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Review essay on Rex B. Kline’s
Principles and Practice of  Structural Equation Modeling:1 

Encouraging a fifth edition

Leslie Hayduk2

Introduction

Kline’s fourth edition is reasonably strong but improvable. The text aims to introduce new-
comers to fundamental structural equation modeling (SEM) principles, but tends to confuse 
“Principles” with “Rules.” Rules having insufficient grounding in principles leave readers ill-pre-
pared for understanding and responding to changes in previously traditional “rules”—such as 
those concerning model testing, and latents having single indicators. SEM’s foundations would be 
clearer if  Kline began by presenting structural equation models as striving to represent causal ef-
fects—a commitment that differentiates structural equation models from regression and encour-
ages model testing. I begin this review by summarizing the covariance/correlation implications 
of  three simple causal structures, which pinpoints multiple text improvements and underpins the 
discussions of  measurement and model testing that follow. Causal structuring also grounds my 
later comments regarding modelling means/intercepts and interactions. A file of  Supplement 
Sections expands on several points and lists multiple editorial corrections you might pencil into 
your copy of  Kline’s text.

Kline’s fourth edition is more than one hundred pages longer than his third edition, and is 
effectively and compactly written. The material has been substantially reorganized, with the most 
substantive extension being a new chapter on “Graph theory and the structural causal model.” The 
publisher’s website contains syntax and output produced by an impressive variety of  programs. 
Kline’s detailed discussion of  several examples is noteworthy, and I count it as a strong positive 
that Kline’s examples include problems: “not all applications of  SEM described in this book are 
picture perfect, but neither are actual research problems” (p. 1). We will encounter additional 
“problems” but if  Kline prepares a fifth edition, I would recommend retaining the extra-problem-
atic examples, along with supplemental discussions of  what led to these slips, and instruction on 
ways to avoid similar slips. Overall, Kline’s text is solid enough to be worth improving. Regrettably, 
the tone of  this review is more negative than I would prefer, but I could not find a way to detail 
the book’s positive features without also indicating some serious concerns. I asked Frank Trovato, 
editor of  Canadian Studies in Population, to offer Rex Kline an opportunity to respond to my com-
ments in hope that we might hear of  Kline’s intentions regarding a fifth edition. I expect other 
readers of  Kline’s fourth edition would appreciate your placing a reference to this review (and 
Kline’s response) in whatever copies you encounter. Indeed, my comments presume that you have 
access to the fourth edition for reference/comparison.
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The unavoidable implications of  three simple causal models

If  just variable X linearly causes Y with effect b, as in Figure 1A, this corresponds to the equation

Y = a + b X         (1)

and demands

Y̅ = a + b X̅         (2)

Var (Y ) = b2 Var (X )        (3)

Cov (X Y ) = b Var (X ).        (4)

The causal world makes variance in the causal variable X (namely, Var (X )) produce, and there-
by explain, variance in the effect (Var (Y )). And the causal world makes variations in one variable 
(X ) produce coordination, correlation, or covariance (Cov (XY )) between the causal variable and 
the effect. Variables’ variances and covariances are consequences of  causal actions, and we aspire 
to understand observed variances and covariances by locating the underlying causal structures. 
Observed covariances or correlations do not come from the math or statistics of  equations; they 
come from the causal world that underwrites the equations. The causal world also coordinates the 
means of  the variables (Equation 2). If  the causal variable takes on a value corresponding to its 
mean (X̅ ), the resultant effect takes on a mean value (Y̅ ). 

If  Y has two correlated causes, as in Figure 1B, the relevant equation is

Y = a + b1 X1 + b2 X2        (5)

and the causal world demands

Y̅ = a + b1 X1̅ + b2 X2̅         (6)

Var (Y ) = b1
2 Var (X1) + b2

2 Var (X2) + 2 b1b2Cov (X1 X2)    (7)

The partitioning of  the causal world partitions the variance in the effect (Y ) but with the 
wrinkle that a portion of  Y’s variance comes from coordination/covariance between the values 
of  the causes, not merely from variations in the values of  those causes. This variance equation 
is fundamental to: understanding why some explained variance cannot be uniquely attached to a 
specific cause, understanding how biased estimates result from omitting correlated causes, and 
understanding what goes awry if  an error variable covaries with a cause (for example, if  X2 was 
called a disturbance or error variable because it was not observed). 

Figure 1. Basic causal structures.
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Figure 1C introduces X1 as a common cause of  X2 and X3 , where the causal equations are

X2 = a2 + b2 X1 + e2        (8)

X3 = a3 + b3 X1 + e3        (9)

With independent errors/disturbances, this causal structure has the unavoidable consequence that

Cov (X2 X3) = b2b3 Var (X1)       (10)

The X2 and X3 covariance is called spurious because no direct effect links X2 and X3 , but it is in-
correct to describe the spurious correlation/covariance as “spurious (noncausal) associations” (p. 
141). The association/covariance/correlation between X2 and X3 is the unavoidable consequence 
of  the causal actions of  the common cause, even if  the relevant causal foundation is neither X2 nor 
X3 directly causing the other. The covariance in Equation 10 introduces the possibility of  testing 
model implications, because estimates of  the three right-hand terms can be obtained from the two 
model equations, and from data, without using Cov (X2 X3). Comparing the model-implied covar-
iance (from estimates of  the two effects and the common cause’s variance) with the correspond-
ing observed covariance between X2 and X3 might (or might not) challenge the depicted causal 
structure. The failure of  specific model-demanded causal consequences to match with observed 
covariances underpins model testing and diagnostics striving to improve models’ causal structures.

The consequences of  causal equations as presented above function the same way, whether the 
variables are observed or latent. And the consequences remain, even if  some of  the causally con-
nected variables are observed while others are latent—which provides the principles grounding 
observed variables as measures of  latent variables. Kline first introduces measurement of  latents 
in Chapter 13 and in the context of  factor analysis, where his emphasis on factors and outdated 
factor “rules” obscures the causal foundations of  measurement, though measurement could have 
been helpfully introduced much earlier.

Equations 2 and 6 report that a case having a mean value on the applicable cause(s) is be-
stowed a mean value for the effect variable. Kline loses this easy and intuitive causal understanding 
when he turns to modeling means in Chapter 15, because he begins his discussion with non-causal 
regression. And he extends the confusion by referring to the a coefficients in these equations 
as “effects” of  variables that are not variables “in the usual sense” (p. 371). That is, Kline omits 
cause from where it would be helpfully obvious, and adds cause where it really does not belong. 
Kline’s new Chapter 8 demonstrates an emerging acknowledgment of  the relevance, utility, and 
unavoidability of  causal understanding of  structural equation models, but he has not yet incorpor-
ated that understanding consistently throughout his text. Beginning with a clear causal emphasis 
would strengthen the text’s foundational logic and encourage a focus on principles rather than rules. 
It would also reorient Kline’s discussion of  model testing and diagnostics toward checking and 
improving the model’s postulated causal structures. 

Readers seeking further instruction on the fundamental causal implications above, and unwill-
ing to wait for Kline’s fifth edition, might see Hayduk (1987) Chapters 1 and 2, and Hayduk (1996) 
Chapters 1 and 2. All the variance and covariance equations for models structured as in Figure 1 
can also be derived as special cases covered by the matrix Equation 4.30 in Hayduk (1987). 

Connecting the above to Kline’s text

Kline’s discussion of  regression (Chapter 2) could have, and should have, differentiated be-
tween equations attempting to correctly represent a causal world and regression equations formed 
without requiring causal correspondence. SEM’s concern for proper causal specification is fun-
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damental, and hence the associated pedagogical issues dig deep. Kline’s Equation 1.2 (p. 13), for 
example, makes it seem like covariances are just statistical rearrangements of  correlations, rather 
than being the consequences of  causal forces as in Equation 10 above. Covariance does not come 
from correlation, as this equation seems to imply. Both the covariance and correlation are conse-
quences of  some underlying causal world, and the SEM researcher’s task is to ferret out the nature 
of  that underlying world. Understanding how underlying causal structures produce patterns in 
covariances is what makes it possible to “understand patterns of  covariances” (p. 14). Similarly, 
Kline’s Equation 2.2 (p. 26) seems to say that the structural coefficient on the left of  the equation 
somehow comes from the correlation and other terms on the right, when the structural effect 
would in fact produce, and be the source of, the correlation. Kline’s Equation 2.2 is not wrong, in 
the sense that the entities on the two sides of  the equation really are equal, but the arrangement of  
the equation and its surrounding discussion obfuscate how causal action produces the correlation. 
Kline’s Equation 2.3 is a rearrangement of  Equation 2 for means above, but Kline’s explanation—
which is essentially an assertion that the equation holds, and his calling this a “mean structure” (p. 
27)—provides no hint of  how causal action links the variables’ means, and similarly fails to ground 
the reader’s understanding in the easy-intuition that a case having an average value on the cause 
should have an average value on the effect. 

And consider whether a goal of  structural equation modeling is to “explain as much…variance 
as possible” (p. 14), or whether the goal is to accurately determine how underlying worldly causal 
forces produce and hence explain variances, covariances, and means. Regression can be sold as 
attempting to explain as much variance as possible, but it would be preferable to present structural 
equations as focusing on how variance and covariance are explained. Focusing on how variance is 
explained would clarify that there are wrong ways and right ways of  explaining variance. This, in 
turn, focuses attention on the correctness of  the model’s specification, and clearly differentiates 
SEM from regression by revealing how regression equations can be wrong as causal equations. 
This would make it possible to avoid multiple awkward transitions between what are suppos-
edly “regression” equations and associated wordings that are expressly causal. Readers wishing to 
understand and monitor the multiple diverse consequences of  Kline’s failure to ground his text in 
a search for worldly causal structures should consider Supplement Section 1. It is nice that readers 
report learning “something new” (p. 25) about regression from Kline’s early material, but I would 
view it as more complimentary if  readers had reported learning to differentiate between regression 
equations and structural equations pursuing causal understandings.  

