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Abstract

Three stable population models are described. The first two are closed to
migration, with fertility fixed at the current level and at replacement. The third
has fixed amounts of migration, with fertility at the current level. An
alternative using fixed migration rates is considered. = The models are
exemplified with current Canadian data, for the first century and ultimately,
paying special attention to age distribution. The role of migrant age is
examined. Replacement by migration is an acceptable alternative to replacement
by fertility, and much preferable to a closed model with current fertility.
Limitations on the usefulness of the exercise for policy are assessed.

Résumé

Trois modéles de population stables sont décrits. Les deux premiers sont fermés
a la migration, le taux de fécondité se maintenant au niveau actuel et de
reproduction. Le troisiéme a des volumes fixes de migration et se rnaintient au
niveau actuel de la fécondité. Un autre modéle fondé sur des taux de migration
fixes est envisagé. Les modeles sont illustrés a I'aide de données Canadiennes
actuelles, pour le premier siécle et accorde une attention particuliere a la
répartition des 4ges. Le r6le de I'dge des migrants est examiné. La reproduction
par la migration offre une alternative acceptable & la reproduction par la fécondité,
et constitue une solution largement préférable & un modele fermé au taux de
fécondité actuel, Les limites de l'utilité de cet exercice sur le plan politique sont
examinées.
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Introduction

During the past several decades the net reproduction rate for Canada has been
well below the replacement level, yet there is no sign of imminent decline in
population size. The rate of growth exceeds one percent and has varied little
over recent time. In brief, the prediction implied by the conventional stable
population model is an inappropriate characterization of current population
change. The reason is that the model is closed to migration, and Canada is not.

Reluctance to incorporate migration in stable population models is
understandable because that process of population change has historically been
much more varjable over time than fertility or mortality. Nevertheless with the
prospect of persistent subreplacement fertility in a context favorable to
immigration, it seems appropriate to reformulate the conventional model. The
supply of immigrants is unlikely to slacken in the foreseeable future, given the
many large populations with rapid growth rates and levels of development well
below that of Canada. The demand for immigrants will be stimulated by the
desirability of avoiding a future in which the population is older and smaller.

In what follows, three population models are described, and exemplified with
current data for Canada. The first is the conventional stable model, closed to
migration, with fertility and mortality held fixed henceforth at their current
levels. The other two models are based on assumptions that guarantee ultimate
stationarity, with the same ultimate population size. The former achieves that
objective by an adjustment of fertility upward to the replacement level but with
no migration; the latter leaves fertility fixed at its current level but assumes a
constant inflow of net migrants of just the amount calculated to culminate in the
same outcome.

The focus of the analysis is comparative age distributions. The reason for this
choice is that it is difficult to arrive at an objective judgment of an optimal
future size for the population — other than that it should eventually become
stationary — whereas it is relatively easy to make judgments about the
comparative desirability of different age distributions.

Two issues require particular attention. In the first place, a choice must be made
between two credible assumptions about age-specific net migration: either fixed
in absolute numbers or fixed relative to the size of the receiving population.
Although the choice here is the former, the decision is not clear-cut. In the
second place, the outputs for comparative analysis — various parameters of the
age distribution — are quite sensitive to the assumed age distribution of net
migrants. The question calls for separate scrutiny. The account is concluded
with an assessment of the various respects in which the analysis, while broadly
suggestive, remains insufficient for policy guidance.



Migration and Population Replacement

Section 1. Closed and Open Population Models.

This section contains an account of the equilibrium properties of various
population models, all of them stable because they are based on assumptions of
permanent fixity of the processes of population change: fertility, mortality and
" net migration. Life tables for males and females have been constructed for
Canada, based on the age-specific mortality rates observed in 1994. (Statistics
Canada, 1996). In this section, however, both the account and its illustrative
data apply solely to females. (The Lotka model on which the work is founded
was, after all, a one-gender model.) Subsequent derivation of parallel results for
males would be a simple subsidiary exercise, adding no formal contribution.
The fertility rates are those of 1994; the amounts and rates of net migration by
age are for 1994-95. If one views the models as projections, the starting-point is
the population size, by age and gender, as of July 1, 1995 (Statistics Canada,
1996).

