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Abstract

A topic of  interest in demographic and biostatistical analysis as well as in actuarial practice, 
is the graduation of  the age-specific mortality pattern. A classical graduation technique is to 
fit parametric models. Recently, particular emphasis has been given to graduation using non-
parametric techniques. Support Vector Machines (SVM) is an innovative methodology that could 
be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for 
graduating mortality rates. We apply SVM to empirical death rates from a variety of  populations 
and time periods. For comparison, we also apply standard graduation techniques to the same data. 
Keywords: mortality pattern, graduation techniques, support vector machines, kernel 
regression estimators. 

Résumé

L’ajustement des modèles de mortalité par âge est un sujet d’intérêt à la fois en analyse démographique 
et biostatistique et en pratique actuarielle. Une technique d’ajustement classique consiste à adapter les 
modèles paramétriques. Dernièrement, on accorde une attention spéciale à l’ajustement au moyen de 
techniques autres que les techniques paramétriques. Les machines vectorielles de support (SVM Support 
Vector Machines) représentent une méthode novatrice pouvant servir à l’ajustement des taux de mortalité. 
Cet article évalue ces techniques en tant qu’outils d’ajustement de taux de mortalité. C’est ainsi que nous 
utilisons ces techniques pour les taux de mortalité empiriques de plusieurs populations et périodes. À des 
fins de comparaisons, nous utilisons les techniques d’ajustement normales pour les mêmes données. 
Mots-clés : modèle de mortalité, techniques d’ajustement, machines vectorielles de soutien, 
estimateurs de régression kernel.
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Introduction

Representing the age-specific mortality pattern of  a population is of  particu-
lar interest in demographic analysis, biostatistics, and actuarial practice. For nearly 
two centuries demographers, biostatisticians, actuaries, and social workers have 
shown great interest in the means of  representing the age-specific mortality pat-
terns of  populations. Demographers want to describe and project the mortality 
pattern of  a population for the purpose of  mortality analysis, as well as to provide 
population projections. Biostatisticians need a basis for making mortality forecasts. 
Actuaries need a mortality basis suitable for calculations in life insurance and in 
designing social security systems. Social planning also requires estimations and 
projections of  age-specific mortality. 

In order to estimate the unknown age-specific probabilities of  dying that under-
line the empirical measures, we can use graduation techniques applied to empirical 
death rates, under the assumption that the true probabilities follow a smooth pattern 
through age. For the purpose of  graduation, several parametric and non-parametric 
techniques have been proposed. Parametric functions of  age, commonly known in 
demography as mortality laws, have been in use for more than a century. The earli-
est attempt to provide such a formula was by de Moivre in 1725, while the most 
widely known law of  mortality was proposed by Gompertz in 1825. Keyfitz (1982) 
provides a review of  these historical laws. In modern times, many authors have con-
tributed to the theory of  parametric models of  mortality, and to the problem of  
estimating their parameters (e.g., Heligman and Pollard 1980; Keyfitz 1982; Forfar et 
al. 1988; Kostaki 1992; Hannerz 1999; Karlis and Kostaki 2000). 

Recently the utilization of  non-parametric smoothing techniques for gradu-
ation purposes has gained attention. Among these techniques, special attention is 
given to kernels (Cobas and Haberman 1983). An evaluation of  kernels as tools 
for graduating the mortality pattern is provided by Kostaki and Peristera (2005).

Support Vector Machines (SVM) is a modern non-parametric graduation 
methodology that appeared in the mid-nineties in the framework of  Vapnik’s Sta-
tistical Learning Theory (Vapnik 1995; Moguerza and Muñoz 2006). Since SVM 
techniques have shown very successful results in smoothing noisy data, such as 
neighbourhood curves (Muñoz and Moguerza 2005) or nonlinear profiles (Mo-
guerza et al. 2007), they can probably serve as an equally useful tool for mortality 
graduation purposes. Regarding demographic data, SVM have shown an interest-
ing performance when applied to the graduation of  age-specific fertility patterns 
(Kostaki et al. 2009). These techniques are easy to adjust, which implies they can 
be easily applied by demographers who may lack a thorough background on Sta-
tistical Learning Theory or pattern recognition.