Time sequence and causal action

In Chapters 6 and 7, Kline is inconsistent in his consideration of  time and causal action. He 
claims “presumed causes must occur before presumed effects” (p. 123; emphasis added, and see 
p. 296, 432, 465). He also says, “the absence of  temporal precedence may not always be a liability 
when estimating reciprocal causation” (p. 137) and includes examples of  reciprocal effects (p. 135, 
136, 143, 151, 152, 154, 156, 186). Causal actions are more easily recognized and estimated when 
the cause occurs first, but it remains possible to estimate reciprocal and looped causal effects 
(Rigdon 1995).

Kline’s time ambivalence can also be seen in the awkwardness of  his attempt to differentiate 
between mediation and indirect effects (p. 134), but it approximates contradiction when he claims 
that non-experimental designs “cannot establish which of  two variables, a presumed cause and 
a presumed effect, occurred first” (p. 124–25). Valid reciprocal-effect estimates can be obtained 
without determining which occurred first (Rigdon 1995), and this undercuts Kline’s idea that re-
ciprocal effect estimates in non-experimental designs are “in some sense” “always wrong” (p. 137). 

https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
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Indeed, SEM developed in the social sciences because SEM made it possible to investigate causal 
actions in non-experimental designs without confronting the ethical difficulties accompanying so-
cial experiments. Rather than claiming that effects operating at congruent times are inappropriate 
or impossible, Kline should have instructed his readers on model features that make it possible 
to estimate, and check, reciprocal or looped effects (Hayduk 1987, 1996; Rigdon 1995); he might 
even have discussed how causal loops provide reinterpretations of  models previously estimated 
without loops (Hayduk 1996). Estimated models in which a variable directly causes itself  (e.g., 
Hayduk 1985, 1996) demolish the supposed requirement of  temporal precedence, because a vari-
able can’t precede itself! Count me out of  the supposedly “emerging consensus that mediation 
analysis requires data from designs with time precedence” (p. 141; and see p. 465). 

A related concern arises in when Kline argues that reciprocal causal connections between vari-
ables makes it “plausible that they may share unmeasured causes” (p. 138), and hence that the 
reciprocally connected variables should be assigned covarying disturbances. If  Y1 causes Y2 with no 
disturbance covariance, there seems to be no general reason that adding a reciprocal effect from 
Y2 to Y1 should automatically manufacture the existence of  a “new” common cause producing co-
variance between the variables’ disturbances. New causal actions from a common cause (namely, 
a kind of  causal structuring requiring a disturbance covariance) do not pop into existence merely 
because of  the existence of  some other causal action (even if  that other causal action forms a loop 
or reciprocal effect). Similarly the “bows” in Figures 7.1a, 7.2, and 10.7, and on page 143, are not 
necessitated by the reciprocal or loop causes in the figures, and the disturbance covariance reported 
in the last line of  Table 14.6 (p. 351) lacks justification. 

Observed variable and latent variable models

Chapters 6 and 7 consider the specification and identification of  observed variable models, 
while Chapters 9 and 10 consider models containing latent variables. (The intervening Chapter 8 
is addressed below.) These chapters are structured differently than in Kline’s prior edition, and are 
afflicted by problems originating in: (a) the attempt to separate measurement from latent-to-latent 
effects (which obscures the advantages provided by modeling latent and observed variables simultan-
eously); and (b) the outdated presumption that latent variables require multiple indicators (p. 93). The 
chapter separation reflects the historical divide between path models and factor models, and seems to 
divide the rules for model identification into manageable chunks, applicable to first one part and then 
the other part of  a model (p. 217). Unfortunately for Kline, the key advance provided by structural 
equation modelling was that it overcame the historical separation of  measurement (via factor model-
ling) from structure (via path modelling) by combining and integrating measurement and structure. 
Some “strange” consequences of  Kline’s backsliding are presented in Supplement Section 3.

Kline’s rules for separately identifying path-like and factor-like model segments are insufficient 
for full structural equation models, and new “rules” will be required for overall model identification. 
Model identification rules have lagged behind the melding of  factor and path model components, 
and lagged even further behind for models containing: fixed coefficients (e.g., fixed measurement 
error variances), constraints between coefficients, causal loops (whether longer loops or self-loops), 
means, intercepts, moderators, multi-level components, and latent variables having no direct indica-
tors. It is reasonable to attempt to ensure coefficient identification, but Kline seems to employ his 
rules as instructions limiting how to build models (p. 119), rather than granting researchers’ theory 
and hunches primary control. 

Kline displays considerable inconsistency in how he specifies and applies his rules. Sometimes 
“a single indicator is preferred” (p. 217); meanwhile, his identification Rule 9.1 (p. 201) requires 
three indicators for a single latent factor, or two or more indicators for each of  two or more correl-

https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
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ated factors. Thus, three indicators are identified, two indicators can be identified, and a single indi-
cator may be preferred, yet we also read: “A better practical minimum is three to five indicators for 
each anticipated factor” (p. 195); “multiple-indicator measurement…is a cardinal characteristic of  
latent-variable models” (p. 127); and “each factor should have at least three indicators” (p. 454). If  
three indicators were really required, many of  the models in Kline’s Chapter 10 would be underi-
dentified, because they contain latents having only two indicators—but they actually are identified, 
even though this is not evident because none of  these two-indicator models were estimated. 

Kline slants his advice to favour multiple indicators, but let’s consider the second part of  Kline’s 
Rule 9.1 (p. 201)—namely, that a model would be identified with two or more correlated factors 
having two (or possibly more) indicators each. This identification “rule” really is not a general SEM 
rule, because SEM latent variables need not be “factors.” Kline connects his Rule 9.1 to CFA (con-
firmatory factor analysis), but how is a reader new to SEM supposed to understand that latents 
need not be factors, and that factor models lack the latent level effects and constraints that poten-
tially make measurement errors on even single-indicated latent variables identified? Figure 2 illus-
trates how latent causal connections can assist measurement identification in much the same way 
as do additional indicators. The measurement error variance for a single indicator (like X1 in Figure 
2) is often underidentified (unless provided a fixed value), but may be identified if  the measured 
latent variable causes two or more latent variables, like η1 and η2 . If  the two causally downstream 
latents in Figure 2 are well identified and do not influence one another, this causal structure mirrors 
the three-indicator identification condition reported in the first part of  Kline’s Rule 9.1. Focusing 
on the consequences of  causal actions makes it easier to appreciate the parallel between down-
stream-latents and downstream-indicators, while avoiding causal action and emphasizing the differ-
ence between latent and observed variables obscures the parallel. Identification of  SEM measure-
ments is not just a matter of  a latent and its direct indicators. Measurement identification relates to 
how the latent fits into a causal network composed of  both its indicator(s) and other latents.

Figure 2. Latent effects potentially identify a  
   single indicator’s measurement error variance.  

Failure to appreciate how latent level structure can assist in estimating and validating measure-
ment persists into Chapter 16 on measurement invariance and multiple-samples, and robs Kline 
of  an opportunity to free SEM from some of  its historical factor analytic entanglements. Kline 
understands that structural equation modelling is moving away from traditional EFA and CFA (see 
his identification “Rules for Nonstandard CFA Models,” p. 202–06), but he seems not to recognize 
how the many other kinds of  identification complexities render oblique rotations (p. 193), and 
rotational indeterminacy (p. 192) trivial tangents. 

Concern for identification is relevant throughout the modelling process, not as in Kline’s 
Figure 6.1 where identification is supposedly determinable before the selection of  measures and 
remains unaltered by subsequent model revisions. Future texts would do better to present: the 
features that assist identification, the features that complicate identification, program output like-
ly to appear for underidentified models, and ways of  improving model identification (primarily 
introducing additional model or data constraints). I encourage readers to seek the structural model 

𝑋𝑋𝑋𝑋3 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 η2
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Figure 2: Latent effects potentially identify a single indicator’s
measurement error variance.
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features underlying Kline’s “rules” rather than memorizing the rules. Indeed, even models satis-
fying all the available identification rules can end up empirically underidentified due to random 
data variations or extreme values (p. 157, 206, 463), so even avid rule-followers should learn to 
recognize and respond to model underidentification.  

A useful additional discussion of  identification would address instances where the worldly 
model is underidentified given the researcher’s limited data. Important disciplinary issues arise if  
the researcher’s model is identified but the underlying worldly model is not identified given the 
available indicators. The more complex the causal world, the more likely it is that even nearly prop-
erly causally specified models will be underidentified, unless the researcher proactively addresses 
identification by employing causal variables entering the model at clear/precise locations, and 
constraining coefficients based on methodology or established “facts.”

Chapters 9 and 10 introduce latent variables—first as factor-based measurements and later as 
effects between latents. Kline would have served his readers better had he begun by considering 
measurement of  latents without factors. This would have forced a consideration of  the differ-
ence between a factor and a latent variable. A latent variable is a variable or characteristic whose 
true values are presumed to exist and hopefully impact some indicator, though other “error” 
variables’ causal actions prevent the latent’s values from fully determining the indicator’s values. 
Kline presents latent variables (Chapter 9, and p. 12–13) as if  they are characteristics requiring 
multiple indicators—namely, as if  they correspond to factors. Multiple indicators for a latent vari-
able may be possible but are not required. Beginning with a latent variable like “age”—where true 
age differs from reported age (due to year-end jumps in reported age, memory, and avoidance of  
the next decade) would clarify that latent variables can have single indicators, and that researchers 
should address measurement error even with single indicators. Kline is simply wrong when he 
claims “multiple-indicator measurement…is a cardinal characteristic of  latent-variable models” (p. 
127; see also p. 213 last line, p. 220 second-last paragraph, and p. 223 third-last line). It is not the 
multiplicity of  indicators that provides for latent variables. Latents are grounded in the acknow-
ledgment of, and adjustment for, measurement error—where acknowledgment of, and adjustment 
for, measurement error can and should be done even with single indicators (Hayduk 1987, 1996; 
Hayduk and Littvay 2012). Latent variables are not necessarily factors, though factors with multiple 
indicators remain one style of  latent variable. Second-order factors are latents having no direct indi-
cators at all, and models may contain non-factor latents having no direct indicators (Hayduk 1990, 
1996: Chapter 3).