The first model is a population closed to migration, with current age-specific
fertility and mortality. The net reproduction rate is 0.79612, and the intrinsic
rate of natural increase, estimated by the Wicksell procedure, is r = -0.008075.
(Keyfitz, 1968, pp. 147-149.) Thus, this is a subreplacement population with a
rate of decline approaching one-half every 86 years. Although the population
ultimately vanishes, one can examine its equilibrium age distribution by
calculating the function exp(-rx)*S,. ( The symbol, Sx, for survivors to age x, is
used in preference to the more common symbol, to avoid confusion between the
letter “1” and the number “17.)

For heuristic purposes, it is worthwhile considering also the outcome for a
population, likewise closed to migration, in which the net reproduction function
is adjusted upward proportionately, so that the net reproduction rate is 1.0, and
thus r=0. Elsewhere (Ryder, 1975) it has been shown how to determine directly
the ultimate size of birth cohort for such a model, but in continuous form; here
the formula is converted to discrete calculations. Designate the elements of net
reproduction by Rsy = rSy«ssy, where Fs, is female fertility and Ssy is female
survival, for ages y=3, 10, i.e., centered on ages 15, 20, ..., 50. To raise the
observed net reproduction rate to 1.0, calculate '

10
Rsy= R5y/ z Rsy

y=3

This is of course is only one of an infinity of ways in which replacement
reproductivity could be obtained. Moreover it is not unlikely that, if fertility
were higher than it is currently, its shape by age would differ. The choice here
is arbitrary but simple, and it ordinarily makes only a small empirical difference
from alternatives.
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In finite form, the expression for ultimate birth cohort size, say U,

10 10 10 10
U= X (Vssdt 2R | [ MR
x=1 y=x x=1y=x

where NS,, the number of females in the population at the outset, in exact ages
5, 10, ..., has been estimated as [sNs.1y + sNsxJ/10. The result for Canadian
females, 1994, is U=204,477. With the ultimate cohort size as radix, and the
survival function, Sy, one can determine the age distribution at equilibrium, and
the total population size. The latter is simply the product of U and the female
expectation of life at birth e, = 81.083. The ultimate female population size is
16.823 million, compared with the current 14.942 million. The increase in size
is of course a manifestation of population momentum.

Models of the future based on fixed processes of population change over time
cannot pretend to be realistic. They do however serve the descriptive purpose of
showing the structural consequences of current behavior. They also have a
prescriptive function, by illustrating the relationships between various courses of
action and the goals of population policy.

To abandon the closed population assumption, and introduce net migration into
the stable population model, the procedure analogous to the closed model is to
calculate age-specific net migration rates, say snsy, directly comparable in form
to mortality rates, sms.. (See Hyrenius, 1959; Lopez, 1961; Pollard, 1973).
Calculate a variable for the rate of change in cohort size, say sgsx = shs - sMisx.
Then sgs« can be used to create a cohort growth function, say Gss, in exactly the
same way as smsy is used to create a survival function, Ss.. Thenceforth the
development of the model follows the conventional form, except that Gs, is
substituted for Ss.. (For summaries of the literature, see Espenshade, 1986;
Sivamurthy, 1982).

One important empirical consequence of this reformulation is that there is a
different net reproduction rate, 1.00775, and a different intrinsic rate of increase,
r=+0.0027134.  Accordingly, if we take into account not only fertility and
mortality but also net migration, the population of Canada is not intrinsically
declining but rather growing — albeit at a very slow pace. Interjection of net
migration into the calculations has increased net reproductivity, in this more
comprehensive sense, by more than 26 percent. If the net reproduction rate is the
relative numbers of female births, one generation apart, it increases because of
the contribution of net migrant females to the birth output.

