child partially breastfed (TVC) -0.45 (0.12) -0.44 (0.13) -0.57 (0.12) -0.43 (0.13)   -0.85 (0.12)  -0.71 (0.13)

Following conception (TVC)  0.59 (0.15)  0.67 (0.15)  0.43 (0.14)  0.45 (0.15)    0.94 (0.15)   0.88 (0.16)

Has modern amenities (TVC) -0.52 (0.17) -0.56 (0.21) -0.45 (0.18) -0.54 (0.20)   -0.55 (0.17)  -0.57 (0.20)

Child fully immunized (TVC) -1.46 (0.14) -0.40 (0.15) -0.37 (0.14) -0.49 (0.15)   -0.22 (0.14)  -0.29 (0.15)

Child bedroom crowded (TVC)  0.28 (0.09)  0.22 (0.10)  0.26 (0.09)  0.20 (0.10)    0.31 (0.09)   0.25 (0.10)

Child-level unobserved 

heterogeneity
 4.34 (0.25) 4.58 (0.45) 4.32 (1.22)

Negative log-likelihood 929.30 872.25 908.00 881.41 871.10 856.06

Sample size 9774 9774 9774 9774 9774 9774

Notes:  All covariates are measured as dummy variables. 

            Asymptotic standard errors are in parentheses. 

            (TVC): denotes time-varying covariates.

 

Part A:  Fixed Effects

Part B: Random Effects

Table 2

Two-Level Two-State Single-Spell Parametric Hazard Models 

of Determinants of Infant and Early Childhood Mortality in Yaounde (Cameroon)

Exponential Hazards Weibull Hazards Gompertz Hazards
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waves. Some of this variability may be genetic (Stern, 1960; Adams et al., 

1990), unobservable or unmeasured by the survey.  

 

As seen in Table 2, the general findings are consistent with evidence generated 

elsewhere: the protective effects of full immunization status, breastfeeding 

(especially full breastfeeding), possession of modern amenities and increased 

household income, and the deleterious effects of overcrowding, closely spaced 

births and low birth weight.   

 

Note that the frailty effects are significantly different from zero. In other words, 

there are unmeasured child-specific randomly varying risks that affect child 

survival independently of measured risk factors. Failure to account for such 

child-specific unmeasured characteristics has several consequences. First, 

ignoring individual frailty leads to underestimating the standard errors of 

parameter estimates, creating false impression of precision. An examination of 

each of the parametric models (exponential, Weibull, Gompertz) under single-

level and two-level specifications consistently substantiates the underestimation 

of all standard errors under the single-level modeling scheme, and confirms the 

consequences of ignoring random effects in modeling longitudinal survival data. 

Second, estimates of the baseline hazard duration pattern are biased in 

downward direction (the best way of understanding this is by imagining a 

process of constant hazard). Third, estimates of covariates may be biased. The 

comparative results show that while the sign of most parameters are unaffected 

by randomly varying risk of mortality, their magnitude and level of significance 

are quite affected when frailty is explicitly modeled. 

 

 

Illustration 2: Multiple-spell Survival Models 
 

For the second illustration, we consider a 2-level 2-state hazard model with 

unobserved frailty allowed to be correlated across spells. We use the EMIJ’s 

repeated measurements of women’s episodes of illness over the first two years 

following childbirth. Repeated events experienced by the same woman provide a 

useful way of introducing the multiple spell formulation of hazard models with 

correlation structure. Since the occurrence of one episode of illness does not 

remove a woman from the risk of experiencing another episode of illness, we 

have a counting (failure-time) process. A representation that takes full advantage 

of the prospective nature of the data is to model the episodes of illness over the 

entire follow-up period. Time of exposure is defined here as chronological 

survival time elapsed since the onset of the process at the time of childbirth. The 

multilevel correlation structure is that of episodes that vary and are correlated 

within each woman. 