Kline further confuses measurement when he equates latents with constructs and then says that 
constructs have different facets, as if  latent variables also have facets (p. 127). A latent variable is a 
single, skinny dimension or number-line, and pretending that a single dimension has facets is non-
sense. Speaking of  facets and constructs demands causal connections between different latents, 
not reference to a single unidimensional latent.

Kline raises a different style of  concern when he says, “Exogenous variable X1 is assumed to 
be measured without error, an assumption usually violated in practice” (p. 213; and see similar 
statements p. 132, 352). This statement acknowledges measurement error but sounds as if  the 
common failure to appropriately adjust for measurement error can be excused merely because 
many people have done this! By the next page we read, “Because is specified as exogenous, it is 
assumed to have no measurement error” (p. 214). Unfortunately, being exogenous does not alter 
the existence of  measurement error, and hence Kline has turned the common violation from the 
previous page into an “assumption,” as if  this does not become a “usually violated” and deficient 
assumption. There simply is no justification for failure to compensate for a reasonable amount of  
measurement error in exogenous variables. 
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Measurement error in endogenous latent variables is equally important, though also miscom-
municated by Kline. In reference to Figure 10.1a, Kline makes a statement that is appropriate for 
some endogenous variables (namely, those having no further downstream latent-level effects) as 
though it applies to all endogenous variables. “This assumption {namely of  no measurement error} 
is not required for the endogenous variables in this model, but random error in Y1 or Y3 is mani-
fested in their disturbances” (p. 213; { } material inserted). This statement is arguably true for Y3 in 
the relevant model, but it is definitely false for Y1. For endogenous latents having no further latent 
effects (like Y3 ) the only consequence of  measurement error variance is to increase the variance 
of  the “disturbance” variable attached to the modelled endogenous variable (which makes the dis-
turbance a mixture of  measurement error and other omitted causes of  the latent). The statement is 
false for Y1 in the Figure 10.1a model, because this variable’s measurement error functions causally 
differently (has different implications) than real omitted causes of  the latent variable. Measurement 
error for a latent in the diagrammed Y1 position would causally impact only latent-Y1’s indicator, 
while disturbance-style omitted causes of  latent-Y1 would impact both latent-Y1’s indicator and 
the causally downstream variable Y3. The differing implications introduce model misspecification, 
unless the model differentiates between measurement error and latent-level structural disturbance. 
(Kline makes the same mistake regarding X1 in Figure 10.2a, and Y1 in Figure 10.2b.) Rather than 
attempting to specify a new rule indicating when a researcher must adjust for measurement error in 
endogenous latent variables, it is simply safest to routinely acknowledge and adjust for measurement 
error in all latent variables all the time (Hayduk and Littvay 2012). And the adjustments should strive 
to attain validity, not merely “control for score reliability” (p. 127).

Contrary to Kline’s claim that “there is no point in retaining a model with just as many explana-
tory entities (factors) as there are entities to be explained (indicators)” (p. 190), there may be a very 
important point to be made. Differentiating causal actions dead-ending in each indicator (namely, 
measurement errors) from causal actions impacting the latent’s true values, which subsequently cas-
cade to downstream latent variables, might require a model containing as many latents as indicators. 
The latents having single indicators would not be “factors” but SE models need not contain “factors.” 

The diagrammatic partitioning of  variance in Figures 6.3 and 9.2 (p. 131 and 190) differentiates 
between measurement error and real variations having unknown causes, but Kline pays insufficient 
attention to properly causally modelling the various variance components. For example, Kline rec-
ommends using scale reliabilities to determine fixed-measurement error variances (p. 223; and see p. 
458). This adjusts for some measurement concerns, but is insufficient because proper modelling re-
quires appropriate causal differentiation between all the indicators’ components (not just a reliability 
adjustment), and requires attention to their covariances, not just their variances. In the context of  
scales, the concern for validity recommends modelling all a scale’s items, not just scale scores. 

Factors versus factor scores, latents versus latents’ values

A different but related issue is whether SEM or SEM-measurements require that we know the 
values of  latent variables. We sometimes would like to know the values of  latents—for example, 
if  the latent is someone’s ability and a related decision is required—but are we required to know the 
true values for latents in SE models? Think again of  age. Are we required to determine the cases’ 
true ages in order to use latent age in a structural equation model? The answer is definitely no, we 
do not require the latent variables’ values. The complement of  this is that we equally definitely do 
not need to know the values/magnitudes of  error variables differentiating true latent variables’ 
values from observed indicators’ values. The statistical “magic” grounding the ability to estimate 
latent-level coefficients without knowing latent variables’ values can be seen in moving from Equa-
tion 4.28 to 4.29 in Hayduk (1987), but is a bit too cumbersome to detail here. The relevance of  
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this for Kline’s text comes from factor score attempts to estimate the values of  factor-latent variables. 
Factor score indeterminacy (p. 189, 193, 212) refers to the indeterminacy or imprecision in possible 
sets of  estimated latent-factor values derived from the observed indictors. Kline says that “because 
theoretical variables and their proxies (indicators) are almost never identical, estimates of  causal 
relations between latent variables are approximate at best” (p. 212). Let us repeat Kline’s statement, 
replacing “theoretical variables” with “latent variables” and “proxies (indicators)” with “factor 
scores,” estimated from the indicators, as Kline’s context requires. “Because latent variables and 
their factor scores are almost never identical, estimates of  causal relations between latent variables 
are approximate at best.” To be even clearer, because we can’t determine latent true scores precisely, 
estimates of  the effects between latent variables are supposedly approximate at best. 

Unfortunately, Kline’s “because” is entirely unfounded. Obtaining proper effect estimates 
does not involve, require, or depend on latent variables’ true scores. Contrast Kline’s claim that 
latent-to-latent effects are “approximate at best” with the observation that latent effect estimates 
can be more accurate and precise because they adjust or compensate for measurement error, while 
the corresponding estimates from observed variables are prone to contamination with measure-
ment error. (This was historically called correcting for attenuation.) Kline employs something that is 
not required in SEM (factor/latent scores) to inappropriately reframe a strength of  SEM (adjust-
ment for measurement error) into a supposed weakness!

Factor-score indeterminacy also seems to underlie Kline’s warnings against “jingle-jangle fal-
lacies” (p. 301, 458), where a single name is insufficient to force indicators to reflect a single latent 
(jingle), or different names are insufficient to force indicators to reflect different latents (jangle). 
More cogent warnings could have been made in the context of  descriptions or interpretations of  
latents as encapsulating verbal understandings/theories, but where those understandings/theories 
may be inconsistent with the causal world controlling the indicators. 

I end this section by noticing that factor-structured sets of  indicators tend to fail because the 
required common-cause structuring is often inconsistent with the causal forces actually producing 
the indicator data. Kline’s only real example of  factor analysis appears at the end of  Chapter 9 (p. 
206–08) and is highly significantly inconsistent with the data. The inconsistency is not reported in 
the text, though it can be found in the publisher’s model archive. Some sleight-of-the-writing-hand 
switched the strong dis-Confirmation of  this factor model into a Confirmation, permitting the sec-
tion to be titled a “CFA Research Example” (p. 206). Kline says that “relatively few applications of  
CFA are strictly confirmatory” because post-hoc model modifications are introduced to make the 
model fit, and/or because CFA is claimed after exploring with EFA, but it seems that even clear 
and direct model failure also fails to tarnish the C in CFA. 

Chapter 8, Structural causal models 

It is a breath of  fresh air to encounter Chapter 8’s focus on causal actions and the unavoidable 
implications of  causal actions. This chapter is new to Kline’s fourth edition, presenting jargon intro-
duced by Judea Pearl and “rules” reporting the unavoidable implications of  directed acyclic graphs 
(DAGs). Kline makes a truly admirable attempt to present this material, but it is sufficiently com-
plex that I offer some nit-picking suggestions (in Supplement Section 4), though I have two more 
substantial concerns. The first is that Kline does not introduce Pearl’s do(x) operator (Pearl 2000: 
70), which is fundamental to understanding the propagation of  causal effects. The do(x) operator 
permits following the unavoidable consequences of  do ing or making specific, precisely expressed 
hypothetical interventions within the modeled causal structures. By excluding this, Kline loses an 
opportunity to assist his readers to see SEM’s fundamental causal precision in action. The second 
concern is that Kline seems to have missed the consequences of  Chapter 8 for his other chapters. 

https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
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This causally focused chapter contrasts with Kline’s repeated avoidance of  cause, as discussed above. 
The precise and unavoidable causal implications discussed in Chapter 8 should have fortified Kline’s 
Chapters 11and 12 on model testing. Kline has argued against coefficient testing in other contexts 
(Kline 2013), but Chapter 8 provided a missed opportunity to clarify the fundamental difference 
between coefficient tests and model tests. DAG tests are tests of  precisely demanded model/theory 
implications—namely, they are tests that incorporate and investigate the combined consequences of  
multiple theorized causal structures, and differ from direct tests of  specific coefficients. 

