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Introduction

Thomas Burch addresses an issue that is key for the vitality of  our discipline: our 
ability to deal with (complex) dynamic systems. A population is a dynamic system and 
most will agree that it is complex if  we consider population composition in some detail, 
the drivers of  change, the many feedback mechanisms, and the consequences of  demo-
graphic changes. Burch raises two questions. First, why has demography made relatively 
little use of  differential equations to model dynamic systems? Second, why has demogra-
phy made so little use of  modern software for modeling dynamic systems? These ques-
tions subsume other questions. Does demography keep up with developments in natural 
and social sciences? Are demographers sufficiently familiar with the analytical strategies 
and technologies designed to investigate complex processes? In his view, demography, 
and in particular general and social demography, lag behind. The remedy is training.

The core business of  demography is the study of  population processes. Populations 
change because children are born and persons migrate and die. If  fewer children are born 
and people live longer, an ageing population is the sure outcome. The ageing of  a popu-
lation may be postponed in the short run by attracting young migrants, and in the long 
run by increasing the birth rate. Immigration changes the composition of  the population, 
and that may change its identity. Even without migration, populations change when old 
cohorts are replaced by new cohorts. Cohort replacement is a main mechanism of  social 
change. If  fertility decline should be stopped and reversed, conditions must be created 
that make raising children attractive. They include adequate work-life balance with flex-
ibility and security. The processes that drive population change are many. They are inter-
twined and embedded in a changing context. Population processes are complex indeed. 
Most dynamic systems that really matter are complex. The climate system and the finan-
cial system are two cases in point. Are demographers aware of  the analytical strategies 
and technologies that are available today to represent and investigate complex systems? 
Should they use these tools to study demographic change? The differential equation is 
the major analytical strategy to investigate processes of  change, and systems dynamics 
software a major technology to solve the equations. 

Burch asserts that demography would be a stronger discipline if  it had assimilated 
the regular use of  differential equations in general, and systems dynamics software in 
particular—not for data crunching but to develop theories on demographic change. It 
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would help demographers think better about complex social and demographic processes 
and develop new theories about how population systems evolve. It would clarify how 
the processes of  differentiation and selection result in population diversity, and how it is 
influenced by interaction with the social, cultural, and physical environment. He rightly 
stresses that differential equations are theoretical models which describe how demo-
graphic processes work. They are no substitute for statistical modeling and inference. Dif-
ferential equations have parameters, the values of  which may depend on several factors. 
That dependence structure must be captured in a statistical model, and the parameters 
of  that model must be estimated from data. I agree with Burch on the potential of  dif-
ferential equations in the study of  population processes. I also agree that the field would 
be stronger if  processes are represented in continuous time using differential equations, 
although I could very well live with colleagues who represent processes in discrete time 
using difference equations. In this commentary I show that demographers use differential 
equations more than they admit. The equations remain often implicit. Relatively simple 
extensions of  commonly used differential equations capture properties of  population 
dynamics that are known to exist but are considered too difficult to study.

Technology supports science in the quest for new theories and new knowledge from 
data. It is no different in demography. Most demographers rely on modern statistical 
software to identify patterns in data and to explain behaviour at a stage of  life in terms of  
characteristics at the time of  the behaviour, conditions at earlier stages, and characteristics 
of  the household, the community, and the welfare state in which persons live. They are 
able to identify spurious dependencies that are results of  unobserved characteristics and 
selection. The use of  mathematical software in demography did not keep pace with the 
use of  statistical software. Mathematical software such as Mathematica and Matlab is as 
easy to use as Stata or SAS. I agree with Burch that training provides the solution. 

The structure of  this commentary is as follows. In the next section I discuss differ-
ential equations and show that they are more common in demography than is generally 
accepted, and that they can be used to develop theories of  population dynamics. The 
integration of  mathematical modeling with differential equations, and statistical modeling 
with regression equations, is illustrated. In the following section I briefly discuss software. 
That discussion leads to a concrete proposal: to use a software package or computer 
language that facilitates both statistical and mathematical modeling. That language is R, a 
free software environment for statistical computing and graphics that has utilities to solve 
differential equations. Section 4 is the conclusion. 

