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AGE-PARITY-NUPTIALITY-SPECIFIC STABLE POPULATION MODEL

S. Krishnamoorthy
Population Studies Center, University of Pennsylvania, Philadelphia, U.S.A.

Résumé — Les modéles Age-parité-nuptialité, développés jusqu’ici par les démographes avaient
une restriction gquelconque sur ’état matrimonial ou sur 'incidence des naissances dans les
états matrimoniaux différents. Cette étude présente une méthode pour I’établissement
d’une table de mortalité incorporant ’état matrimonial. On a aussi présenté la méthode de
projection de la distribution démographique par Age-parité-nuptialité. Le modéle proposé a
été appliqué 4 la population féminine des Etats Unis pour ’année 1970.

Abstract — The age-parity-nuptiality models so far developed by demographers had one or
more restrictions on marital status or on the occurrence of births in different marital states.
This paper presents a method of constructing a life table incorporating marital status and
parity, and develops the age-parity-nuptiality-specific stable population model recognizing
all types of marital status, and births to women in any marital status. A method of project-
ing age-parity-nuptiality-specific distribution of population has also been presented. The
proposed model is applied to the United States female population for the year 1970.

Key Words — life table, stable population, increment-decrement life table

I. Introduction

The age-differentiated stable population has dominated the field of mathematical de-
mography since the time of Lotka. Since then numerous attempts have been made by
various authors to refine Lotka’s model by introducing two important demographic fac-
tors, parity and marital status (Welpton, 1946; Keyfitz, 1968; Oechsli, 1975; Das Gupta,
1976). But all of them had one or more restrictions on marital status and/or parity. Most
of these models either did not differentiate currently married status from widowed or di-
vorced states or did not allow births to occur to single women. Hoem (1970) has devel-
oped a probabilistic fertility model of the life table type allowing births to women in any
marital status, but has neither applied his model to any population nor explored the
scope of his model’s application to stable populations.

This paper attempts to present a method of construction of a life table incorporating
marital status and parity, and to develop the age-parity-nuptiality-specific stable popu-
lation model recognizing all types of marital status and births to women in any marital
status. The theoretical advantage of this approach lies particularly in the development of
intrinsic rates of birth and growth derivable from the age-parity-nuptiality model. The
model presented here is so general that with very slight modification it can be adapted to
project population by labor force status, school enrollment, etc.

II. Marital Status and Parity Life Table

Designate a state space of mutually exclusive states of marital status and parity. Let
us assume that we have k marital states: single, married, divorced, etc.; and s parity
states: 0, 1, 2, . . . s—1, where s—1I represents the parity order of s—1 and above. The
combination of marital states and parities would produce ks mutually exclusive states:
SypSp. uS, sy MyM,..,M_,D,D,...D,_,etc, and let us designate them by states 1,
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2,83, ..., ks. Now the difference between the fraction of persons surviving to age x and to
age x + Ax in state i is given by:

6] (i) ks 0]
l(x+Ax) —Il(x) = j§1 M(x) I(x) Ax (1)

where ;M,(x) is the instantaneous rate of transition at age x from state J to i, when i#}],
and M, is the instantaneous rate of going out of state i due to death and transition to
other states, multiplied by minus one. When transition for some specific j to ¢ is impos-
sible, ;M; = 0. Dividing both sides by Ax and letting Ax — 0, we get a differential equa-
tion.

Hence we have a differential equation for each one of i = 1, 2, . . ., ks. The set of ks simul-
taneous differential equations can be compactly written in matrix notation as

A=)} = M) (i)} ©)
dx

where {I(x)} is column vector consisting of elements I(x) in the ith position, and M(x) is
a ks X ks matrix whose element in the ith row and jth column is M(x), which is as de-
fined earlier.

Now if we consider {{(0)}, consisting of unity in the first position and zeros elsewhere
— that is, at age zero there is only one individual; she is single and of parity zero — then
the probability of her appearance in each of the ks states at age x can be obtained from

{I(x)} = 2 {1(0)} )

where QZ can be computed as described below.