Chapter 11, Estimation and local fit testing

Chapter 11 reads smoothly but is sprinkled with multiple problematic statements. One easily 
misconstrued claim is that single-equation estimation methods “can be less affected by specifi-
cation error than simultaneous methods” (p. 231; and see p. 235). The misconstrual comes from 
failing to consider the other, not-less-affected equations, and from the single equation methods 
discussed being routinely misspecified because they fail to compensate for measurement error 
(see p. 233, point 1). There are single-equation estimation methods that address measurement 
(e.g., Bollen et al. 2014) but these are not discussed, and have their own limitations. Another 
misconstrual is embedded in Kline’s description of  maximum likelihood estimates as “the set of  
parameters estimates that is most likely to have generated the observed data” (p. 236). The mis-
construal should become clear if  you hear this an an example of  “the false belief  that p measures 
the likelihood that H0 is true, given the data” (Kline 2013: 98).

But a more fundamental concern is Kline’s inappropriate adoption of  a specific correla-
tion-discrepancy size of  .10 as his implicit local fit test criteria. Smaller discrepancies between ob-
served and model-implied correlations are presumably acceptable, while discrepancies “of  .10 
or more may signal appreciable model-data disagreement” (p. 240). Kline repeatedly appeals to 
whether or not .10 is exceeded (p. 253–54, 278, 329, 380, 385, 408, 416, 481) and speaks as if  this 
constitutes reasonable local fit testing (p. 241, 283). Unfortunately, exceeding or not-exceeding a 
correlation discrepancy of  .10 does not constitute a statistical test, and the .10 value lacks statis-
tical justification. The value merely demarcates the boundary between what Kline will attend to or 
disregard. (Actually, Kline does not even stick consistently to his .10 value (p. 344).) Programs like 
LISREL and EQS report standardized residuals (p. 252), which provide statistically appropriate lo-
cal fit tests, but Kline displaces the available tests with a “criterion” more to his liking, even though 
he knows important model misspecifications can produce only smaller amounts of  model-data 
discrepancy (he cites Hayduk 2014a), and even though he has heard that “Shame for disrespecting 
evidence {will constitute one of} the personal consequences of  insufficient respect for structural 
equation model testing” (p. 496; {} material added). 

Combining “Estimation and local fit testing” into a single chapter has the unfortunate con-
sequence of  placing local fit testing prior to overall model testing (namely, Kline’s next chapter). 
Both model testing and local fit testing depend on estimation, but overall model testing should 
precede investigation of  local fit. For a bad example, notice that after dedicating more than a 
dozen pages to a detailed example, Kline says “the fit of  the example model is unacceptable” (p. 
253) both locally and globally, but he fails to respond appropriately to the model-data inconsis-
tency. Changing the model’s structure to conform to the world’s structure would: alter the control 
variables, alter the estimates, alter the estimate’s significance, alter the basis sets, alter the residual 
ill fit, and mess with just about every claim Kline made about his example. Kline’s comment re-
garding model-data inconsistency does not even hint at the numerous diagnostic investigations 
that should be undertaken, or the substantial model reassessments that should accompany detec-
tion of  model-data inconsistency. It is easy—deceptively easy—to think that if  a model “poorly 
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explains certain observed associations” (p. 253), the model problems are tightly linked to those 
particular problematic covariances/correlations rather than being detectable symptoms of  more 
dispersed yet fundamental model misrepresentations. Localized ill fit does not confidently report 
localized model specification problems. Patterns of  local ill fit can sometimes contribute usefully 
to diagnostic examinations, but even patterns of  local ill fit do not irrefutably detect the relevant 
model problems. I count it as a serious deficiency that the term “diagnostics” does not even appear 
in Kline’s subject index. Diagnostics require assessing the many things potentially wrong with a 
model, and/or the data, rather than routinely freeing the nearest error covariance—which often 
amounts to blaming/convicting the nearest bystander. 

Chapter 12, Global fit testing

Chapter 12 also reads smoothly, but it is perhaps Kline’s most problematic chapter. The 
problems begin with the title. Kline knows “that there is actually no dependable or trustworthy 
connection between the size of  the residuals and the type or degree of  model misspecification” 
(p. 278)—where residuals refer to the difference between the model-implied covariances/cor-
relations and the data covariances/correlations. Given the disconnect between the amount of  ill 
fit and the seriousness of  model misspecification, researchers face a choice of  being interested 
primarily in model misspecification or model fit. Even a brief  consideration determines the 
primary concern is model misspecification, while fit plays only a supporting role. Researchers 
want to test their model, not just their model’s fit, and examine fit to see whether or not this 
provides evidence of  model misspecification. Thus, a more appropriate chapter title would be 
“Testing for model misspecification” or “Detecting model misspecification” rather than the 
current “Global fit testing.” 

If  ill fit is detected, researchers should probe the program output for diagnostic clues to the 
nature of  the problem(s) and potential model or data improvements. A ringing ill-fit alarm bell 
should prompt thorough and detailed investigation of  possible data mistakes as well as the mul-
tiple kinds of  possible model misspecifications—not mere pursuit of  different fit-index ways of  
reporting the ill fit (p. 266).

Kline grounds his fit-index-based disrespect for test evidence in an oft-cited claim by Box 
(1976: 792) that “all models are wrong” (p. 263)—which implicitly and inappropriately suggests 
that model misspecification cannot be avoided, so you shouldn’t worry if  you encounter some. 
God might know whether or not all models are wrong, but how could even a famous person like 
Box know about all structural equation models—including models that have not yet been specified 
or run? In fact, Box was not even referring to structural equation models—he was writing back in 
1976, when structural equation modelling was relatively unknown, and SE model testing nearly no-
nexistent. Incompleteness can make many styles of  statistical models wrong, but incompleteness 
does not necessarily contribute to SEM ill fit, because measurement errors and unknown latent 
disturbances are parts of  structural equation models, not omitted features. And given that we can 
construct structural equation models of  experiments, applying Box’s statement to SEM implicitly 
asserts that all experiments are wrong—because SE modeling of  experiments would also only 
result in wrong models! Claiming that all experiments are wrong is clearly nonsense.

None of  these kinds of  considerations have stopped Kline (and some others) from propagat-
ing this nonsense and its paraphrases. See: “When (not if)” the model does not fit (p. 120), models 
“are imperfect approximations” (p. 262), and fit indices “allow for an ‘acceptable’ amount of  de-
parture from exact (perfect) fit” (p. 60; emphasis in the original). Correctly specified models may 
be rare (p. 232), but rare does not mean impossible (for fitting models, see Entwisle et al. 1982; 
Hayduk 1994; Hayduk et al. 1997, 2005). 
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Kline ends his quote from Box (p. 263) a bit too soon. Box’s next sentence reads: “Since all 
models are wrong, the scientist must be alert to what is importantly wrong” (Box 1976: 792; em-
phasis added). Kline stumbles regarding what is “importantly wrong” because he frequently conflates 
importance with the amount of  ill fit, rather than with the nature of  underlying model misspecifi-
cations. For example, Kline provides a section on a “Recommended Approach to Fit Evaluation” 
(p. 268; emphasis added) rather than to Model evaluation. By focusing on Approximate Fit Indexes (p. 
266–68), RMSEA (p. 273–75), CFI (p. 276), and SRMR (p. 277), and continuing with these indices in 
his examples, Kline distracts from a search for “what is importantly wrong.” Kline notes that there 
are “discredited thresholds for such fit statistics” (p. 269, 268), without reporting which specific 
thresholds have been discredited, and despite his continuing use of  thresholds courting discredit-
ation (p. 267, 274, 276–78).  

Kline fails to appreciate the depth of  the challenge to ALL model fit indices created by there being 
“no dependable or trustworthy connection between the size of  the residuals and the type or degree 
of  model misspecification” (p. 278). He proceeds as if  small-sized residuals overrule or overturn the 
significance of  those residuals, whether in the context of  global fit testing or in local fit not-real-test-
ing, via his indefensible .10 correlation residual (p. 462, 265). This can be seen in Kline’s claim that a 
large N devalues χ2 testing because a larger N enables χ2 to detect smaller covariance/correlation re-
siduals—including residuals smaller than his .10. For many misspecified models, χ2 power does increase 
with N and thereby demonstrates increasing power to detect misspecifications, but for properly speci-
fied models, χ2 does not increase with increasing N (Hayduk 2014b). Kline inappropriately reports χ2 
as being “overly sensitive to sample size” (p. 271; see also p. 330, 462), when in fact χ2 increases with 
N only when there is some detectable problem in the model or data. Kline’s Exercise 4 (p. 279, 298) 
and its suggested answer (p. 480) are ill-founded, because with a proper model and larger N, the data 
covariances would become more stable due to smaller sampling variations from the true covariances, 
and consequently χ2 would not inflate. The idea that χ2 is “overly sensitive” implicitly appeals to there 
being discrepancies that are too small to be worth detecting and investigating, when in fact covariance 
discrepancies can be zero even in the presence of  important model misspecifications (Hayduk 2014a). 
Kline’s proclivity to think of  large-N χ2 as detecting trivial fit differences parallels his tendency to 
disregard local ill fit correlations less than .10, even though there is no justification for claiming that 
smaller residuals in either context protect researchers from important model misspecifications. 

A related imprecision is Kline’s failure to distinguish between the causal structure of  a model 
and the fit provided by that model. For example, Kline titles one section “Equivalent CFA models” 
(p. 315) and another “Equivalent SR models” (meaning Structural Regression models; p. 348), when what 
he is discussing are causally non-equivalent models providing equivalent fit. The models are not caus-
ally equivalent because they contain different causal specifications, though they have corresponding 
covariance implications. Had Kline’s titles been something like “Different CFA or SR models produ-
cing equivalent fit,” the discussion would have turned to causal specification/misspecification, and 
the models reported on pages 345 and 358 would have been described as not distinguishable on the basis 
of  their covariance fit, even though the worldly causal structures are empirically distinguishable. 