This work provides an evaluation of  the SVM methodology in the context of  
mortality graduation. Section 2 provides a summary description of  proven gradu-
ation techniques, i.e., kernels and parametric models. Section 3 is devoted to a pre-
sentation of  the SVM methodology. Then, in Section 4 an evaluation is provided 
of  the utilization of  SVM methodology for the graduation of  age-specific death 
rates. Namely, we apply SVM to empirical death rates for several populations and 
time periods. Additionally, for comparison purposes, kernels are also applied, and 
the Heligman-Pollard model (Heligman and Pollard 1980), is fitted to the same 
datasets. Finally, in Section 5 some concluding remarks are provided. 
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Graduation techniques

Laws of  mortality 

Parametric modeling is widely used in demography for graduation purposes 
since it provides results with the highest degree of  smoothness. Detailed presenta-
tions of  the features of  parametric models are given by Keyfitz (1982), Kostaki 
(1992), Congdon (1993), and Karlis and Kostaki (2000). A huge variety of  mortal-
ity laws has been presented in the literature since 1725. Among them, the most 
successful attempt to describe the mortality pattern for total life span through a 
parametric model might be the one proposed by Heligman and Pollard (1980). 
This model is described by the formula

					     ,

where qx is the probability of  dying within a year, px = (1 − qx ), and A to H are 
parameters to be estimated. It includes eight parameters, all of  them having de-
mographic interpretation. The first additive term of  the right-hand side of  the 
formula describes mortality of  the childhood ages. It includes three parameters: 
A, which reflects the level of  childhood mortality; C, related to the rate of  mor-
tality decrease in childhood ages; and B, which is indicative of  the mortality level 
at age zero. The middle term reflects accident mortality and it also includes three 
parameters: D, related to the severity of  the accident hump; E, related to its spread; 
and F, indicating the location of  the hump. Finally, the third term includes two 
parameters: G, reflecting the level of  later adult mortality; and H, related to the rate 
of  mortality increase at the later adult ages. 

Heligman and Pollard (1980) estimated these parameters using a least-squares 
approach, in order to minimize the sum of  squares

		       ,

where xq̂  is the fitted value at age x and qx is the observed mortality rate.

Kernel techniques

Consider a set of  observations of  two variables X and Y, i.e., data of  the 
form (xi  ,yi  ), i  = 1,…, p, which are related via an unknown regression function m 
as follows: 

			           ,

where the εi are independent random variables, with zero mean and constant variance.
The problem now consists in estimating the unknown function m. In order 

to estimate m at a point x the values of  the response variable are locally averaging. 
The width of  the neighbourhood over which averaging is performed; called band-
width, controls the smoothness of  the resulting estimator. Hence, an estimator of  
the function m of  the following type is used:

					         ,( ) ( ) inhh YXXXxWnxm ∑ ⋅⋅= − ,,,;ˆ 21
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where Wh is a weight function depending on the bandwidth parameter h and the 
set of  variables X1,… Xn.

A conceptually simple approach to representing the weight function Wh is to 
describe its shape by a density function called the kernel function, with a scale pa-
rameter h, i.e., the bandwidth, which adjusts the size and the form of  the weights 
near x. Therefore, kernel regression estimators are local weighted averages of  the 
response variable, whose weights are determined by the kernel function K, while 
the size of  the weights depends on the bandwidth parameter h. 

Generally, the kernel function K has the fundamental properties of  a prob-
ability density. In the regression context, the kernel function is generally a smooth, 
positive function, which peaks at zero and decreases monotonically as the band-
width parameter increases in size. 

Several formulae have been proposed for the kernel estimator m̂  of  the re-
gression mean function m, depending on the type of  the kernel regression estima-
tor used. An extensive presentation of  these formulae is provided in Kostaki and 
Peristera (2005). Among the alternative estimators, Kostaki and Peristera (2005) 
have shown that the one by Gasser-Muller (Gasser and Muller 1979; 1984) has 
proved the most adequate in the context of  mortality graduation.