 

In longitudinal studies of maternal morbidity where there are several (wave-

specific) episodes of illness per woman, we can envision a two-state multilevel 

formulation with the data organization as follows. At each duration d of 
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exposure since delivery, we define a response variable for each woman  j (j=1,2, 

…,N) with i episodes of illness (i=1,2, … nj): 

 

 

    
yij (d ) =

1 if j hasexperienced an episode

0 otherwise

 
 
 

 
 
 

                 (10) 

 

Suppose there are five women in a sample. The first woman is observed for 

eight survival times and has two episodes, the first episode at two months and 

the second at six months postpartum. The second woman has been under 

observation for two months, with one episode at 2 months. The third has been 

followed up for 12 months, with one episode at eight months. The fourth has 

been a sample member for three months, with one episode in the first month. 

The fifth woman has been in observation for 4 months without being sick. The 

response variable is a dichotomy coded 1 if the woman experienced an illness, 

and 0 otherwise. The data organization for estimating a multilevel frailty model 

for these data is illustrated in Table 3.  

 

When subjects are measured repeatedly in terms of recurrent events, use of 

survival models that assume independence of observations is problematic since 

observations from the same subject are usually correlated. In the single-spell 

case, we had to make an assumption about individual frailty or the correlation 

structure of observations. In the multiple-spell case, no such assumption is 

needed since the data at hand has information on multiple spells for each 

woman, therefore specifying the correlation structure that permits woman-

specific frailty across spells. Indeed, an important implication of stochastic 

variation at multiple levels is that repeated outcomes may not be independent, 

justifying the recourse to frailty models (Stiratelli et al., 1984; Vaupel, 1990; 

Jones, 1993). More generally, there may be multiple sources of stochastic 

variation, often corresponding to nested levels (Lillard and Panis, 2000). 

 

A woman's health history is assumed to evolve from childbirth to censored time. 

In this study, overall morbidity is measured, without considering cause-specific 

morbidity. Hence, a natural extension of this application is to model multiple 

episodes of illness of different types, which provides a general framework for 

multilevel multistate hazard models.  

 

The estimation of the model for this illustration will be done under the 

assumption that the morbidity function can be well represented by a Weibull 

hazard model. The Weibull model is used because: 1) The level of women's 

general morbidity decreases monotonically over the first two years of 

postpartum. 2) With appropriate choice of parameters, the Weibull distribution 

has been shown to describe adequately any bio-demographic phenomenon that 

declines with age (or length of exposure to the risk of experiencing the outcome)  

- a negative slope (Gross and Clark, 1975).  
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Table 3 

Data Format for a Hierarchically Clustered Longitudinal 

Multiple-Spell Survival Model 
 

 

Level – 3 

(woman) 

 

 

Level – 2 

(spell) 

 

Level – 1 

(survival times) 

 

Response 

Variable 

 

1 

 

1 

 

1 

 

0 

1 1 2 1 

1 2 3 0 

1 2 4 0 

1 2 5 0 

1 2 6  1 

1 3 7 0 

1 3 8 = censored 

(end of survey) 

0 

2 1 1 0 

2 1 2 = censored 

(end of survey) 

1 

3 1 1 0 

3 1 2 0 

3 1 3 0 

3 1 4 0 

3 1 5 0 

3 1 6 0 

3 1 7 0 

3 1 8 1 

3 2 9 0 

3 2 10 0 

3 2 11 0 

3 2 12 = censored 

(end of survey) 

0 

4 1 1 1 

4 2 2 0 

4 2 3 = censored 

(end of survey) 

0 

5 1 1 0 

5 1 2 0 

5 1 3 0 

5 1 4 0 
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In the illustration, a 2-level Weibull hazard model with nested frailty effects is 

fitted to the maternal health data, by incorporating a heterogeneity component 

using the Heckman-Singer procedure as in the previous illustration. As regards 

distributional assumptions, models of repeated measures data have usually 

assumed that the errors have Gaussian distributions, while other studies of frailty 

models have used log-gamma or gamma distributions which lead to a closed 

form solution. These assumptions are often strong and there has been much 

work in recent years on models with non-Gaussian distributions of longitudinal 

data especially in the context of serial observations with binary response 

(Stiratelli et al., 1984; Rodriguez, 1994; Kuate-Defo, 1998). Although the 

closed-form solution is mathematically appealing, the mixture of distributions 

allows consideration of multiple random effects as well as various distributional 

forms for the random effects., including normally-distributed random effects. I 

use a mixture distribution to numerically integrate the distribution of random 

effects. 