Differential equations

Differential equations describe quantities that vary continuously in time. They are 
equations of  motion. In ordinary differential equations, the change in the variable of  
interest (the state variable) is a function of  the value of  that variable. The function has at 
least one parameter that needs to be estimated from empirical observations. The Malthu-
sian or exponential growth model is essentially an ordinary differential equation describ-
ing population change. It is dP(t )/dt = r P(t ), where P(t ) is the population size at time t, dt 
is a small time interval, and the parameter of  the equation is the rate of  change r, assumed 
to be constant. The equation is solved by expressing P(t ) in terms of  the population size 
at a previous point in time and the rate of  change. The solution is the well-known expo-
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nential model P(t ) = exp[rt ]P(0), where P(0) is the population size at baseline. In demog-
raphy, the solution is often written as the recursive equation P(t +1) = exp[r ]P(t ).

The differential equation is a process model. It describes a process in continuous 
time. It is the main mathematical technique in the study of  dynamical systems. As stressed 
by Burch, differential equations are theoretical models. They represent our understand-
ing of  how a system works and evolves. In many applications, the state variable is not 
the variable of  interest. The variable of  interest is a quantity that depends on the state 
variable. That quantity and the state variable may be affected by an intervention or some 
exogenous factors. The differential equation may be augmented by (1) an equation that 
relates the variable of  interest to the state variable; and (2) a term that represents the ex-
ternal influence. The model that results is the state-space model
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where u (t ) is the exogenous input and y (t ) the output. The parameters are a, b, c, and d. 
The parameters may vary in time (time-varying system), and the state variable, the input 
variable, and the output variable may be vectors representing the structure of  a system in 
addition to its size. The state-space model is a uniform mathematical format across dis-
ciplines to investigate dynamical systems. It would indeed make demography stronger if  
that uniform format was adopted in the study of  population dynamics.  In demography, 
the input variable may be immigration and the output variable the size (and structure) of  
the labour force. 

The life table and the projection model as we know them are process models that 
describe changes in cohort size or population structure. These changes may be expressed 
in continuous time by differential equations, or in discrete time by difference equations. 
Difference equations are used more often than differential equations. In the life table, 
the size of  a birth cohort at a given age is expressed in terms of  the size at a previous 
age and the number of  deaths during the age interval. Let x denote age and n the length 
of  the interval. The cohort size at age x + n  is the cohort size at age x minus the deaths 
during the interval from x to x + n. The equation, shown in any textbook, e.g., Preston et 
al. (2001: 59), is l (x + n ) = l (x ) − nd (x ), where l (x ) is the cohort size at age x and nd (x ) 
is the number of  deaths during the interval (x, x + n ). The number of  deaths during the 
interval depends on the rate of  death and the person-years of  exposure to the risk of  
dying: nd (x ) = nm (x ) nL (x ), where nm (x ) is the death rate during the interval and nL (x ) is 
the exposure time in person-years. Although in the model the death rate varies from one 
interval to the next, the risk level varies continuously with age. In other words, the process 
takes place in continuous time, even when we describe the process in discrete time (time 
intervals). A description in discrete time is generally dictated by the data. We usually do 
not have exact ages at death, but only have ages in completed years or age groups of  five 
years. The theoretical model of  cohort size is a model in continuous time. The theoretical 
model results when the time interval is very small, infinitesimally small. Such a small age 
interval is generally denoted by dx, and the death rate during the small interval by instan-
taneous death rate or force of  mortality. The instantaneous death rate may be viewed as 
the death rate nm (x ) when the interval tends to zero: 