At a point x, the Gasser-Muller estimator is given by the formula

					      ,

where x0 = −∞, xn = +∞, and x(i) denotes the ith-largest value of  the observed co-
variate values and Y[i] is the corresponding response value. 

Appropriate selection of  the bandwidth parameter is of  great importance, 
since it controls the degree of  smoothness and consequently influences the result-
ing estimator. A presentation of  bandwidth selection techniques can be found in 
Hardle (1990; 1991) and Kostaki and Peristera (2005). One approach to selecting 
the bandwidth parameter is to construct a direct plug-in estimator of  the optimal 
smoothing parameter hopt. Gasser et al. (1991) give expressions for the hopt appro-
priate to the Gasser-Muller estimator, and describe how the unknown quantities 
can be effectively estimated. An important issue for the selection of  bandwidth is 
the choice between global and local. Local bandwidth selection allows obtaining a 
bandwidth that adapts for local efficiencies in different parts of  the design points, 
which means that a smaller bandwidth is used in areas of  high density while the 
value of  the bandwidth increases in areas of  low density. Brockmann et al. (1993) 
and Hermann (1997) have mentioned the advantage of  using kernel regression 
estimators with a local bandwidth instead of  a global one. The main idea of  the 
plug-in method is to estimate the optimal bandwidths by estimating the asymp-
totically optimal mean-integrated squared-error bandwidths. For the selection of  
a local bandwidth, Hermann (1997) developed an iterative plug-in algorithm that 
is a generalization of  the global iterative plug-in algorithm of  Gasser et al. (1991). 
A description of  this algorithm can be found in Hermann (1997), where the ad-
vantage of  this approach over the cross-validation method and the global plug-in 
rule is highlighted. 
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Support Vector Machines 

Support Vector Machines (SVMs) appeared in the middle nineties in the frame-
work of  Vapnik’s Statistical Learning Theory (Vapnik 1995; Moguerza and Muñoz 
2006), providing very successful results for the smoothing of  noisy data such as 
neighbourhood curves (Muñoz and Moguerza 2005) or nonlinear profiles (Mogu-
erza et al. 2007). Support Vector Machines are part of  regularization methods that 
also include Splines (Moguerza and Muñoz 2006). In fact, there is a close relation 
between both methodologies, SVM and Splines (Pearce and Wand 2006). Next 
we provide a description of  the regression version of  SVM and its main features. 

Support Vector Machines for regression

Presenting the geometrical interpretation of  SVM for regression, we note 
that from a practical point of  view, regression SVM can be formulated as a convex 
quadratic optimization problem (therefore, without local minima) of  the form

where (xᵢ , yᵢ ), i = 1,…,p are a set of  data with xᵢ  Rⁿ and yᵢ  R, ξᵢ, and ξʹᵢ are slack 
variables which permit the violation of  a boundary determined by ε. Φ: Rⁿ → Rm is 
a mapping defining the kernel function K:X × X → R (for instance, the space X may 
be defined as Rⁿ ), such that K(x,y) = Φ(x)T Φ(y). In this way, geometrically Φ maps 
the data from the so-called “input space” (that is, Rⁿ ) into the “feature space” (that 
is, Rm ). One of  the key issues of  SVM is how to use Φ(x) to map the data into a 
higher-dimensional space. To achieve this task, a kernel approach is used in order 
to operate in the “feature space” without ever computing the coordinates of  the 
data in that space, but rather by simply computing the inner products between the 
images of  all pairs of  data in the “feature space.” The three most widely used ker-
nels are: the linear kernel K(x,y) = xT y, which corresponds to the identity mapping; 
the polynomial kernel K(x,y) = (c + xT y)d, where c and d are constants, which maps 
the data into a finitely dimensional space; and the Gaussian kernel