 

 

Sensitivity analysis 

 

One of the most serious problems in prospective surveys is the selective loss to 

follow-up. The extent to which these losses may create bias depends on the 

nature of the mechanisms engendering the loss. If the reason that a woman is 

lost to follow-up is related to her health status, then the analysis will be biased 

unless losses are properly accounted for (Lillard and Panis, 1998). In the 

illustration at hand, three mechanisms are relevant. The first involves losses 

attributable to factors unrelated to the phenomenon under study (women’s 

health) and hence constitutes a nuisance that does not threaten statistical 

inferences. The second concerns losses ascribed to factors related to the 

phenomenon under investigation; if these factors are well measured and taken 

into account in the models, the bias can be minimized or eliminated. The third 

mechanism corresponds to losses that are triggered by the occurrence of the 

outcome of interest; this is less tractable and requires special estimation 

procedures. If this mechanism operates, a woman is exposed to two types of 

censoring. The first type is non-informative and independent censoring. The 

second type is censoring that occurs with some probability as a result of ill-

health of the woman. In this case, a random mechanism can be posited that 

assigns women into two groups: those that are identified as unhealthy and those 

that are confused with censored cases. The likelihood of the sample will then be 

composed of the product of three components: the likelihood for true censored 

cases, the likelihood for those identified unhealthy,  and the likelihood of those 

unhealthy women who are confused with censored cases. More formally, 

conditional on random effects 
  j and 

  ij , a general formulation of the likelihood 

for a case j with i episodes of illnesses is given by: 
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Lij ( ij ; j ) =

hij (tij Z ij (tij ); X j (t j ); ij ; j ) ij[ ]
C1 ij

hij (tij Z ij (tij ); X j (t j ); ij ; j )(1 ij )[ ]
C2 ij

e( h(u)du0
t )

        (11) 

 

where 
    
C1ij

 is 1 if the j-th woman under study belongs to the class of well 

identified unhealthy women, 
    
C2 ij

 is 1 if that j-th woman belongs to the class of 

unhealthy women confused with censored cases, and 
  ij  is the probability that 

the random procedure assigns unhealthy women to the class of unhealthy 

women. The practical problem faced here is the lack of observation on which 

women belong to which class. Thus, the likelihood is undefined, even if 

assuming that ij  is unity restores the tractability of the problem, yet under the 

assumption of independent and non-informative censoring. 

 

I suggest estimating the model parameters by formulating two hypothetical 

constructs within which true estimated effects must lie. First, I construct a 

multilevel event-duration model under the assumption of independent censoring 

between dropouts and “normal” end of follow-up interviews, that is, due to 

child’s death or end of follow-up period  (Model 1). Second, I estimate another 

multilevel model assuming that all dropouts were healthy (Model 2) or 

unhealthy (Model 3). These limits give us an interval that contains the true 

effect. When the data provide good estimates of the true effect, the interval will 

be relatively narrow and there will be little uncertainty about its true size. 

Conversely, when the data provide poor estimates, the interval will be relatively 

wide and there will be much uncertainty. With longitudinal studies, it is more 

appropriate to provide an interval estimate than only a point estimate when 

uncertainty about the proper model specification exists. In the face of such 

uncertainty, a single point estimate is simply misleading in its apparent precision 

(Little and Schenker, 1995; Murray and Findlay, 1988). 