If we subdivide the interval (0,x) into n segments by means of (n-1) intermediate
points such that each one of the intervals is very small, and choose a point from each
sub-interval, say %, %,, . . ., ,, and designate the width of these sub-intervals by Ax,, Ax,,

., Ax_, then the solution for QZ by the Infinitesimal Calculus of Volterra (Gantmacher,
1959) is:

Qz = exp[M(x,)Ax,] exp[M(x, )Ax, ]. .. exp[M(x,)Ax,] (4)

The exponential of a matrix is defined by exp(A) = I+>A+A?%/2!4+A%/3!+ . . ., where A is
a square matrix and I is a unit matrix. The series always converges causing no problem for the
solution. :

The numbeér of persons alive in the hypothetical stationary population between age x
and x+51is

{,L,} = [P{l(x+t)} di, (5)
0

which can be computed approximately by

p |
L) = 3 [UGE+8))+ (@) ®

For computation of other multi-status life table values we refer the reader to Rogers and
Ledent (1976) and Krishnamoorthy (1979).
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III. Stable Population

A. Integral Equation Approach

Once we compute the values of {I(x)} from (8) and (4), we can make use of it in
Lotka’s integral equation. The number of female births B(t) at time ¢ can be expressed as

B(t) = [0 B(t—x) {I(x)} {m(x)} dx, @)
0

where 8 is the probability that a birth will be a girl baby, {I(x)}’ is the transpose of the
column vector {I(x)}, {m(x)} is a column vector of parity- and nuptiality-specific instan-
taneous force of fertility, and  is the largest age to which any one lives. Substituting the
trial solution B(t) = Q € in (7), it can be seen that the intrinsic rate of increase r is the
only real root of the integral equation (Keyfitz, 1968: p. 100).

W(r)=[e”6{l(x)} {m(x)} dx = 1 ®)
0

In order to evaluate the value of the intrinsic rate of increase from the equation (8), we
write it in discrete form using five year age groups as

B8/5-1 0 e-(5x+2.5)r
¥(r)= Z - {sLs.} {m(Bx+2.5)} =1 9)

x=af5 lo
where {,L.}" is the row vector consisting of the person-years lived in different states
within the age interval 5x to 5(x+1) derived from the multiple status life table and l,is
the radix of the life table. For an iterative solution of (9), the reader is referred to Keyfitz
(1968:111-112, 138).
Let ¢(x, i) be the stable age-parity-nuptiality distribution, that is, the proportion of
women of age x and in state i. The distribution of c(x, i) and the intrinsic birth rate b are
given by

b= 1/[f“’e""{l(x)}’{1}dx] . (10)
0
and
(i)
c(x, i) =be™l(x) (11)

where {1} is the column vector consisting of unity everywhere.

Once we have c(x, i) and the basic rates in the model, it is possible to compute many
stable population parameters like age distribution of wornen in different states, intrinsic
first marriage rates, intrinsic rates of widowhood and divorce, of births of specific order,
legitimate and illegitimate birth rates, etc., including intrinsic net and gross reproduction
rates. ’

B. Projection Approach

Stable population analysis can be carried out by the projection approach. With slight
modification in the life table construction described earlier we get the L_ values to be
used in the projection matrix. Rogers’ (1975) multiregional projection process could then
be adapted with slight rearrangement of elements of age-parity-nuptiality-specific birth
rates.

The survivorship {,L,} described earlier is not directly useful for constructing the
projection matrix, since it is not possible to derive the conditional survivorship ratios
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from it. For the projection matrix we need to know the probability for an individual aged
x to x+5 in state i to be in the age range x+5 to x+ 10 exactly after five years. To com-
pute this, let us approximate this quantity to the probability that an individual in state i
at exact age x—+5/2 will be in state j at exact age x+15/2. Now using the property of
matrizer, sometimes known as matricant or matrizant (Gantmacher, 1959: Chapter 14),
we can show that