		        ,
where σ is a positive constant, which maps the data into an infinitely dimensional 
space. The role of  the kernel is crucial within the SVM methodology. Depend-
ing on the kernel used, the approximation capacity of  the methodology will be 
different. In this way, the linear kernel (the simplest one) will be useful for the 
approximation of  linear functions, while the Gaussian kernel will be suitable for 
the approximation of  nonlinear functions. Given its approximation capacity, the 
Gaussian kernel is the most extensively used in the literature (for a complete set of  
examples, see Moguerza and Muñoz 2006).
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It can be shown (see Moguerza and Muñoz 2006) that

						    

where w* and b* are the values of  w and b at the solution of  the quadratic opti-
mization problem. In practice, the optimization problem to solve is not the pri-
mal formulation shown above. For practical purposes, the problem to solve is the 
“dual problem” (Schölkopf  et al. 2000), that is:

It can be shown that both problems, primal and dual, are equivalent, and that

where αᵢ = λᵢ* − λᵢʹ*, being λᵢ* and λᵢʹ* the values of  λᵢ and λᵢʹ at the solution of  the 
dual problem. Therefore, in practice, the estimated parameters are the α coeffi-
cients, whose number is p, that is, the number of  data. In this way, the relationship 
between kernels and SVM is clear: only the closed form of  the kernel K is needed, 
and not the explicit mapping Φ. Notice that this distinctive peculiarity allows, for 
instance, the use of  the Gaussian Kernel in order to evaluate f *(x). Moreover, in 
practice, only a small percentage of  the α coefficients will differ from zero, which 
makes simpler the evaluation of  this function (this is one of  the advantages of  
SVM; see Moguerza and Muñoz 2006), and reduces the number of  estimated pa-
rameters.

Piecewise Support Vector Machine (PSVM) 

The standard SVM described above can be specialized in order to treat func-
tions whose derivatives take large values within some intervals of  the range of  sup-
port values, and small values within other intervals of  the range of  support values. 
With this aim we define the Piecewise Support Vector Machine (PSVM) method. 
The key point of  his method is to train a SVM for each predefined interval, and 
then calculate the breakpoints between intervals as a function of  the piecewise 
smoothers. In the case of  mortality data, two intervals of  the same length have 
been considered in order to divide age x. The first interval corresponds to the 
subset of  the curve domain with stationary points, that is, points where the first 
derivative equals zero. The second interval corresponds to the subset of  the curve 
domain where the function has an increasing behaviour, that is, where the first 
derivative of  the curve is approximately constant. Suppose x  [l,u], where l and 
u denote the lower and upper ages; we then compute f* = fl

* + fb
* + f2

*, where fl
* 

equals the SVM solution for x  [l,xb ) and equals 0 otherwise;  f2
* equals the SVM 
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solution for x  (xb ,u], and equals 0 otherwise; and fb
* = Γ(fl

* , f2
* ) for the break-

point xb and equals 0 otherwise, where Γ is computed as a function of  fl
* and f2

*.

Evaluation and comparisons

Our calculations are based on the empirical age-specific mortality rates of  
the male and female populations of  Sweden, for the periods 1981–5, 1984–8, and 
1991–5, as well as France and Japan for the years 1990, 1991, and 1995. The Swed-
ish datasets are taken from Statistics Sweden, while the French and Japanese ones 
are parts of  the Berkeley Mortality Database, available in the web via the address 
http://www.demog.berkeley.edu/wilmoth/mortality. 

For kernel applications, the subroutine “glkerns” of  the library “glkern” from 
the R-package is used for the calculation of  Gasser-Müller estimators with band-
width parameter. This is available at http://www.unizh.ch/biostat/software. In 
order to select the bandwidth for a Gaussian kernel regression estimator, trials 
were made using a direct plug-in technique (Ruppert et al. 1995)—in particular, 
the one implemented in the KernSmooth library—and the R-package. However, 
this methodology has been discarded given the overfitting observed above. There-
fore, the bandwidth parameter has been computed by cross-validation, leading to 
a value of  2.3849 for all the estimated curves. In this way, we have a unique model 
for all the datasets.