 

Based on the above argument, Table 4 presents the results on the determinants 

of Yaounde women’s health status for the three models. According to Model 1, 

women who are employed, have clean water at home, women whose partner is 

employed, and younger women are significantly less likely to be unhealthy over 

time. In contrast, women from the Pahouin-Beti ethnic groups, with poor 

obstetric history, who are older than 34 years, and who have more than three 

children, are more likely be unhealthy following childbirth. 

 

We also assess the sensitivity of estimated parameters to various assumptions 

about sample attrition through dropouts inherent in observational studies. In 

doing so, the illustration points to the usefulness of multilevel analysis for 

correlated survival data,   particularly in accounting for variability attributable to  



Simulations about sample-attrition through dropouts:

Variables Model 1:             

Dropout process is 

governed by a random 

mechanism throughout 

the follow-up period

Model 2:           

All dropouts are 

healthy

Model 3:              All 

dropouts are 

unhealthy

Part A: Fixed Effects

Ln(duration) -0.15 (0.01) -0.28 (0.01) -0.56 (0.02)

Intercept -2.84 (0.46) -3.32 (0.21) -1.37 (0.26)

Woman is unmarried 0.04 (0.08) 0.05 (0.06) -0.27 (0.08)

Woman has some education 0.07 (0.05) 0.09 (0.03) -0.07 (0.06)

Woman has a salaried job -0.18 (0.04) -0.14 (0.03) -0.16 (0.05)

Household has clean water (TVC) -0.10 (0.04) -0.10 (0.03) -0.07 (0.07)

Household has electricity (TVC) -0.01 (0.04) -0.01 (0.03) -0.20 (0.06)

Woman belongs to Pahouin-Beti ethnic groups 0.21 (0.05) 0.18 (0.04) -0.27 (0.05)

Woman belongs to Douala-related ethnic groups 0.04 (0.06) 0.05 (0.04) -0.03 (0.07)

Woman belongs to Bamileke-related ethnic groups 0.08 (0.05) 0.10 (0.04) -0.22 (0.05)

Woman’s partner has some education 0.07 (0.04) 0.07 (0.03) -0.04 (0.05)

Woman’s partner has a salaried job -0.03 (0.07) -0.02 (0.05) -0.53 (0.07)

Woman has a history of stillbirths 0.10 (0.07) 0.07 (0.05) -0.06 (0.09)

Woman has a history of abortions 0.08 (0.04) 0.06 (0.03) -0.04 (0.05)

Woman’s age at the index maternity <20 years -0.17 (0.05) -0.17 (0.04) 0.12 (0.05)

Woman’s age at the index maternity is >34 years 0.15 (0.05) 0.15 (0.04) -0.10 (0.08)

Woman’s parity is 2-3 0.08 (0.05) 0.07 (0.04) -0.10 (0.05)

Woman’s parity is 4+ 0.26 (0.05) 0.27 (0.04) -0.38 (0.06)

Mother has received no prenatal care 0.14 (0.09) 0.17 (0.07) -0.19 (0.10)

Mother is breastfeeding (TVC) -0.09 (0.24) 0.01 (0.19) -0.15 (0.21)

Part B: Random Effects

Multiple-spell clustering effects -1.35 (0.06) -1.54 (0.03) -0.96 (0.34)

Negative log-likelihood 29 377.27 29 798.73 15 153.30

Sample size 9 592 9 592 9 592

Notes: All covariates are measured as dummy variables. 

          Asymptotic standard errors are in parentheses. 

          (TVC): denotes time-varying covariates.

Table 4

Two-level Two-state Multiple-spell Weibull Hazard Models 

of Determinants of Women's Health in the Presence of Sample-Attrition

through Dropouts in Yaounde (Cameroon)
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data clustering. The estimate of random effects shows the degree of data 

clustering in longitudinal surveys.  