Kline’s discussion of  RMSEA (Root Mean Square Error of  Approximation) contains multiple 
technically correct statements but is unlikely to assist anyone not already familiar with the RMSEA 
(p. 273), and actually encourages problematic SEM practice. Kline cites a 2008 work as indicating 
there is “little support for a universal threshold of  .05 (or any other value)” for the RMSEA (p. 274), 
yet spends the next pages propagating obsolete threshold values suggested by Browne and Cudeck 
back in 1993, only to follow this with additional relatively recent references that “question the gen-
erality of  thresholds for the RMSEA” (p. 276). As if  these were not enough, Kline disregards the 
logical problem at the heart of  the RMSEA. 
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The problem is that non-zero RMSEA criteria attempt to excuse or overlook some amount of  
real model-data inconsistency for each model degree of  freedom. The RMSEA is calculated as ill 
fit per degree of  freedom, and hence claiming a non-zero RMSEA value as acceptable claims that some 
non-zero amount of  real ill fit is acceptable for each and every model degree of  freedom. (The 
Browne and Cudeck reference Kline cites as foundational for the RMSEA describes real (non-ran-
dom) model-data inconsistency as “error of  approximation” (1993: 141).) Overlooking, excusing, 
or discounting real model-data inconsistency is clearly problematic. And a model rendered strongly 
testable by having many degrees of  freedom is supposedly excused (ahem) from that strong-test-
ing because Browne and Cudeck said that the RMSEA permits (cough) overlooking some amount 
of  model-data inconsistency for each degree of  freedom—an amount not based on statistics but 
“based on subjective judgment” (1993: 144).

Kline (p. 274) cites work documenting a clear instance where the same Michael Browne (of  
Browne and Cudeck), along with Robert MacCallum (another big name who championed dis-
regard of  real model-data inconsistency) and Kim, Andersen, and Glaser (2002), defended and 
retained a model that was inconsistent with their data. Browne et al.’s “supposedly negligible ill 
fit obscured important, systematic, and substantial causal misspecifications” that were located 
and corrected by attending to relevant experimental conditions (Hayduk et al. 2005: 1). Somehow 
Kline remains immune to the methodological unacceptability of  overlooking real model-data 
inconsistency, despite: the “critical” RMSEA value being subjective (not statistically based), chal-
lenged by multiple recent references, and having led strong people into making indefensible 
modelling mistakes. 

Unfortunately, Kline perpetuates this problem throughout the remainder of  his book. It is 
nice that Kline’s testing chapter summary reports there being a “consensus that some routine prac-
tices are inadequate” (p. 297), and nice that his best practices chapter says, “Do not rely on ‘golden 
rules’ for approximate fit indexes to justify the retention of  the model” (p. 461), but these come 
across as disingenuous, given that he also says, “If  possible, report…the RMSEA” (p. 464), given 
that the logical problems with indices are not respected in Chapter 12, and given that the RMSEA 
is repeatedly incorporated later (p. 279, 290, 305–07, 317, 328, 344, 347, 350, 357, 359, 380, 385, 
406, 416). The same inconsistency appears when Kline complains that low power provides “little 
chance of  detecting a false model” (p. 265), while encouraging low power—by appealing to fit 
indices rather than tests, by denigrating the power provided by larger N, and by switching from 
a test of  model fit to the hypotheses of  “close fit” and “not-close fit” (p. 290–91). If  he really 
appreciated power, he would have considered power in the context of  the most powerful available 
test—namely, the χ2 model test—not merely any lower-power index. In fact, power is defined only 
in the context of  model testing, not indexing, so a statistical sleight-of-hand accompanies discuss-
ing the power to detect arbitrarily hypothesized index values (p. 292, Figure 12.2 and fourth line). 
In short, Kline has not yet come around to consistently reporting the deficiencies of  the RMSEA 
and warning against its continued use. 

Unfortunately, Kline’s text falters in several additional places due to deficient model testing, 
as you can see by considering the technical-teasers in Supplement Section 5. I assisted the third 
edition of  Kline’s Principles and Practice of  Structural Equation Modeling by providing some “back-
bone” (Kline 2011: xi ) to his testing chapter, only to find that his fourth edition reverted to the 
deficient view that there should be “LESS EMPHASIS ON SIGNIFICANCE TESTING” and 
that the “proper role for significance testing in SEM is much smaller” (p. 17; both emphases in the 
original). I hope the above constitutes a sufficiently clear and strong prosthetic to propel Kline, or 
his successors, into understanding the important difference between a model being significantly 
inconsistent with the data versus “acceptably close” to the data (p. 11). 

https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
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Chapters 13 and 14

“Confirmatory factor” and “Structural regression” models are addressed in Chapters 13 and 
14, respectively. Factor analytic measurement of  latent variables developed quite independently of  
regression/path-analytic linking of  different variables, and this led to a common presumption that 
structural equation modelling should proceed in two separate steps—initial measurement of  latent 
variables via factor analysis, followed by structural connections between different latents. Kline 
cites Anderson and Gerbing (1988) on two-step modelling and aligns himself  with the two-step ap-
proach by separating these chapters. This supposedly reduces the complexity of  model assessment 
by providing a “separation of  measurement issues from structural issues” (p. 340).

Unfortunately for Kline, one of  SEM’s greatest strengths is to combine, not separate measure-
ment and structure. The reason is simple. Structural equation modeling strives for valid models and 
valid measurement, not merely reliable models and reliable measurement. Measurement validity re-
quires that a measured latent variable function appropriately in connection to other latent variables. The possi-
bility of  demonstrating appropriate connections to diverse theory-specified variables only arrives 
with the latent level of  the model, and hence measurement remains incomplete until the measures 
are incorporated into full, well-functioning models. All of  a latent’s indicators (not scales or parcels) 
should be retained in the full SE model if  a latent proposed by factor analysis seeks validation. 

Kline’s emphasis on multiple factor-structured indicators results in insufficient attention to 
measurement error variance in routinely used variables like age, sex, and education, which rarely have 
more than a single indicator. Another consequence of  requiring multiple indicators is that this tends 
to displace latents which could function as control variables, instrumental variables, or variables clari-
fying the operative causal mechanisms. Kline cites Hayduk (1996) but somehow misses its Chapter 
2, which explicitly challenges Anderson and Gerbing’s two-steps; he also cites Hayduk and Glaser 
(2000a), but somehow also misses the corresponding challenges to four-steps. Kline is seriously off-
base when he cites Hayduk and Glaser (2000a, b) as supporting either two- or four-step modelling (p. 
339). In short, by recommending use of  “two-step modeling, not one-step modeling” (p. 462), Kline 
renders his book incapable of  providing a thorough discussion of  measurement validity, burdens his 
reader with identification “rules” that really aren’t sufficient-rules, misses adjustment for measure-
ment error in variables like age, and hinders pursuit of  informative model specifications.

In Chapter 14 we re-encounter the problem of  waffling between causal and non-causal connec-
tions between variables. A conscientious reader will cringe at the chapter title’s reference to Structural 
Regression Models, because structural effects at the latent level are not mere regression coefficients. 
Kline’s sporadic attention to latent-level causal structuring is evident in his “Detailed Example” (p. 
341–48), which considers a model by Houghton and Jinkerson (2007). Kline says these “authors 
describe the theoretical rationale for each and every direct effect among the four factors in the 
structural model” (p. 220), which exudes careful causal attention. Then we notice that four of  the 
six latent-level effects in the model Kline “would retain” (p. 347) are insignificant (Figure 14.2, p. 
348). The insignificant effects disconnect the Constructive Thinking latent from the remainder of  
the model’s latents, including the final dependent variable Job Satisfaction. The absence of  evidence 
supporting these effects contrasts sharply with Houghton and Jinkerson’s claim that their study 
results “suggest that constructive thought strategies are related to job satisfaction” (2007: 51; emphasis 
added). Surely either the theory or measurement are problematic if  the measurements do not lo-
cate latent variables displaying causal actions required by theory! Several modelled indicators had 
been constructed by segmenting sets of  items into parcels, or sub-scales, whose reliabilities were 
previously reported (see p. 220; and Houghton and Jinkerson 2007) and several of  the items had 
uncomfortably low proportions of  explained variance. But the causal disconnection seems not to 
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have prodded any reconsideration of  the measures. Somehow both the measurement and theory 
emerge unscathed, despite the vanishing theorized effects! 

Further causal imprecision appears in this example when Kline adds a measurement error 
covariance between the indicators of  Happy and Mood2  because there is “common item content 
across the two indicators” (p. 344). Unfortunately, the estimated covariance is inconsistent with 
this common content theory, because it is negative (p. 347)! Common content would be consistent 
with a positive covariance, but not a negative, measurement error covariance. But why might Kline 
have missed this? Notice that Kline’s justification appeals to “common item content,” not to a 
common cause of  the items. Had Kline thought of  his justification as requiring a common cause, 
that should have triggered considerations paralleling Figure 1C and Equation 10 above, which 
report that a commmon cause only produces a negative covariance if  the effects have opposite 
signs—but opposite signed effects are incompatible with Kline’s appeal to common content. The 
unjustified negative coefficient seems to “‘clean up’ local fit problems” (p. 345), and provides a 
clear example of  how causally inappropriate and likely misspecified coefficients can deceive re-
searchers by sopping up local ill fit. Sure, the fit is improved, but the properness of  the model’s 
causal specification has been sacrificed to attain the improved fit. 