In the remainder of this section, we propose to reduce the net migration rates
slightly from the observed values, in order to bring the intrinsic rate of natural
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increase and migratory increase to zero. Although again there are infinitely
many ways to do this, the task is most simply accomplished by reducing each
age-specific net migration rate by the value r. The principal purpose of this
modification is to achieve a determinate ultimate population size. From a
population policy standpoint, intrinsic growth (or decline) may be considered
more desirable in the short or intermediate term, but stationarity is necessary in
the very long term.

With the migration equivalent of the net reproduction rate set at unity, the value
for ultimate birth cohort size can be found with the same formula as provided
above, by substituting the cohort growth function, Gs,, for the survival function,
Ss«. The outcome is U=182,459. This is a substantially smaller value than that
obtained for the closed replacement fertility model because the growth values
(Gsx) used as divisors of the current female population size are appreciably
larger than the survival values (Ssc). Another source of discrepancy, much

smaller, is that the age distribution of the modified net reproduction function is
somewhat older than that of the original.

The second important empirical consequence of using the cohort growth

function in place of the survival function is that the cohort population size over a
lifetime (the equivalent of the conventional expectation of life at birth of 81.083)

is much larger, here 109,432. The ultimate (female) population size, the product
of this value and the new ultimate cohort size of 182,459, becomes 19.967
million, which is 19 percent larger than in the replacement fertility model. This
outcome is understandable because, in effect, the objective of replacing the
population has been accomplished by the importation of a substantial additional
population of immigrants.

Section 2, Two Migration Models

An alternative to this “rate” model for incorporating immigration in stable
population theory had been described by Espenshade et al. (1982). They
showed that, with. fertility and mortality fixed, and net reproductivity below
replacement, a regime of fixed numbers of immigrants by age and gender each
year will eventuate in a stationary population. (Pollard, 1973, showed the
stability properties of this model. Mitra, 1983, generalized the argument for any
level of net reproduction. See also Coale, 1972). In the following presentation,
we take the liberty of modifying their account with respect to symbols and
procedures; the substance of their argument is unaffected,

To determine the characteristics of the ultimately stationary population based on
the “amount” model, the first step is to project the numbers of net migrants by
age (modified appropriately by survival) to their final cumulated shape, some
hundred years hence. For Canada, 1994-95, the number of female migrants per
annum, M=97,079, and the size of the migrant population eventually generated
is 5.047 million. For further development, it helps to note that the ratio of
the latterto the former, the average expectation of life after migration, is
EM=51.99.
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With the completed female migrant population by age, and the conventional
age-specific fertility rates, conjoined in a product-sum, we can obtain the
equilibrium number of births to migrants, here 38,145. Again it is helpful for
further development to express this value relative to the number of migrants
(97,079), giving the average reproductive value of a migrant, say RM = 0.3929.

The basic formula for determining the ultimate birth cohort size (derived from
Espenshade et al., 1982) is U = M*RM/(1-R,) = 187,095. The ultimate
population consists of the product of U*e, and the product of M*EM, for a total
of 20.217 million. The proportion of the population migrant is 25 percent (a
value independent of the number of migrants per annum).

Although this procedure differs from that used with the “rate” model, it is
instructive to reconsider the latter in light of the former. The “rate” model
depends on ultimate birth cohort size— a weighted average of initial population
size by age, where the weights are provided by the cohort growth function. To
infer the critical parameters RM, the reproductive value of a woman, and EM,
the expectation of life after migration, one can proceed as follows. With the
ultimate population by age, and the age-specific migration rates, the product-
sum gives the number of migrants M=107,302. Recasting the formula for
ultimate birth cohort size given above for the amount model, one has

RM = (U/M)*(1-R,) = 0.3467.

It is acceptable to use this formula because, at equilibrium, the number of
migrants per annum, as well as the rates, are fixed. Furthermore, the total
migrant population size can be found by subtracting from total population size
the product of ultimate cohort size and the expectation of life at birth. When this
is divided by the number of migrants, one obtains for the expectation of life after
migration a value of 48.22.