The parameters in Heligman-Pollard model are estimated using an iterative 
routine of  the Nag library that is based upon a modification of  the Gauss-Newton 
algorithm, described by Gill and Murray (1978). 

For the SVM applications, the subroutine “svm” of  the library “e1071” of  
the R-package is used to derive the SVM and the PSVM model parameters. This 
is available at http://cran.r-project.org/. A two-step simulation procedure is used 
to select the parameters ε, σ, and C of  the ε-regression procedure: ε is used to fix 
the width of  a band around the fitted curve, σ plays the role of  a variance, and C 
is an upper bound for the λ coefficients in the dual optimization problem and, at 
the same time, penalizes the values of  the slacks corresponding to those points 
lying outside of  the band determined by ε in the primal optimization problem. As 
a first step, the ranges of  parameters ε, σ, and C are determined. Then, in the sec-
ond step, the best combination of  the three parameters is computed using cross-
validation techniques. In particular, the values ε = 0.02, σ = 125, and C = 2,200 were 
obtained for the SVM implementation. For the PSVM implementation, the values 
ε = 0.11, σ = 111.1, and C = 3,900 were obtained for the first interval, and values 
ε = 0.008, σ = 175.4, and C = 50 were obtained for the second interval, while the 
solution for the breakpoint xb were calculated as an average function of  fl

* and 
f2

*. It can be observed that the parameters for the SVM implementation are ap-
proximately an average of  the parameters obtained for each interval of  the PSVM 
implementation. The parameters change so drastically between the two intervals 
because the structure of  the curve is significantly different within each interval. In 
this way, with the PSVM we are able to capture in a better way the local structure 
of  the curves. 

In this application, the values for the corresponding dimensions in the SVM 
model are n = 1, m = 1 (given that this is the dimension induced by the Gaussian 
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kernel; see Moguerza and Muñoz 2006), and p = 83, that is, the number of  data 
within each set. We should note here again that the same set of  parameter values is 
used for all the datasets. In this way, we are able to make fair comparisons of  these 
results with those produced by kernels.

A mortality graduation can be considered successful if  the graduated rates 
progress smoothly from age to age, and at the same time accurately reflect the un-
derlying mortality pattern while avoiding systematic deviations and random varia-
tions. In this sense, we are going to evaluate the effectiveness of  different adopted 
approaches for the graduation of  our mortality datasets. 

Although graphical representation of  the observed and the graduated rates is 
a useful way to derive conclusions, we also use statistical criteria in order to evalu-
ate the performance of  the alternative estimators. For that, we use a chi-square 
criterion to check the closeness of  the graduated rates to the observed ones. Then 
in order to evaluate smoothness of  the results we calculate the sum of  the absolute 
values of  the third differences for each graduation. 

The chi-square criterion, used for evaluating adherence of  the results to the 
observed rates, is defined as

			         ,

where Eₓ is the exposed-to-risk population at age x, qₓ is the observed death rate 
at age x, xq̂ₓ is the graduated one, and Eₓ /[qₓ (l − qₓ)] are the reciprocals of  the vari-
ances of  the observed qₓ. 

Finally in order to check for smoothness of  the resulting probabilities, we ex-
amine the third-order differences of  the graduated values. We therefore calculate 
the sum of  the absolute values of  the third differences in each graduated set of  
values, i.e., the quantity

	         , 

multiplied by 100,000 in order to have an easier interpretation of  the results. 
The values of  the two criteria for all the datasets used, and all graduation 

techniques used, are presented in Tables A1–A3 (Appendix A). Table A4 presents 
average results for the overall data. Examining these values, one can easily observe 
that the SVM graduation proves adequate in terms of  goodness of  fit, as well as 
in terms of  smoothness. Considering the values of  χ 2 quantity, for the Swedish 
and the Japanish datasets, these are in almost all cases lower for the SVM than 
for the HP8 and kernels. However, for the French datasets the results for the two 
SVM techniques, and especially those for the PCVM one are clearly superior to 
those obtained for the other two techniques. Considering the overall values of  the 
χ 2 criterion presented in Table A4, we conclude that both SVM techniques prove 
superior to the other two methodologies.