Kline’s example contains yet another missed opportunity. The measurement error covariance 
that Kline added to his measurement model results in his model having one fewer degree of  free-
dom than Houghton and Jinkerson’s corresponding model (Kline’s 47 versus their 48). Their final 
model restricts two additional effects and leads to Kline’s model having two more degrees of  free-
dom (49); but Houghton and Jinkerson (2007: Table 2) report three more degrees of  freedom (51 
rather than 50) for their final model. Kline’s Chapter 6 exercises instruct readers in counting degrees 
of  freedom, but Kline misses this opportunity to apply this skill. One latent variable in Houghton 
and Jinkerson’s final model seems to have been scaled in two different ways, namely, by setting a 
“loading” to 1.0 and by simultaneously setting the latent variable’s variance to 1.0, like all their other 
latent variables (Houghton and Jinkerson 2007: 47, Figure 1). This double-scaling forces their Job 
Satisfaction latent to contribute exactly 1.0 unit to the variance of  their Job Satisfaction indicator (like 
setting both the variance and effect in Equation 3 above to 1.0 if  Y was the indicator), when that 
indicator actually has a variance of  0.9392 = .88. This forces a model-data inconsistency, explaining 
why Kline’s model fits better than their model, and should have produced an impossible negative er-
ror variance estimate for Houghton and Jinkerson’s scaling indicator. Kline missed this opportunity 
to show how model misspecification can lead to problematic estimates, and missed the opportunity 
to caution that the literature contains enough errors to warrant routine caution and checking. 

Chapter 15

This chapter addresses modelling means and latent growth curves. It reads smoothly but re-
quires revision because it both omits causation where it is appropriate, and inserts causation where 
it is inappropriate! Equations 2 and 6 above illustrate how intercepts coordinate the means of  
causally connected variables, and this parallels Kline’s Equation 2.1 (p. 369 and 27), but Kline 
flounders because his equation is presented in the context of  regression rather than causal action.  

In the example spanning pages 369–72, Kline interprets the intercept of  20.000 in his regres-
sion equation

Ŷ = 20.000 + .455(X )        (11)

as “the direct effect of  the constant on endogenous variable Y ” (p. 371). The “constant” is a 1.0 
value placed behind the intercept, which permits rewriting the equation as
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Ŷ = 20.000(1.0) + .455(X )       (12)

and on mid-page 370 as

Y = 20.000(1.0) + .455(X )       (13)

Unfortunately, it is incorrect to interpret the intercept 20.000 as “the direct effect of  the constant 
on endogenous variable Y ” (p. 371). One way to see why begins with noticing that the intercept 
depends on the scales of  X and Y. If  the scale for Kline’s X variable (Table 15.1, p. 370) had resulted 
in each case’s X score being 10 units higher, the X mean would increase by 10, and X ’s mean con-
tribution in Equation 13 would increase by 4.55 units; the intercept would correspondingly decline 
by 4.55 units, from 20.000 to 15.45. This imagined change in X ’s scale alters the intercept without 
changing Y, the 1.0 constant, or any variable’s effectiveness—namely without changing any feature 
in Kline’s interpretation of  the intercept as “the direct effect of  the constant on endogenous variable Y ”! 
Similarly, had Y ’s values been reported on a scale reading 20 units lower, Kline’s equation would 
become Ŷ = 0.0(1.0) + .455(X) and the “constant” would now seem to have no “effect” (according 
to Kline), even though this change in Y ’s scale does not change the causal effectiveness of  anything.

But deeper causal issues are also involved. Consider the word “constant” in describing an 
intercept as “the direct effect of  the constant on endogenous variable Y ”. Can a constant have effects, 
direct or otherwise? The answer is no—constants do not have “effects,” because effects demand 
potentially different outcomes resulting from variations in the cause (see Pearl’s definition; 2000: 
70), or Mulaik’s insistence on variables (2009: 84–102)). Kline understands “the constant…is not 
a variable in the usual sense, because it has no variance” (p. 371), but he persists in referring to the 
intercept as the “effect” of  the constant even though there is no such thing as an effect without 
potential variability in the cause. Placing a 1.0 after the intercept mimics the positioning of  a causal 
variable like X but is insufficient to warrant interpreting the 20.000 intercept as an effect. 

Next, consider that just as error variance changes upon addition of  new predictors, intercepts 
also change upon addition of  new predictors. And just as we do not know which real variables 
contribute error variations in equations, we do not know which real variables contribute to the 
intercepts in equations. Each equation’s error variable’s variance stands-in for the variation-conse-
quences of  unspecified causal variables, and each equation’s intercept stands-in to coordinate the 
effects and scales of  all the unspecified causal variables, with the effects, scales, and means of  all 
the included variables. Failing to acknowledge intercepts’ connections to real excluded variables 
leads Kline to the problematic claim that “If  a variable is excluded from the mean structure, its 
mean is assumed to be zero” (p. 372). That is false because including a new clause adds a term 
containing the effectiveness and mean of  that variable to the right of  equations like Equation 13. 
A regression error variable is assumed to have a zero mean, but a real excluded causal variable need 
not have zero mean. If  the Y variable in Equation 13 was exogenous because it had no specified 
causes, the Y mean would correspond exactly to the intercept but that would not force the un-
modeled causes of  Y to all have zero means.  

Now consider that each different equation’s intercept, and each different exogenous variable’s 
mean, depends on a unique set of  excluded variables having different scales, means, and degrees 
of  effectiveness. Contrast this with the constant in Kline’s intercept interpretation, represented by 
the triangle-containing 1 in Kline’s Figure 15.1 (as duplicated at the top of  Figure 3). Kline’s figure 
represents the constant as the (singular) common cause of  two variables, and as the common cause 
of  many more variables in figures on pages 385, 389, 404, and 412. If  the constant really was a 
common cause influencing two downstream variables, this would result in covariance between the 
two effected variables (recall Figure 1C and Equation 10 above). Unfortunately, Kline’s representa-
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tion is inaccurate: the arrows connected to the triangle-1 are not effects, the triangle-1 is not a vari-
able, and the implication of  covariance would be wrong. Each endogenous and exogenous variable 
should be granted its own “constant” corresponding to the unique set of  unmodelled variables 
contributing to the constant following/attached-to the intercept for each endogenous variable, 
or to the mean of  each exogenous variable, as depicted lower in Figure 3. There the dotted lines 
are obviously not effects, because they have no arrowheads, and each variable is granted its own 
constant—whether representing an intercept or exogenous variable’s mean. This representation is 
similar to that employed by Hancock, Kuo, and Lawrence (2001), but the absence of  arrowheads 
ensures these are not interpreted as “effects,” and deletion of  the triangled-1 minimizes space 
requirements.  Placing the intercept/mean designation near the variable’s unmodeled sources of  
variance (disturbance/error variance for endogenous variables; total variance for exogenous vari-
ables) signals that the unmodelled causal variables contributing variance also contribute to the 
corresponding variable’s mean or intercept.  

                            Figure 3. Kline’s Figure 15.1 (top) and a replacement (bottom).

The literature is not yet committed to a single felicitous mode of  diagramming means and 
intercepts, but we can, and should, be consistent in our verbal descriptions. Consider part 2 of  
Kline’s Rule 15.3, which claims that “for endogenous variables, the direct effect of  the constant 
is an intercept but the total effect is a mean” (p. 372; emphasis added). The intent of  this “rule” 
is reasonable, but its execution is problematic. The intention behind “total effect” can be seen by 
writing the equation for Y’s mean in Kline’s Figure 15.1 as

Ῡ = 20.000 + .455(X )        (14)

and rewriting this with the numerical X and Y means, and inserting the constant (1.0): 

25.000 = 20.000(1.0) + .455(11.000)(1.0)     (15)

This equation corresponds to the math on pages 370 and 372, and makes it look like the Y mean 
(25.000) is the sum of  a direct “effect” of  the (1.0) working through the intercept of  20.000 and 
an “indirect effect” of  the (1.0), calculated as the produce .455(11.000)—so Kline expresses the 
Y mean as a total effect of  the constant. The problem is that the intercept (20.000) and X mean 
(11.000) are not effects, and there really is not one single/lone constant. Each (1.0) refers to a differ-
ent set of  variables. In Equation 15, the left-most (1.0) refers to the disturbance/error/unavailable 
causes of  Y, while the right-most (1.0) refers to entirely unknown causes of  the X mean. The (1.0)s 
look the same, and the triangle-enclosed 1 in Kline’s Figure 15.1 looks like a single variable—but it 
isn’t. There are in fact multiple (1.0)s, and each refers to a different set of  variables. 
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This recommends modifying Kline’s statement quoted above to say that an endogenous 
variable’s mean can be calculated as the “total effect” of  multiple different sets of  variables—which 
is glaringly self-contradictory, because total effects tabulate effects originating from a single 
source, not effects originating from multiple different sources. Put simply, the verbal reference 
to “the constant” inappropriately conflates multiple different causal entities, and recommends 
multiple corrections to Chapter 15 (see p. 371, 372, 378, 379, 380, 383, 384, 386, 387, 388) and 
Chapter 16 (p. 403, 420). The calculations of  product terms work largely as Kline reports, but 
Kline’s linguistic and diagrammatic descriptions of  why things work that way require substantial 
revision. 

In addition to the above, Kline’s presentation of  means and intercepts would benefit from 
observing that many social science variables have arbitrary scale-origins and scale-units. This 
would provide an opportunity to address the difficulties involved in locating non-arbitrary scale 
origins and units of  measurement, as well as clarify why even overidentified SE models with 
mean structures have a limited ability to assist in locating non-arbitrary means and intercepts.