 

For models 2 and 3, most results are in the expected directions given the 

literature on women’s reproductive health (Institute of Medicine, 1996).  These 

Models also assess the impact of distributional assumptions about sample 

attrition through dropouts in longitudinal surveys on parameter estimates of 

multilevel hazard models. First, a comparison of the three models shows that the 

covariate estimates of Model 1 are indeed contained within the interval 

delimited by the upper and lower values obtained from Models 2 and 3. For all 

the three models, women with paid employment and women with modern 

amenities in the home, are less likely to be unhealthy compared to other women. 

Second, the estimates in Models 1 and 2 are quite close (both in terms of 

significance level and size of the estimates), unlike estimates from Model 3 

which stand rather sharply apart. The estimated random parameters are large in 

all the models and significantly different from zero. This result confirms the 

conjecture that the multiple-spell data are highly correlated within women in the 

presence of unobserved woman-specific heterogeneity.  

 

 

Multilevel Discrete-time Hazard Model 

 
In practice, a discrete-time model specification is useful because of the problem 

of ties. In continuous-time models, it is usually assumed that each failure time is 

associated with a single failure. For lack of accuracy in measurement, many 

failures will often be recorded to occur at the same time or the time data may 

also be deliberately grouped. In such cases, instead of defining the risks as in 

models formulated so far, we can define the odds of failure as if they followed a 

multilevel logistic pattern for an age interval , conditional on child-

specific )( ijk , family-specific )( jk  and community-specific ( )k random 

effects assumed to operate multiplicatively on the baseline hazard. In a study of 

infant mortality, for example,   

 

 

    

qijk( )

1 qijk( )
=

exp ijk * Z ijk ( )[ ] jk * X jk ( )[ ] k * Yk( )[ ]( ) ijk jk k{ }
     (12) 

 

 

where 
    
qijk( )  is the probability of dying during the first year of life in the 

interval  for the i-th child born to the j-th mother (family/couple) residing in 

the k-th community (district or area of residence). As mentioned earlier, with the 
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DHS data, we consider only children born within the last three years preceding 

the survey. It is assumed that the place of residence and family in which children 

are born within the last three years preceding the survey have not changed 

within that three-year period.  

 

Including a unit variable in the vector Z leads to a model in which the odds are 

proportional to each other. The estimate of the constant is an estimate of the 

baseline for the odds. Thus, the parameters that one retrieves do not correspond 

to estimates of influences on the hazards. Nonetheless, the discrepancies are 

minor when the intervals are small or when the underlying risks are low.  

 

The above formulation has the advantage of being estimated with standard 

multilevel programs that have been designed to perform analysis with discrete 

data. The estimation is done jointly across time intervals, and this feature allows 

testing of multilevel survival models that are more general than the ones 

included in the proportional hazards model. In fact, one can test the hypothesis 

that the causal process may be different across time intervals to the extent that 

the values of covariates or of the estimated parameters differ by time interval 

(violation of the proportionality assumption).  

 

It is also worth noting that most computer programs used for estimating a 

logistic hazard model do not provide correct estimates of the baseline odds, 

because the procedures usually assume that if the individuals are censored 

within an interval, they are censored right before the end of the interval. Other 

estimation procedures for discrete versions of a proportional hazards model 

suggested by, for example, Cox (1972) and Kalbfleisch and Prentice (1980) 

unfortunately involve likelihood functions that cannot be easily maximized with 

standard software. In order to produce more accurate estimates, we can 

incorporate a series of dummies capturing the duration structure of the hazard 

function during the first year of life while monitoring closely the full survival 

time of both censored and uncensored cases, following the well-known age-

specific structure of infant mortality (Pressat, 1985).  