Considering smoothness, the values of  the sum of  third-order differences, 
in almost all cases, and overall were lower for the two alternative SVM techniques 
than for the other two methods. 

Comparing the values of  both SVM and PSVM criteria, we conclude that 
PSVM proves superior to SVM in terms of  goodness of  fit. However in terms of  
smoothness, SVM in many cases provides somewhat better results than PSVM. 
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Figures B1–B6 (Appendix B) illustrate the results for some chosen cases. As clearly 
observable in these illustrations, SVM and PSVM show a successful performance, 
especially in the most difficult parts of  the age interval, i.e., the early adult ages. 
Figures B7–B18 illustrate the results of  each technique separately for some chosen 
cases. It is clear in these figures that the results of  the SVM techniques are closer 
to the empirical data than those of  the Heligman-Pollard formula, the latter exhib-
iting some systematic deviations in the early adult ages. It is also clear that SVM 
techniques provide better results than kernels regarding both goodness of  fit and 
smoothness.

Remarks

In this paper we proposed the application of  Support Vector Machines tech-
niques as tools for graduating age-specific mortality patterns. For evaluation pur-
poses we applied SVM methodology to empirical datasets of  a variety of  popula-
tions and time periods. In addition, for comparison we also applied kernels and fit 
the Heligman-Pollard formula to the same datasets. The results of  our calculations 
indicate that SVM techniques prove to be adequate, and in most cases superior, 
to the other two graduation techniques, providing results that are closer to the 
empirical values when compared to the Heligman-Pollard model and kernels, and 
smoother than those provided by kernels. An advantage of  non-parametric gradu-
ation techniques compared to parametric modeling is that these are more flexible 
and can adequately be applied to all datasets. Meanwhile, in datasets with distorted 
patterns the use of  standard models is inadequate; more complicated formulae 
are required in such cases. Furthermore, regulation of  the degree of  smoothness 
by the user can also be considered an advantage, allowing the user to choose the 
optimal degree of  smoothness, depending on the purpose of  graduation at hand, 
and also avoiding oversimplification of  age patterns. Regarding future extensions 
of  this work, SVM can easily be used as a multivariate model, providing a promis-
ing area for further research on demographic problems.
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Appendix A. Tables A1–A4.
Table A1. Values of the two criteria for Swedish data.

SWEDEN Kernel HP8 SVM PSVM
Females

1981–1985

� 

χ 2 2842 950 725 255

� 

∆3 ˆ q x∑ 381 624 258 513

1984–1988

� 

χ 2 1817 861 293 190

� 

∆3 ˆ q x∑ 352 518 431 443

1991–1995

� 

χ 2 2507 1468 882 234

� 

∆3 ˆ q x∑ 321 435 169 390

Males
1981–1985

� 

χ 2 3813 180 717 427

� 

∆3 ˆ q x∑ 534 73 619 629

1984–1988

� 

χ 2 3125 191 485 314

� 

∆3 ˆ q x∑ 543 695 534 602

1991–1995

� 

χ 2 3340 268 490 341

� 

∆3 ˆ q x∑ 625 578 550 506

Table A2. Values of the two criteria for Japanese data.
JAPAN Kernel HP8 SVM PSVM

Females
1990

� 

χ 2 1767 4370 453 179

� 

∆3 ˆ q x∑ 348 346 284 318

1991

� 

χ 2 1859 3849 568 234

� 

∆3 ˆ q x∑ 360 347 285 312

1995

� 

χ 2 1601 3516 320 205

� 

∆3 ˆ q x∑ 315 316 261 279

Males
1990

� 

χ 2 2219 1140 495 370

� 

∆3 ˆ q x∑ 455 410 398 400

1991

� 

χ 2 2047 951 300 277

� 

∆3 ˆ q x∑ 472 403 440 405

1995

� 

χ 2 2023 542 394 430

� 

∆3 ˆ q x∑ 467 406 447 382
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Table A3. Values of the two criteria for French data.
FRANCE Kernel HP8 SVM PSVM