Kline’s detailed example of  means and intercepts 

Kline illustrates the modelling of  means and intercepts using data from military personnel 
repeatedly attempting an air traffic controller exercise (p. 375–87). Kline bases his example on 
137 cases that Browne and Du Toit (1991) selected for reanalysis from experiments conducted 
by Kanfer and Ackerman (1989). I suspect, but was unable to confirm, that the cases came from 
Kanfer and Ackerman’s third experiment, and I was unable to determine how these cases had 
been selected from Kanfer and Ackerman’s many cases, or even whether these cases came from 
an experimental or control condition. We cannot hold Kline responsible for Browne and Du 
Toit’s failure to report how they selected their cases, but we should hold Kline responsible for 
emphasizing an example that precludes careful consideration of  the data-gathering details that 
constitute the bedrock of  competent structural equation modelling. As we shall see, this provides 
an instance of  learning the hard way. 

First, a caution. The relevant data matrix appears in Table 15.3 (p. 376) and is reported as 
based on N = 250 when in fact these statistics were based on N = 137. Kline says some “tech-
nical problems” (p. 375) were avoided or resolved by artificially increasing N from 137 to 250, 
but he provides no indication of  the nature of  the resolved problems. Artificial increases in 
N are disconcerting and should be discouraged, but this seems likely a mere indiscretion in 
comparison to another feature of  Kline’s Figures 15.3 and 15.5 models that is likely to be un-
justifiably emulated. Kline includes, but never defends, why these models permit correlation 
between successive (time-adjacent) measurement error variables. It is easy—too easy, and too 
easily emulated—to contend that the mere proximity of  one measurement to the next warrants 
measurement error covariances. Omitting these error covariances results in model failure (Table 
15.4), but even with the error covariances included, the models remain significantly inconsistent 
with the data. Kline “retained” both models, thereby persisting in his troubling disregard for 
model test evidence (p. 380, 385), but his inclusion of  dubious error covariances to transform a 
highly data-inconsistent model into a model displaying modest but still significant ill fit enticed 
me to consider this more carefully.

I used LISREL to replicate the results reported in Kline’s text and website, and then altered 
the model in a way I considered to be more theory-defensible. I thought each subject’s real 
performance on the air traffic control learning task at any one time would influence their sub-
sequent performance. That is, I viewed each participant’s true and improving performance at 
any one time as likely to persist and contribute improved performance on their next attempt at 
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the task. This conceptualization recommends replacing Kline’s five error covariances with five 
effects, leading from the performance on each trial to the performance on the next trial. The 
result was that my version of  Kline’s Figure 15.3 model fit ( χ2 = 6.422, df = 7, p = .492), while 
Kline’s model did not ( χ2 = 16.991, df = 7, p = .017; p. 381); and my version of  Kline’s Figure 15.5 
model fit ( χ2 = 7.886, df = 11, p = .724), while Kline’s model did not ( χ2 = 27.333, df = 11, p = .004; 
p. 381). These χ2 values use Kline’s artificial N of  250, and my models’ fits were further “im-
proved” by using the proper N = 137. I encountered no unusual estimation difficulties using the 
real N, and I encountered no sign of  technical problems that might have warranted using Kline’s 
artificial N = 250.

My models closely reproduced the pattern of  means in the data, and confirmed the relevance 
of  the “Ability” variable in Figure 15.5, but provided somewhat different explanations for how 
the observed means are accounted for via Kline’s Initial and Shape latents. Kline knows that in 
the context of  latent growth curves, earlier observations of  values of  a variable can sometimes 
influence later values (see his p. 391 figure), though my models recommend retracting his claim 
that effects leading to successive observations and questions regarding latent growth curves “can-
not be answered in the same model” (p. 392)—because that is precisely what my models did. 
I should also report that including measurement error variance in the Ability variable further 
improves my model, and would presumably improve Kline’s Figure 15.5 model if  he included 
measurement error variance on this single indicator. 

The gist of  this story is that Kline was caught in the act of  inserting undefended error co-
variances merely to reduce χ2 ill fit, when in fact a substantively reasonable and cleanly fitting 
model was easily attainable. The warning is clear: Do not insert coefficients merely to improve 
fit. The alternative is equally clear: Pay attention to the data-providers’ causal world. Readers are 
also encouraged to consider why Kline failed to detect his problematic model specification despite 
employing the two-step approach that was supposed to make “it easier to detect potential specifi-
cation error” (p. 376–77). 

Chapter 16, Multiple-samples analysis and measurement invariance

Multi-group analyses are most commonly used to assess measurement invariance, which Kline 
illustrates using both continuous and ordinal indicators. Additional uses for multi-group analy-
ses are granted a paragraph of  discussion (p. 395) but readers are not informed about how such 
models can be used to: identify otherwise underidentified models, control for variables that are 
unmeasured in some groups, or to integrate complementary but non-overlapping model segments 
from diverse data sets (Hayduk 1996: Chapter 5).

As in the preceding portions of  Kline’s text, the writing is effective and informative but also 
laced with model-testing laxity and the occasional oddity. Kline’s section on “testing strategy and 
related issues” reports that “Failure to retain the invariance hypothesis at a particular step means 
that even more restrictive models are not considered” (p. 399–400), but Kline fails to explicitly 
report that this testing requirement begins at the very first step (namely, with the baseline con-
figural model) because χ2-difference testing (such as for equality of  coefficients between-groups) 
is only statistically justified if  the sampling distribution for the less-constrained model has a χ2 
distribution. Hayduk (2016) underscores this point and illustrates a way to strengthen baseline 
configural model assessments. Fortunately, Kline’s exemplified baseline configural model fits the 
data. An oddity is that Kline rejects this fitting model and adds a coefficient (on the basis of  an ill 
fit covariance and without substantive justification) to further improve the model fit (p. 406, Table 
16.2 and website). Kline’s next example also inserts a coefficient merely to improve fit but reverts 
to “retaining” failing models (p. 416–17, Table 16.6). 
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Figure 4: Kline’s Figure 17.5c expanded and re-expressed with coefficients.
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Chapter 17, Interaction and multi-level modelling 

This chapter begins with an effective presentation of  interaction with observed variables, 
but continues Kline’s waffling between regression models and causal models (p. 424–29). Causal 
requirements emerge by page 432, but Kline’s unwillingness to routinely encourage and require 
causal structuring becomes uncomfortably obvious when later on that page he applies the term 
“cause” when time-sequencing is available and “effect” for cross-sectional designs. Unfortunately 
time sequencing is not an appropriate criterion because reciprocal effects can be estimated with 
cross-sectional data and both the reciprocally connected variables can’t possibly be “first.” Urging 
use of  the terms cause without effect, and effect without cause, along with a dubious differentiating criter-
ion, could be called self-inflicted befuddlement. 

My following comments aim to improve the interpretation of  mediated interactions (as dis-
cussed on p. 435–37) by expanding Kline’s Figure 17.5c example to illustrate some general prin-
ciples and important overlooked complexities. Figure 4 corresponds to Kline’s Figure 17.5c, with 
coefficients from his Equation 17.7. Intercepts are represented with dashed lines and disturb-
ances/errors are designated as e’s. Kline expressed the model as “two unstandardized regression 
equations” (Equations 17.7; p. 435, emphasis added). I express these as putatively causal equations 
by replacing the regression-predicted Ŷ values with Y and the relevant causal-disturbance/error eY , 
and by similarly converting the mediator-moderator “regression” equation into a causal equation 
by replacing M with M and disturbance/error eM .  

Figure 4. Kline’s Figure 17.5c, expanded and re-expressed with coefficients.

M = β0 + β1 X + eM        (16)

Y = θ0 + θ1 X + θ2 M + θ3 XM + eY       (17)

The first model equation reports X as a cause of  mediator/moderator M. Since M causes Y in 
the second equation, M is postulated as mediating part of  X ’s causal impact on Y. M also functions 
as a moderator (interacting variable), represented by M ’s product with X in the second equation. β0  
and θ0 are intercepts capturing the net impact of  variables currently excluded from the equations. 
Before returning to Kline, we rearrange these equations by inserting the first equation into the 
second (which corresponds to replacing M with M ’s causal foundations):

Y = θ0 + θ1 X + θ2 (β0 + β1 X + eM) + θ3 X (β0 + β1 X + eM) + eY   (18)
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and multiplying out while inserting { } to keep track of  the origin of  the various terms:  

Y = θ0 + θ1 X + {θ2 β0 + θ2 β1 X + θ2 eM} + {θ3 X β0 + θ3 X β1 X + θ3 X eM} + eY (19)

Each term in this equation provides a causal constituent of  Y, and the bolded terms document 
where and how the X variable participates in producing Y.  

Supplement Section 6 considers each right-hand term to determine what the model claims 
would be the consequences of  an intervention changing a treatment X from 0 (no treatment) to 1 
(treatment). Each term in the expanded equation is examined to see whether and how it responds 
to the postulated intervention. The relevant interpretation consists of  whatever wordings accurately 
describe the right-hand terms changing as a consequence of  X changing from 0 to 1, and the com-
position of  each term details the causal features providing that component of  the effect transmitted 
to Y. The required assumptions consist of  wordings reporting features required to render some 
right-hand terms constant and hence unable to produce change in Y as X changes from 0 to 1. A 
model’s implications for a postulated intervention have been thoroughly considered if  the research-
er examines the coefficients and variables comprising all the terms in Y ’s expanded equation, and 
reports the assumptions/presumptions required to attain and respect the intervention of  interest. 