μ(x) = lim
n→ 0 nm(x) ,
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where μ(x ) is the instantaneous death rate at age x (i.e., during the interval from 
x to x  +  dx ). The theoretical model of  cohort size is a differential equation, dl (x )/
dx = −μ(x ) l (x ), with dl (x ) the change in cohort size during the small interval dx. The 
equation is the most simple differential equation used in demography and is presented, 
although implicitly, in most textbooks, including Preston et al. (2001) and Hinde (1998). 
Introductory texts such as Rowland (2003) do not use differential equations explicit-
ly, but they introduce the distinction between continuous time and discrete time when 
comparing exponential growth (compounding at every moment) and geometric growth 
(compounding at fixed intervals). A few texts, such as Namboodiri (1990), adopt a more 
explicit process perspective on demographic change. The conclusion is warranted that 
demographic texts avoid the explicit use of  differential equations, although differential 
calculus is applied to explain the concept of  instantaneous death rate. It is a small step to 
introduce differential equations explicitly. 

Differential equations facilitate the modeling of  more complex phenomena. Con-
sider exponential population growth. Suppose the growth rate depends on population 
density, defined as the ratio of  the population size P(t ) and the carrying capacity K. The 
differential equation is
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varies in time. The population grows exponentially when it is small relative to the carry-
ing capacity, but the growth rate slows down when the density increases, and it becomes 
zero when the carrying capacity is reached. The population size never exceeds K. The 
solution of  the differential equation is a logistic function. This simple illustration shows 
that (1) the logistic model is an extension of  the exponential model; and (2) the logistic 
model incorporates a feedback mechanism. The rate of  change is dependent on the out-
come of  that change. Differential equations are powerful tools for describing population 
processes. The model may be extended in order to capture more realistic features of  the 
process. Burch mentions an extension which allows that at small population densities, the 
population goes to extinction. There is widespread evidence of  the Allee effect in natural 
populations and several causal mechanisms have been proposed, the most obvious being 
the difficulty of  finding mates. To extend the logistic model to a model that describes 
extinction if  population is below a threshold, and growth if  it exceeds the threshold, the 
growth rate is multiplied by the term P(t ) − A, with A the threshold. If  the population 
drops below A, it goes to extinction. The model is still quite simple, but it captures prop-
erties of  real populations. 

Differential equations also facilitate the modeling of  interacting populations. The 
predator-prey model is a case in point. The prey population grows exponentially unless 
subject to predation. In the presence of  predators, the growth rate of  prey is suppressed 
at a degree that is proportional to the number of  predators. Predators grow only in the 
presence of  prey. In the absence of  prey, their size declines exponentially and they be-
come extinct. The model is a theoretical model that describes the mechanism of  change. 
Because the growth rate of  predators depends on prey and vice-versa, the changes in 
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the predator and prey populations are represented by two differential equations that are 
solved together as a system of  equations:
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where P1 is the number of  prey and P2 is the number of  predators. It is the Lotka-Volterra 
equation. The parameters represent the interaction of  the two species. That interaction 
is the main subject of  study in population biology. It does not receive much attention in 
demography, although the model is not much more complicated than the exponential 
growth model. Solving the systems of  equations is more complex, but modern software 
facilitates that task. 

Another illustration of  interacting populations is a population that consists of  sub-
populations that exchange people. For instance, in a system of  regions, a regional popula-
tion gains people through births and in-migration, and loses people through deaths and 
out-migration. The number of  in-migrants from a given region depends on the size of  
the population of  the sending region. Consider a population with mobility only. The pro-
cess is described by a system of  two simultaneous equations: 
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where μij is the instantaneous rate of  migration from region i to region j. The system of  
equations may be written as a matrix equation:
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The solution of  the equation system is P(t ) = exp[−μt ] P(0). The system of  differ-
ential equations describes a continuous-time Markov model. That model is the workhorse 
of  multi-state demography. Fertility and mortality may be introduced by adding birth and 
death rates to the diagonal elements of  μ, and the parameters may be age-specific. 