§(x) ~Q x+15/2 (12)

x-i:5/2
where the element in jth row of ith column of the matrix, S(x), is the probability that an
individual in state i at age x+5/2 will be in state j at age x+15/2.
Instead of this crude approximation to S(x), let us try one possible improvement.
First let us write the theoretical relationship between £(x), @ and S(x).
S(x) = [P Llx+t) dt [[° fx+t) dtJ’ (13)
0 0

where £(x) is a diagonal matrix and [’#(x+t) dt is assumed to be nonsingular. The
superscript -1 stands for the inverse. Writing (14) differently

S(x) = [ QB pret5/2+1) de [[° £(x+t) dt]’ (14)
0

+5/2 x+5/2+t

Expanding © and £ inside the first integral in Taylor’s series and taking only the first two
terms (that is assuming the elements of both Q and £ are all linear) in the expansion and
multiplying the two series inside the first integral and integrating, we get

3
§(x) = Qx-e-zs/z + i [9x+15/2 4 ,{,(x+5/2) E‘L’x-J (15)

x+5/2 1 2 x+5/2

where the superscript () stands for the first derivative and
L. = [’ £(x+t) dt.
0
Now substituting

(O] = e 1901 — 2]

and
) 1
{(x+5/2) = T 9x5K? [L,s — shixts)

in (15), we get a better approximation for S(x) as

1
S() = QE+ Jo [V~ ] [Loys— ool oL (16)
Now the elements of S(x) can be used to fill in the elements of the growth matrix except
for the first ks rows. The improvement in the approximation in (16) depends on the as-
sumption of linearity of the elements of both @ and ¢. This is unlikely but including
higher order terms in the analysis will improve our results when this assumption is too
optimistic. However, for the youngest and oldest age groups the above method is not ap-
plicable.

The projection matrix is not complete without an estimate of surviving births during
the time of one step projection. Denote the age-state-specific annual female birth rate by
S for the age group x to x+5 in the state i. LetF(x)be a ks X ks matrix consisting of
the elements ,F¥ in the ith position of the first row and the rest of the elements being
zeros. Define
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(1)
B = L5 [0 + Fx+®) (] an

Now the matricés B(x) and S(x) can be arranged to form, what Feeney (1970) calls, the
generalized Leslie Matrix.

|

0 O B(e—5) Ble@ ... B(—-50 ..0 0
SO) O 0 1O 0 0..0 0
O 8(5) o) QO e 0 0..0 0
0 0 S@10) 1O I 0 0..0 0
H= 0 o) ) S(15) ... 0 0..0 0
L 0 0 0 0 0 0.8 ©
(z—5) |
The matrix expression of the multiple status growth process is:
'{KH-S} — g{K(t)} (18)

where
(K"} = ( (K3
{Ks}

(t)
{Kio

(K2 )

and {K} is a column vector consisting of ks elements, where the ith element is the popu-
lation at time ¢ in state i in the age range x to x+5. It is worth noting the arrangement of
elements in the generalized Leslie matrix. In our case the survivors of new born first
enter the state one, which represents single with parity zero. This assumption is valid for
almost all modern populations; for some traditional societies, like seventeenth century
India, where child marriage was prevalent, some changes are needed in the construction

of B(x) matrices.

IV. Some Remarks

It can be recognized that in our model, by suitable definition of state space, the
specificity of either marital status or parity or both can be eliminated or any other char-
acteristic can be included. Thus our model is more general, simple enough to compre-
hend, and permits simple and general computer program. The only limitation is in the
computing cost, which is slightly higher, and this limitation is insignificant when com-
pared to its other benefits.

In our model we have assumed independence of rates of occurrences of events. One
way of taking care of such situations is to introduce duration-dependence in the force of
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transition by including duration of stay in the current state as one of the variables in de-
fining the state space.