Kline does not report equations corresponding to Equations 18 or 19 and instead moves direct-
ly from the model equations (like Equations 16, 17) to a set of  equations reporting how to calculate 
the effects of  intervening to change X from 0 to 1. Supplement Section 6 follows the procedure 
outlined above and locates some unacknowledged assumptions and requirements of  Kline’s effect 
calculations. For example, Kline’s equations are inappropriate if  the treatment happened to be 
coded 1 = no treatment and 2 = treatment instead of  0 and 1, and his equations do not apply if  there 
are two treatment levels so that 0 corresponds to no treatment, 1 to weak treatment, and 2 to strong 
treatment. And Kline’s formulas apply only to this specific model and one specific intervention. 
The Supplement Section 6 procedure of  beginning with the equation for the dependent variable of  
interest, and replacing each moderator variable in the equation with that moderator’s causal sources, 
is applicable to a wide variety of  models and can examine a diverse range of  potential interventions.

As it stands, researchers with more complex conditional models are cornered into trying to 
squash descriptions of  their model into Kline’s wordings rather than having been equipped to de-
velop interpretations appropriate for their particular model. Kline’s text leaves readers ill-prepared 
for considering consequences of  interventions unavoidably making two simultaneous changes, 
or the consequences of   reducing or increasing some effect (without intervening to change any 
variable), or assessing which specific disturbance/error variable’s values might disrupt or assist 
the causal impact of  interest. Assessing such interventions becomes feasible using the procedure 
illustrated in the Supplement.

Just as the interaction/moderator segment of  Chapter 17 could be improved by considering 
model equations (as above), the chapter’s discussion on multi-level modeling could be similarly 
improved. Kline’s figures, Mplus syntax, and output (on the publisher’s website) are appropriate 
but the basic principles and model details remain obscure without the model equations. Equations 
would clarify why s1 and s2 appear in one portion of  Figure 17.7c as effects and in another por-
tion as variables. And model equations would clarify why “Game” is boxed in one portion of  the 
figure and circled in another. Currently the reader is left puzzling how slopes and intercepts can 
be variables, and can be justifiably perplexed by noticing slopes are designated s1 and s2 while the 
intercepts seem to be AWOL. How is a reader to understand why the same indicator variables ap-
pear in two parts of  Figure 17.8b, and determine whether the disturbances/errors on the duplicate 
indicators are the same? Clearly there are too many potholes for this review to fill, though the road 
to improvement is paved with equations. 

https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
https://journals.library.ualberta.ca/csp/index.php/csp/article/view/2016-K/21438
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Chapter 18 

Kline’s concluding chapter accumulates and effectively structures the recommendations and 
advice provided in earlier chapters, and hence it reflects Practices but not “Best Practices” in Structural 
Equation Modeling. The chapter begins by tabling several references offering suggestions on con-
ducting and reporting SEM studies. The table’s footnote reports the third of  ten SEM command-
ments as: “simpler models are better” (p. 453). A simple model of  a moderately complex world is 
likely to be misspecified, so surely “Best Practice” would recommend an appropriately complex 
model, not merely a simpler model! 

“Best” requires acknowledgeing that some practices as better than others, and support for the 
stronger practice. Unfortunately, if  we consider model testing, Kline continues to promote weak 
practice. Model testing is not even granted its own section in Chapter 18, and it is mentioned as 
only one of  16 points under the heading Estimation. Even there the wording “Never retain a model 
based solely on global fit testing” (p. 461) is slanted to suggest retention of  test-failing models, as 
opposed to respecting evidence and pursuing the sources of  detected model-data inconsistencies.  

Kline’s Chapter 18 sections on model Specification (p. 454) and Respecification (p. 463) could sim-
ilarly be strengthened by encouraging consistent pursuit of  models mirroring the world’s causal 
structure. Structuring models to reflect specific theories is laudable but limited. A researcher com-
mitted to a theory-based model that demonstrates data-inconsistency will flounder until they re-
ground themselves in the quest for understanding the world by seeking a new or modified theory. 
Consider the risk created by routinely including residual/error correlations in models (recall the 
problematic models from Chapter 15, p. 378, 385), and the risk arising from attempting to fix fail-
ing models by adding coefficients suggested by modification indices or specific residuals (recall the 
problematic negative estimate p. 347). The risk is not merely of  “capitalizing on chance” (p. 455), 
or that this constitutes an exercise in “chasing sampling error” (p. 463), or that this incurs a “cost 
of  too many parameters” (p. 463). This risks obscuring (by incorrectly modeling) real stable evi-
dence that is inconsistent with the substantive structure of  the current model. Inserting coefficients 
merely as a matter of  “routine” or because the coefficients have large modification indices risks 
inserting worldly-inconsistent coefficients that absorb and obscure whatever real data covariance in-
consistencies managed to speak against the original theory/model. The fundamental risk is that real 
(not merely sampling error) covariances are modeled in the wrong way. Replication will not detect 
or correct models based on improper “causal” accounts of  real covariances. The real covariances 
remain stable and so the researcher is condemned to proceeding with a now-fitting-and-replicating 
but nonetheless wrong model, and hence is robbed of  the opportunity to get the model right.   

Lack of  commitment to seeking the world’s structure is also evident when Kline says “do not 
specify feedback loops as a way to mask uncertainty about directionality” (p. 455). The options 
Kline leaves open to this researcher are to choose one causal direction or the other, or to drop both 
effects. That is, Kline implies the researcher should include a non-theory based effect-directional-
ity (or gap) into their model, rather than encouraging the researcher to introduce exogenous causes 
that would make the reciprocal effects estimable and thereby permit the worldly-data to potentially 
support the existence of  both, either, or neither of  the theory-eluding reciprocal effects. 

Similarly, consider the flaccid commitment to seeking a world-matching model in the context 
of  measurement. “Multiple-indicator measurement is generally better than single-indicator meas-
urement” (p. 454). If  the researcher begins by providing each latent the best available indicator, 
each additional indicator is prone to being weaker and more problematic, and hence more indi-
cators does not necessarily constitute better modeling. “Best practice” would begin with the best 
indicators and supplement these with only strong additional indicators.  Two or three indicators 
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per latent substantially increase model testing power (Hayduk and Littvay 2012) and are likely to 
be sufficient to detect specification problems—presuming the researcher respects model-test evi-
dence of  problems. Multiple indicators unavoidably include weaker indicators, and expand models 
in ways which tend to squeeze out latents clarifying mechanisms of  action or contributing in-
formative controls—which results in generally worse, not better, models.

And consider the claim that a way to improve on a single indicator is “to specify an instrument 
for the single indicator” (p. 454). A reader would be justifiably mystified by how a problem with a 
single-indicator is to be overcome by introducing another single-indicator (namely the instrument) 
into the model. By downplaying the relevance of  the world’s causal structuring, Kline is cornered 
into expressing this as if  the improvement somehow comes from statistics (the statistics of  in-
strumental variables) rather than from employing single indicators in ways that benefit from, and 
capitalize on, the world’s causal structure.   

Turning to Identification (p. 457), it is reasonable to check that the number of  data covariances 
exceeds the number of  estimated coefficients, and the identification of  simple models should in-
deed be checked. But the unavailability of  general procedures for checking full or moderately com-
plex models should have prompted suggestions for: locating likely problematic model segments, 
checking maximum likelihood iterations (if  maximum likelihood estimation is used), checking for 
unexpected estimate signs or magnitudes, and checking for inflated standard errors. Solutions to 
underidentification should also have been included—namely adding data constraints (e.g. addition-
al identification-helpful variables) or adding model constraints (e.g. fixing/specifying or constrain-
ing model coefficients). Archival data may offer fewer opportunities to improve identification by 
adding relevant variables, but it is simply a mistake to claim “that the model is not identified” (p. 
459) merely because it is based on archival data. Fixing/specifying coefficients to attain identifi-
cation is particularly relevant with archival data, especially if  the researcher investigates the sensi-
tivity of  the model to a realistic range of  fixed coefficient values—including non-zero values for 
unresolved latent-level loop or reciprocal effects.   

Model Respecification (p. 463) provides another instance where it would be helpful to differentiate 
between fitting models and proper models. Consider a researcher in a discipline confronting worldly 
causal structures that are not yet understood. If  the researcher’s model fails, the basic options are: 
add coefficients that reduce the model’s ill fit, report model failure, or junk the model. Junking the 
model seems a waste, and reporting failure of  a model is likely to be personally uncomfortable, so 
the common response is to add coefficients until the model’s fit can be passed off  as good enough. 
Unfortunately, as long as model respecification is touted as being a matter of  each particular mod-
el’s local or global fit, the respecification is likely to fall short of  addressing the deeper disciplinary 
concerns. The concern is not that the “good fit is achieved at the cost of  too many parameters” (p. 
463). The concern is that even one additional coefficient may be sufficient to obscure the evidence 
recommending that the discipline reconsider the thought modes underlying the whole model.  

Your first edition, or Kline’s fifth edition

I have been unable to convince myself  of  the source(s) of  Kline’s reticence to notice and 
address the multiple and diverse concerns discussed above. To see how Kline thinks about these 
matters, and to glean a hint of  his intentions, I requested that the editor of  Canadian Studies in Popu-
lation (Frank Trovato) invite Rex Kline to respond to this review essay. It would be nice if  Kline 
plans a fifth edition, but if  this is not planned, I hope that readers will consider preparing their own 
first edition, or possibly one co-authored with Kline. Irrespective of  who writes the next edition, 
I would suggest a title like Principles Nurturing Best Practice in Structural Equation Modelling, where the 
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text begins by focusing on structural equation models as striving for correct causal representations 
(a commitment which differentiates SEM from regression) and complementing this with routine 
attention to detecting and resolving model misspecification (not merely seeking fitting models). 
Whether or not you are the new-author, you can do SEM a service by inserting a reference to this 
review in whatever copies of  Kline’s fourth edition you encounter.
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