In this section I presented simple differential equations that are used in demography 
and ecology, the field that deals with interacting species in a common environment. Dif-
ferential equations are theoretical models. They do not compete with statistical models. 
They are complementary instead. Statistical models, such as regression models, do not 
describe mechanisms of  change. They describe statistical associations between variables. 
For instance, a regression analysis may indicate that smokers have a higher death rate than 
non-smokers, or that persons with a higher education are less likely to suffer cognitive 
impairments at old age. The analysis does not reveal the causal mechanism that produces 
that empirical relation. I therefore fully agree with Burch that regression models do not 
describe how a system works. I disagree that it means that they are uninformative. The 
detection of  a statistical association may lead the way to uncover the underlying causal 
mechanism. This perspective on statistical modeling as supporting but not replacing caus-
al modeling is particularly relevant in survival analysis and event history analysis dealing 
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with processes. Blossfeld and Rohwer (2002: 24) make the following statement: “The 
important task of  event history modeling is not to demonstrate causal processes directly, 
but to establish relevant empirical evidence that can serve as a link in a chain of  reason-
ing about causal mechanisms.” For many years we have known that smoking leads to 
lung cancer and cardiovascular disease, but only recently the negative link between higher 
education and cognitive impairment was discovered. Higher cognitive reserves resulting 
from education do not prevent brain damage but suppress its clinical expression. Educa-
tion improves the mind’s resilience to neuropathological damage. For a statistical analysis 
of  the association between education and cognitive impairment at old age, see Reuser et 
al. (2011). For the description of  the mechanism, see Brayne et al. (2010). 

Regression models may be usefully combined with differential equations. Consider a 
differential equation describing the survival process: dl (x )/dx = −μ(x ) l (x ). The instan-
taneous death rate varies with age. Suppose we have two subpopulations, and an attribute 
is present in one and absent in the other. Assume that the effect of  the attribute on the 
mortality rate is the same for all ages. The mortality hazards are proportional, and the Cox 
proportional hazard model can be used to describe the association between the covariate 
and the mortality rate by age: μ(x ) = h (x ) exp[βX], where X is 0 if  the attribute is absent 
and 1 if  it is present. The parameter β measures the effect of  the presence of  the attribute 
on the death rate, and h (x ) is the baseline hazard, i.e., the death rates by age for those 
without the attribute (reference category). The solution of  the differential equation with 
the instantaneous death rate replaced by the Cox model is

l(x) = exp −  exp(βX) h(τ) dτ
0

x∫[ ] l(0) .

The differential equation describes the survival process. The regression equation captures 
the effects of  covariates on the parameters of  that process. The integration of  differen-
tial equations and event history models yields a powerful tool for demographic analysis. 
Tuma and Hannan (1984) were among the first in the social sciences to explicitly integrate 
differential equations and event history modeling. 

Most of  the processes demographers are concerned about occur in continuous time. 
Some processes, such as elections, occur in discrete time and should be described by 
discrete-time models and difference equations. 

Software

Burch sees in appropriate software an opportunity to engage demographers with 
little mathematical background in process thinking, using differential equations. He men-
tions special-purpose software tools, such as Dynamo and Stella, and general-purpose 
software such as Mathematica. Some, such as Mathematica and Matlab, are alive and 
flourishing. Other products, such as Dynamo, seem to have lost momentum. Some lan-
guages are powerful but less known, such as the M language used by Hilderink (2000) 
to simulate population growth in seventeen regions of  the world. For most software 
tools, Wikipedia is a good initial source of  information. For common models, such as the 
Lotka-Volterra equation, there are Java applets available on the internet.1 Demographers, 
like other people, are reluctant to invest in a new computer language. Most stay with the 
package or language they acquired in college and these are likely to be general purpose 