V. Application to United States Data, 1970

Though our model is general enough to take into account as many marital states as
are conceivable, we have taken for the present application only two states, single and
ever-married. This restriction is mainly due to lack of availability of data. Table 1 pre-
sents the age-parity-nuptiality-specific fertility rates and age-specific first marriage
rates. In the absence of first marriage rates of single women by parity, we assume that

TABLE 1 MARRIAGE RATES AND FERTILITY RATES FOR SINGLE WOMEN AND
FERTILITY RATES FOR EVER-MARRIED WOMEN: UNITED STATES, 1970

Age Marital Marriage Fertility rates per 1000 by parity i
rates 0 1 2 3 4 5 6 7+
group  status® per 1,000

15 - 17.5 S 36.6 16.0 127.8 116.8 45.2 >

M - 779.2 133.6 58.8 41.9 29.3 - 23,1 ——»

17.5- 20 S 154.6 26.5 121.0 132.5 < 63.2 >

M - 578.3 219.5 174.0 151.3 83.6 b 75,7 —————p

15 - 20 S 88.2 20.5 123.2 129.5 4 61.4 >

M - 614.8 205.9 156.3 131.5 74.7 b——r 69.9 —>

20 - 25 S 237.1 24,1 108.2 159.5 & 171.5 »
M - 305.5 247.7 154.3 159.9 156.7 152.4 136.6 102.0

25 - 30 S 129.2 11.9 49.9 78.4 b 146.6 >
M - 216.7 239.1 123.0 109.0 114.1 130.8 143.4 154.3

30 - 35 s 60,6 5.3 22,1 35.2 < 92.5 >
M - 91.5 120.1 69.3 61.3 63.9 75.9 91.7 123.0

35 - 40 S 38.5 2.4 8.5 12.4 < 47.2 >
- 28.4 36.5 23.9 25.4 30.3 38.2 50.5 84.5

40 - 45 S 22.2 0.6 1.5 2.4 < 12.2 >
M - 4,6 5.6 4.2 5.7 8.0 11.7 16.4 33.5

45 - 50 s 14.5 0.1 0.2 0.2 < 0.7 >
M - 0.3 0.2 0.2 0.3 0.4 0.9 1.2 3.3

* S = Single; M = Ever-married
SOURCE: Das Gupta, Prithwis, (1976)

first marriage rates depend only on age and not on parity of single women. Owing to the
same problem of lack of data, we also assume the age-specific death rates are the same
for all marital statuses and parity; though the model can accept different rates.

Application of equation (3) and (4) yield the increment-decrement life table (Table 2)
which gives the probability at birth of a girl child’s being of a given marital status and
parity at age x under the United States female, 1970 forces of death, marriage, and fertil-
ity. Application of equation (6) yields Table 8 which shows expected person-years lived
in each age, marital status and parity group.

The stable population analysis by integral equations (8) and (9) provides an intrinsic
growth rate of 5.95 per 1000 women. By applying equation (10) we get the intrinsic birth
rate of 16.77 per 1000 women. Stable age-parity-nuptiality distribution of 10,000 female
population is computed using equation (11) and is given in Table 4.

Das Gupta (1976) gives a crude growth rate of 9.31 per 1000 women, an intrinsic
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TABLE 2 PROBABILITY AT BIRTH THAT A WOMAN WILL BE IN A GIVEN MARITAL
STATUS AND PARITY AT AGE X: UNITED STATES, 1970