 

With these methodological precautions taken into account, we have survival 

times grouped into predetermined categories (like 0-1, 1-3, 4-7, and 8-11 months 

in the application below) and specify the survivor function at time interval  as 

  S . Denoting the corresponding density by g( ) and hazard by h( ), we have  

    

g = S 1 S , h =
g

S 1

,

S = 1 h( )
=1

, with S0 = 1

                                       (13) 

 

 

which can be used to estimate the survivor function from the set of estimated 

hazards. For the three-level logit-hazard model formulated here, the expected 

hazard is given by 
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hijk (tijk Z ijk (tijk ); X jk (t jk );Yk (t k ); ijk ; jk ; k )

= 1 exp e ti jk
+ Zijk (t ijk ) ijk + X jk ( t jk ) j k +Yk (t k ) k + ijk ( tij k )+ jk (t jk )+ k (t k ) 

 
 

 
 
 

and

log log 1 hijk (t ijk Z ijk (t ijk ); X jk (t jk );Yk (t k); ijk ; jk ; k )[ ]( )
= tijk

+ Z ijk(tijk ) ijk + X jk (t jk ) jk +

Yk (tk ) k + ijk(t ijk ) + jk (t jk ) + k (tk )

 

 

 
 
 
 
 

 

 
 
 
 
 

      (14) 

 

where the 
  tij k

 are the age effects to be estimated, one for each time interval.  

 

A frequent question in epidemiological studies is whether change in some 

variable during the course of the study varies according to its value at the 

beginning of the study. It has been recognized even from the 1950s that the 

association between change in a variable and its initial value is complicated by 

the presence of measurement errors and intrinsic within-subject variability 

(Garside, 1956; Oldham, 1962; Lindsey, 1999). Because of the presence of such 

variations, children whose initial risks of mortality are high (e.g., measured by 

health conditions at birth) will on average be found to have lower mortality risks 

at the end of the observation period even in the absence of any treatment. This 

artificial reduction, an example of ‘regression to the mean’, will be greatest in 

those with the highest recorded values, and will therefore induce a spurious 

association between change and initial value. Child-specific random effects 

should therefore be used to capture these unmeasured risks and other 

unobservables at the child-level.  

 

Parameters in (14) can be estimated using the MlWin package, which employs 

an Iterative Generalized Least Squares (IGLS) procedure or the second order 

predictive quasi-likelihood (PQL) approximation that have been shown to be 

both efficient and to provide greater accuracy of estimates of both the fixed and 

random parameters in multilevel models for binary response data in general 

(Rodriguez and Goldman, 1995; Yang et al., 2000; Goldstein, 1999). The 

general strategy for the data arrangement is similar to the one presented in Table 

3 above, with a level-4 unit being the district, the level-3 unit being the families, 

level-2 unit being the children and level-1 unit being the survival times. 

 
The results from the fitted multilevel discrete-time failure-time models are 

presented in Table 5 including the fixed and random effects for each geographic 

region in Africa. In all these models, the estimated duration effects are properly 

signed and follow a declining mortality schedule consistent with expected 

declining mortality risks as the child ages. Notwithstanding regional differences 



Variables NORTH CENTRAL
EAST & 

SOUTHERN
WEST

Duration 1-3 months (baseline duration is 0-1) -0.24 (0.10) -0.51  (0.14)  0.06 (0.14) -0.24 (0.10)

Duration 4-7 months (baseline duration is 0-1) -1.06 (0.13) -1.55  (0.21) -0.95 (0.17) -1.05 (0.13)

Duration 8-11 months (baseline duration is 0-1) -1.88 (0.16) -2.34  (0.24) -1.67 (0.19) -1.86 (0.16)

Intercept -3.44 (0.09) -6.83  (2.89) -3.52 (0.21) -3.34 (0.09)

Preceding sibling deceased                                        

before the conception of the index child

 0.21 (0.10)  0.36  (0.16)  0.49 (0.12)  0.20 (0.10)

Index child is breastfed (TVC) -0.10 (0.08) -0.60  (0.13)  0.45 (0.08) -0.03 (0.08)

Index child is followed by a conception (TVC)  1.15 (0.12)  1.29  (0.19)  1.01 (0.12)  1.14 (0.12)

Index child is fully immunized for its age (TVC) -1.36 (0.11) -1.89  (0.24) -1.09 (0.08) -1.34 (0.11)