Females
1990

� 

χ 2 3508 2887 594 381

� 

∆3 ˆ q x∑ 570 581 359 478

1991

� 

χ 2 2897 1995 639 366

� 

∆3 ˆ q x∑ 474 557 306 459

1995

� 

χ 2 1839 879 366 330 

� 

∆3 ˆ q x∑ 487 405 498 351

Males
1990

� 

χ 2 4685 983 786 658

� 

∆3 ˆ q x∑ 771 771 756 674

1991

� 

χ 2 4625 687 999 470

� 

∆3 ˆ q x∑ 759 771 638 686

1995

� 

χ 2 2697 987 1117 485

� 

∆3 ˆ q x∑ 788 511 462 504
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Table A4. Average values of the two criteria for the overall data.
Kernel HP8 SVM PSVM

Sweden
Females

� 

χ 2 2388,67 1093,00 633,33 226,33

� 

∆3 ˆ q x∑ 351,33 525,67 286,00 448,67

Males

� 

χ 2 3426,00 213,00 564,00 360,67

� 

∆3 ˆ q x∑ 567,33 448,67 567,67 579,00

Total

� 

χ 2 2907,33 653,00 598,67 293,50

� 

∆3 ˆ q x∑ 459,33 487,17 426,83 513,83

Japan
Females

� 

χ 2 1742,33 3911,67 447,00 206,00

� 

∆3 ˆ q x∑ 341,00 336,33 276,67 303,00

Males

� 

χ 2 2096,33 877,67 396,33 359,00

� 

∆3 ˆ q x∑ 464,67 406,33 428,33 395,67

Total

� 

χ 2 1919,33 2394,67 421,67 282,50

� 

∆3 ˆ q x∑ 402,83 371,33 352,50 349,33

France
Females

� 

χ 2 2748,00 1920,33 533,00 359,00

� 

∆3 ˆ q x∑ 510,33 514,33 387,67 429,33

Males

� 

χ 2 4002,33 885,67 967,33 537,67

� 

∆3 ˆ q x∑ 772,67 684,33 618,67 621,33

Total

� 

χ 2 3375,17 1403,00 750,17 448,33

� 

∆3 ˆ q x∑ 641,50 599,33 503,17 525,33

OVERALL TOTAL

� 

χ 2 2733,94 1483,56 590,17 341,44

� 

∆3 ˆ q x∑ 501,22 485,94 427,50 462,83
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Figure B1. Empirical and graduated qx-values, French females, 1995.

Figure B2. Empirical and graduated qx-values, Japanese females, 1991.

Appendix B. Figures B1–B18.
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Figure B4. Empirical and graduated qx-values, French males, 1991.

Figure B3. Empirical and graduated qx-values, Swedish females, 1991–5.
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Figure B6. Empirical and graduated qx-values, Swedish males, 1981–5.

Figure B5. Empirical and graduated qx-values, Japanese males, 1990.
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Figure B8. Empirical and graduated qx-values, French females 1995.

Figure B7. Empirical and graduated qx-values, French females 1995.
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Figure B10. Empirical and graduated qx-values, French females 1995

Figure B9. Empirical and graduated qx-values, French females 1995.
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Figure B12. Empirical and graduated qx-values, Japanese males 1990.

Figure B11. Empirical and graduated qx-values, Japanese males 1990.
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Figure B14. Empirical and graduated qx-values, Japanese males 1990.

Figure B13. Empirical and graduated qx-values, Japanese males 1990.
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Figure B16. Empirical and graduated qx-values, Swedish females 1991–1995.

Figure B15. Empirical and graduated qx-values, Swedish females 1991–1995.
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Figure B18. Empirical and graduated qx-values, Swedish females 1991–1995.

Figure B17. Empirical and graduated qx-values, Swedish females 1991–1995.