Marital Parictcy Total
Age
Status* 0 1 - 3 4 S 6 T+
0 s 1.000 0.0 0.0 0.0 0.0 - - - 1.000
M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
s s 0.979 0.0 0.0 0.0 0.0 - - - 0.979
0.0 0.0 0.0 0.0 0.0 , 0.0 0.0 0.0 0.0
10 S 0.977 0.0 0.0 0.0 0.0 - - - 0.977
M 0.0 9.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0
15 s 0.975 0.0 0.0 0.0 0.0 - - - 0.975
¥ 0.0 6.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0
20 S 0.543  0.047 0.011 0.002 0.000 - - - 0.603
o 0.139 0.166 0.053 0.010 0.001 0.0- 0.0 0.0 0.369
25 s 0.146  0.023 0.009 0.004 0.002 - - - 0.184
M 0.186 0.249 0.225 0.083 0.028 0.007 0.001 0.000. 0.785
30 s 0.072 0.013 0.006 0.002 0.003 - - 0.096
¥ 0.101 0.16% 0.304 0.185 0.076 0.026 0.008 0.003 0.869
35 s 0.051 0.010 0.005 0,002 0.003 - - - 0.070
M 0.078 0.123 0.287 0.224 0.110 0.042 0.016 0.C09 0.888
40 s 0.042 °0.008 0.004 0.001 0.003 - - A 0.058
M 0.076  0.113 0.273 0.227 0.121 0.051 0.020 ¢.013 0.893
45 S 0.037 0.007 0.003 0.001 0.002 - - - 0.051
M 0.077 0.11l 0.267 0.224 0.121 0.052 0.021 0.014 0.886
50 S 0.033  0.007 0.003 0.001 0.002 - - - 0.046
M 0.078  0.109 0.262 0.219 0.118 0.051 0.021 0.014 0.871
S5 S 0.032  0.007 0.203 0.001 0.002 - - - 0.045
M 0.076  0.106 0.254 0.212 0.115 0.049 0.020 0.014 0.845
60 s 0.031  0.006 0.003 0.001 0.002 - - - 0.043
M 0.072  0.101 0.242 0.203 0.110 0.047 0.019 0.013 0.807
65 s 0.629  0.006 0.003 0.001 0.002 - - - 0.040
.4 0.063 0.0%4 0.227 0.190 0.103 0,044 0.018 0.012 0.756
70 s 0.0256 0.005 0.002 0.001 0.002 - - - 0.036
M 0.061  0.085 0.205 0.171 0.093 0.040 0.016 0.011 0.682
75 s 0.022  0.004 0.002 0.001 0.C01 - - - 0.031
-4 0.052  0.073 0.1 0.146 0.079 0.034 0.014 0.010 0.580
80 S 0.017  0.003 0.002 0.001 0.001 - - - 0.024
M 0.040  0.035 0.133 0.111 0.060 0.026 0.010 0.007 0.443
85 S 0.011  0.002 0.001 0.000 0.001 - - - 0.015
¢ 0.026 0.036 0.036 2.072 0.039 0.017 0.007 2.005 0.286

*S = Single; M = Ever-married

growth rate of 5.74 in Lotka’s age model and 6.75 from his age-parity-nuptiality model.
The present model using almost the same set of data yielded a rate of 5.95. The differ-
ence between Das Gupta’s results and ours could be due to the assumptions inherent in
these two models and the approximations involved in computation. It is also worth not-
ing that there is not much difference between the intrinsic rates obtained by the Lotka