At the district-level (within country)

             (between-district variance)  0.05 (0.07) 0  0.52 (0.08)  0.03 (0.06)

             (between-district variance in the                  

deleterious effects of preceding sibling’ death)

0.12  (0.42)  0.67 (0.28)  0.33 (0.12)

              (covariance between districts and               

preceding sibling’s death ) 

0.28  (0.13) -0.28 (01.2)  0.14 (0.41)

               (between-family variance) 0 0 0 0

               (between-children variance)  1.15 (0.01)  1.31 (0.01)  1.00 (0.01)  1.15 (0.01)

Number of districts 105 150 448 600

Number of families 3412    4 922 20864 25554

Number of children 16049 21743 95327 122730

Notes: 

1. North Africa comprises only Morocco, the only country of the region having accessible, pertinent and comparable data                         

    for this study. Central Africa comprises only Cameroon and Central African Republic. East and Southern Africa includes 

    Kenya, Malawi, Uganda, Tanzania, Madagascar and Zimbabwe.  West Africa includes Cote d’Ivoire, Burkina Faso, 

    Mali, Senegal, Niger and Nigeria.  The estimated effects of country-dummy variables are not shown.

2. All covariates are measured as dummy variables. Asymptotic standard errors are in parentheses. 

3. TVC denotes time-varying covariates. 

Table 5

Multilevel Discrete-Time Hazards Models of Infant Mortality 

in Africa by Geographic Regions

Part A: Fixed Effects

Part B: Random Effects

At the family-level (within district)

At the child-level (within family)

Hierarchical organization of the data
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within the continent found in Table 5, there are significant deleterious effects of 

death of the preceding child and the short next birth interval on the index child’s 

survival. In contrast, breastfeeding and full immunization status provide 

protection to children during infancy (except for Southern Africa). Compared to 

the models without random effects (not shown here), those that incorporate 

random effects show differences in the estimates in various degrees by region, 

even though they remain for the most part quite robust.  

 

The importance of random effects varies by region. Observations show strong 

correlation so that the between-children variance is significant in all models. 

District-level random effects are non negligible as well in all regions, but much 

of the random variation in child mortality risks at the district level seems to be 

attributable to differential access and utilisation of immunization services (after 

comparison with step-wise models that are not shown here). In particular, in 

Central Africa, the between-district variance is eliminated when the 

immunization variable is taken into account in the model. This suggests that 

some randomly varying mortality risk at the district level in Central Africa is 

due to differences in the extent to which children have received all their 

immunizations for their age.  

 

It is also important to underline that the variable ‘survival status of the preceding 

sibling’ has both fixed and random effects (both variance and covariance) that 

are significantly different from zero in most regions, implying significant child 

mortality concentration within certain families and districts (communities) in 

Africa. Within districts, there are generally no family-level random variations. 

Overall, the fixed and random parts of the three-level frailty model presented 

here show significant and net random within-family and between-district effects 

on child survival. 

 

 

Conclusions 

 
In this paper, I have shown how conventional hazard models can be extended to 

handle multilevel data structures. We need to collect longitudinal data that are 

suited to benefit from the new tools of analysis, which are outpacing most 

available longitudinal data. Contextual longitudinal studies where observations 

are fully crossed (over time and context by multiple levels of observation units) 

and nested within larger clusters appear to be the proper venue. The 

observations within those clusters tend to be more similar than those in different 

clusters, and this paper shows how to estimate hazard models that take the 

clustering into account and model the various random parameters across 

individuals and groups.  
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This paper has shown through a few illustrations that individual-level, family-

level, community-level and area-level influences have independent effects on 

mortality and health processes, especially in the case of infant mortality and 

women’s reproductive health after childbirth. It should be admitted, however, 

multilevel failure-time models can become quite complex and there may be 

limitations of most computer programs for estimating such complex 

hierarchically clustered survival models, especially if some or all variables are 

time-dependent and context-dependent.  
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