1.	See, e.g., http://www.sumanasinc.com/webcontent/animations/content/predatorprey.html 
(accessed March 30, 2011).
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tools for statistical data analysis. SPSS and Stata are popular packages among social scien-
tists, including demographers. R and SAS are popular among statisticians. The first two 
packages have no facilities to solve differential equations. R has. Unlike SPSS and Stata, 
R is designed as a high-level programming language and is free (http://www.r-project.
org). It is a free software environment for statistical computing and graphics. Thousands 
of  scholars around the world contribute packages and make source code available to the 
Comprehensive R Archive Network (CRAN; http://cran.r-project.org). It is a unique ex-
periment in international scientific collaboration. R Wiki is dedicated to the collaborative 
writing of  R documentation, and R-Forge offers a central platform for the development 
of  R packages and R-related software. Soetaert et al. (2010a) review the types of  differ-
ential equations that can be solved with packages contributed to CRAN. Those familiar 
with R have direct access to software for solving differential equations. They can use the 
graphics capabilities of  R and can easily integrate the packages in a broader analysis. By 
way of  illustration, Box 1 shows the code that solves the logistic model and displays the 
result. One can easily vary the growth rate (r ) and the carrying capacity K. The function 
vdpol  specifies the differential equation and the function ode solves the equation, using 
the deSolve package contributed by Soetaert et al. (2010b). The R code to solve the Lotka-
Volterra equation is shown in Box 2 to illustrate that solving differential equations in 
R is not much more than (1) writing a function (LVmod) that specifies the systems of  
equations; and (2) specifying parameter values and calling the ode function. The R code to 
simulate a population involving predation and Allee effects is available from this author. 
The code uses the model and the parameters presented by Duman and Merdan (2009). 
Duman and Merdan use Matlab. 

Box 1. R code to solve the differential equation of the logistic model.
library (deSolve)
r <- 0.05
K <- 1000
Pini <- 10
vdpol <- function (t,P,Z)
  { list (r * (1-P/K) * P) }
s <- ode (y=Pini,func=vdpol,time=seq(0,200,by=1),parms=c(r,K))
plot (s,type=”l”,lwd=2,ylab=”P”,main=”Logistic population growth”)

Conclusion

Does demography needs differential equations? I agree with Burch that the field 
would be stronger if  differential calculus was part of  the curriculum and differential 
equations were used widely. Differential calculus is the basic mathematical tool for any-
one interested in studying change beyond descriptive and statistical analysis. Differential 
equation models are common in demography but are rarely used explicitly. That should 
change. When demographers become familiar with differential equation models of  sim-
ple processes in continuous time, they will want to add realism and, hence, complexity. 
Among the modern software to solve differential equations, one stands out because it 
allows both differential equation modeling and statistical modeling. In addition, it is free, 
has superb graphics capabilities (important for simulation), and the source code is avail-
able for inspection. It is R, the high-level programming language for statistical comput-
ing and graphics. One advantage is that a number of  graduate programs in demography 
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already teach R. The ode function of  the deSolve package can easily be included paving the 
way to applications of  the predator-prey model and other continuous-time process mod-
els in theoretical and applied demographic research. Thomas Burch’s paper is likely to 
trigger new developments in demography that make the field stronger by using analytical 
strategies and technologies designed to investigate complex processes.

Box 2. R code to solve the predator-prey Lotka-Volterra model.
LVmod <- function(Time, State, Pars) {
  with(as.list(c(State, Pars)), {
    Ingestion    <- rIng  * Prey*Predator
    GrowthPrey   <- rGrow * Prey*(1-Prey/K)
    MortPredator <- rMort * Predator
    dPrey        <- GrowthPrey - Ingestion
    dPredator    <- Ingestion*assEff - MortPredator
    return(list(c(dPrey, dPredator)))
  })
}
pars    <- c(rIng   = 0.2,    # /day, rate of ingestion
             rGrow  = 1.0,    # /day, growth rate of prey
             rMort  = 0.2 ,   # /day, mortality rate of predator
             assEff = 0.5,    # -, assimilation efficiency
             K      = 10)     # mmol/m3, carrying capacity
yini    <- c(Prey = 1, Predator = 2)
times   <- seq(0, 200, by = 1)
out     <- ode(func = LVmod, y = yini, parms = pars, times = times)
summary(out)
matplot(out[,1], out[,2:3], type = “l”, xlab = “time”, ylab = “Conc”,
        main = “Lotka-Volterra”, lwd = 2)
legend(“topright”, c(“prey”, “predator”), col = 1:2, lty = 1:2)

Source: Soetaert et al. 2010c, p. 69.
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