27



S. Krishnamoorthy

TABLE 8 PERSON-YEARS LIVED IN EACH AGE-PARITY-MARITAL STATUS GROUP
BY A FEMALE CHILD JUST BORN: UNITED STATES, 1970

Age Marical Parity
Total
group status® 0 1 2 3 4 5 6 7+
[ S 4.911 0.0 0.0 0.0 0.0 - - - 4.911
.4 a.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5- S 4,889 0.0 0.0 0.0 0.0 - - - ¢ 4,889
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10~ S 4.881 0.0 0.0 0.0 0.0 - - - 4,881
M Q.0 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0
15- S 3.993 0.142 0.024 0.004 0.000 - - - 4,163
-3 0.325 0.301 0.069 0.010 0.001 0.000 0.0 0.0 0.706
20~ S 1.521 Q0,175 0.054 0.017 Q.006 - - - 1.773
M 1.009 1.081 0.703 0.217 0.057 0.012 0.002 0.000 3.080
25~ S 0.525 0.088 0.036 0.015 0.012 - - - 0.676
- ¢ 0.700 1.032 1.384 0.686 0.250 0,076 0.021 0.007 4,157
30~ S 0.306 0.057 0.026 0.010 0.013 - - - 0.412
M 0.448 0.712 1.485 1.031 0.464 0.168 0.059 0.029 4,396
35- s 0.232 0.045 0.021 Q.008 0.013 - - - - 0,319
- § 0.386 Q0.588 1.399 1.130 0.577 0.232 0.088 0.054 4,454
40= S 0.195 0.03% 0.018 0.006 0.012 - - - 0.270
- 4 0.382 0.559 1,350 1.127 0.603 0.256 0.102 0.069 4,448
45~ S 0.175 0,035 0.016 0.005 0.011 - - - 0.242
4 0.388 0.549 1,322 1.106 0.598 0.256 0.104 0.072 4,394
50- s 0.164 0.033 0.015 0.005 0.010 - - - 0.228
M 0.38% 3.536 .288 1.078 0.583 0.249 0.101 0.070 4,290
55— S 0.158 0.032 0.015 0.005 0.010 - - - 0.219
M 0.369 0.516 1.240 1.038 0.551 0.240 0.097 0,068 4,128
60~ S 0.149 8.030 0.014 0.005 2.009 - - - 0.207
- 4 0.349 0,488 1.173 0.982 0.531 0,227 0.092 0.064 3.906
65= S 0.137 0.028 0.013 Q0.004 0.009 - - - 0.191
M 0.321 0.449 1.079 0.903 0.433 0.209 0.085 0.059 3.593
70~ S 0.120 0.024 0.011 3.004 0.008 - - - G.167
M 0.282 0.39% 0.946 0,792 0.428 0.183 0.074% 0.052 3.150
715- S 0.097 0.020 0.009 0.003 0.006 - - - 0.135
. § 0.228 0,318 0.764 0.639 Q.346 0,148 0.060 0.042 2,544
80~ S 0.069 0.014 0.006 0.002 0.004 - - - 0,095
M 0.161 0,224 0.539 Q.451 0.244 0.104 0.042 0,029 1.796
85+ S 0.070 0.014 0.007 Q.002 0.0us - - - 0.098
- § 0.165 0.230 9.533 Q.463 0.251 0.107 0.043 0.030 1,843

%S = Single; ¥ = Zver-married.

model and the age-parity-nuptiality model, but there is a large difference between crude
rate and the intrinsic rate in the Lotka model. This result implies that the observed age
distribution of women is far from the stable age distribution. It also suggests that the dis-
tribution of women within a given age group according to marital status and parity does
not differ greatly between the observed and the stable population, or that the differences
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TABLE 4 STABLE AGE-PARITY-MARITAL STATUS DISTRIBUTION PER 10,000
FEMALE POPULATION: UNITED STATES, 1970

Age Marital Parity
* Total

group status 0 1 2 3 4 5 6 T+
O S 811 Q [¢] [} 0 - - - 811
M o] 0 Q2 [} 0 0 0 0 0
5= S 784 s} Q 8] Q - - - 784
4 Q Q o [] Q Q 1] [+] 2]
10- ] 760 0 o} (¢} Q - - - 760
M ¢ Q ¢ 0 [} 0 Q 0
15~ S 603 21 4 1 1] - - - 629
¥ 49 45 10 2 0 0 4] 0 107
20~ S 223 26 8 3 1 - - -~ 260
M 148 159 103 32 8 2 "] o] 452
25= S 75 13 5 2 2 - - - 96
M 100 147 197 38 36 11 3 1 592
30- S 42 8 4 1 2 - - - 57
M 62 98 205 143 &4 23 8 4 608
35- S 31 6 3 1 2 - - - 43
M 52 79 188 152 77 31 12 7 597
40~ S 25 5. 2 1 2 - - - 35
M 50 73 176 147 79 33 13 9 579
45- S 22 4 2 1 1 - - - 31
M 49 69 167 140 76 32 13 9 555
50~ S 20 4 2 1 1 - - - 28
X 47 66 158 132 72 31 12 9 526
55=- S 19 4 2 1 1 - - - 26
M 44 61 148 124 67 29 12 8 492
60— S 17 3 2 1 1 - - - 24
M 40 56 136 113 61 26 11 7 452
65— S 15 3 1 [+} 1 - - - 21
M 36 50 121 101 55 23 10 7 403
70— S 13 3 1 Q 1 - - - 18
M 31 43 103 86 47 20 8 6 343
75~ S 10 2 1 [ 1 : - - - 14
-4 24 34 81 68 37 16 6 4 269
80- S 7 1 1 o Q - - - 10
M 16 23 55 46 25 11 4 3 184
85+ s 7 1 1 8] Q - - - 10
16 23 55 46 25 11 4 3 184

* S = Single; M = Ever-married=-

are compensatory in nature in terms of their effect on the intrinsic growth rate. A perusal
of the observed and the stable distributions by age, parity and nuptiality supports the
former.

The projection approach was also used for the stable population analysis described
earlier. Equation (16) was tried for the improved conditional survivorship estimates for
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TABLE 5 PROJECTED AGE-PARITY-NUPTIALITY DISTRIBUTION OF UNITED

STATES FEMALE POPULATION FOR THE YEAR 2,000 (FIGURES IN 1000’S)

Age Marital Parity

Total

group statusk o] 1 2 3 4 5 & +
o~ S 10607 0 v} Q 0 - - - 10607
M Q "] Q 0 Q 0 o] 0 0
5= s 10343 o} Q 0 0 - - - 10343
M ] a Q 0 Q 0 [} 0 0
10- ] 10501 0 0 Q 0 - - - 10501
N § Q Q 0 Q 0 Q 0 0 Q
15~ S 3025 327 54 6 0 - - - 9412
M 418 637 110 6 0 0 [¢] 1] 1191
20~ S 2956 361 126 40 7 - - - 3490
M 1241 3173 1625 483 109 12 1 [s} 6644
25~ S 983 164 71 32 19 - - - 1269
M 1112 1923 2702 1427 557 162 39 9 7931
30- s 526 98 45 19 22 - - - 710
M 680 1159 2513 1823 873 330 113 48 7539
35- S 466 91 42 16 25 - - - 640
M 696 1113 2743 2298 1232 517 201 114 8914
40~ s 410 81 38 14 24 - - - 567
M 725 1103 2759 2385 1335 589 240 155 9291
45=- S 344 87 30 11 19 - - - 471
M 694 1018 2526 2177 1223 543 226 154 8561
50~ S 319 54 21 7. 14 - - - 415
M 737 1013 2198 1743 941 415 178 142 7367
55= S 207 31 14 7 15 - - - 274
M 491 673 1625 1440 852 410 191 182 5864
60~ S 163 20 10 7 14 - - - 220
- 360 4351 1123 1149 793 439 221 254 4790
65— S 161 15 8 5 12 - - - 201
¢ 333 409 945 976 714 420 222 306 4325
70~ S 175 13 6 5 9 - - - 208
M 372 473 966 884 603 346 188 285 4117
75~ S 162 9 5 3 6 - - - 185
M 367 484 874 688 429 241 127 204 3414
80~ S 143 5 2 2 3 - - - 155
M 309 379 590 410 239 130 69 120 2246
85+ S 147 S 3 2 3 - - - 160
M 410 425 532 337 193 111 63 124 2195
Total 1346220
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* S = Single; M = Ever-married.
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five-year age groups, with unsatisfactory results. This is suggestive of the limitation in
our assumption of linearity of the elements of @ and £. This difficulty could have been
overcome by taking the higher order terms in the Taylor’s expansion of equation (14).
However, for the present application we used the crude approximation given by (12). The
projected population in the year 2000 is given in Table 5 as an illustration.

The intrinsic rate of growth could also be obtained from the dominant eigenvalue of
the projection matrix H. The dominant eigenvalue for the present data is computed by
using the power method (Rogers, 1971:Chapter 7) and it is A = ™ = 1.02646, which gives
the intrinsic rate of growth of 5.22 per 1000 women. The difference between this and the
one obtained by the application of the characteristic equation (8) is small and it is due to
the crude approximation in estimating the conditional survivorship used in the projec-
tion matrix. Further work is indicated to develop a method of computing more accurate
conditional survivorship probabilities.

In conclusion, it should be pointed out that the reliability of the numerical results de-
pends on the reliability of the data used. The main thrust of this paper is to provide
mathematical models that can be conveniently used for routine application rather than
provision of reliable estimates.
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