The parameter RM is larger for the amount model (0.3929) than for the rate
model (0.3467). Likewise the parameter EM is larger for the amount model
(51.99) than for the rate model (48.22). Both differences reflect the comparative
age distribution of migrants, the mean of which is 30.4 for the amount model
and 34.5 for the rate model. Younger migrants have higher reproductive value,
and live longer subsequent to migration. In the amount model the age
distribution of migrants is fixed by assumption, but in the rate model, although it
starts at that value, it eventually becomes much older because the population
ages during its evolution toward equilibrium.

The critical formal difference between the two models is that the amount model
begins with a specified number of migrants, M, and then the value of ultimate
birth cohort size, U, is inferred from an equation in which the strategic variable
is the reproductive value of a migrant, RM. The rate model begins with the
value U, and the value M is inferred (from the same formula in reverse). Thus
the amount model specifies the size of birth cohort that can be supported at
stationarity by a given number of net migrants, whereas the rate model specifies
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the number of net migrants required to support a given size of birth cohort at
stationarity.

The rate model eventuates in a stable equilibrium, of which the stationary (the
one discussed here) is a special case. The amount model, regardless of the
number of migrants annually, always leads to a stationary equilibrium (provided
net reproductivity is below replacement). The rate model, provided it is
calibrated to replacement, culminates in one particular population size,
determined in large part by the age distribution of the initial population. The
amount model, on the contrary, can be scaled to achieve any specified
population size — perhaps in response to policy considerations — simply by
modifying appropriately the annual number of migrants. The initial population
is in fact irrelevant; the model could be used to describe the populating of a
previously empty land.

There is, however, a particular limitation on the amount model. The question
addressed (in Espenshade et al., 1982) is not the consequence of a specified
amount of net migration but rather of a specified amount of immigration. The
authors reveal ambivalence about what their subject is, using “immigration” in
their title, formal analysis and discussion, but “net immigration” in their
illustrative projection, as the source of their data, and in the test of formulae
from the analysis.

The point is no mere quibble. Net migration is the difference between
immigration and emigration. Some of that emigration represents previous
immigrants, but some occurs to members of the original population. The author
use an assumption of 400,000 net immigrants in their illustration. Suppose, for
sake of argument, that was the net consequence of 500,000 immigrants, 50,000
foreign-borm emigrants and 50,000 native-born emigrants. In determining
ultimate birth cohort size, the key question is the number of annual births
occurring to immigrant women, once their full reproductive complement has
been attained. The base for that subpopulation, in the example given, is the net
flow of 450,000 rather than 400,000 women. Furthermore, one cannot
determine the ultimate size of the native population by using ultimate birth
cohort size as the radix of the conventional life table, because each native cohort
is subject to attrition not only from mortality but also from native emigration.
To repair these difficulties the requisite assumptions of the model are a fixed
annual amount of immigration, and no emigration.

Such considerations may have led to Espenshade's subsequent recommendation
(Espenshade, 1982) that emigration be incorporated in the stable model in rate
form, i.e., treated as a kind of mortality, as outlined above.

In the same article, he asserted that a net migration rate as modification of
mortality would be improper because the two components of the numerator,
immigration and emigration, have different bases of exposure to risk.
Emigration originates from within the population, whereas immigration
originates in the rest of the world. This raises a serious question about the
legitimacy of the rate model proposed above. The rest of the world provides
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what may be considered the supply conditions for the immigration process. Yet
where that supply is substantially in excess of the demand, the determination of
the number (and characteristics) of immigrants is essentially a matter of the
demand, i.e., of the immigration policy of the receiving country. Of the many
considerations going into formulation of that policy, substantial weight would be
given to the implications for the receiving population, at least in the form of the
number of immigrants relative to the size of the recéiving population. A wise
government will be sensitive to the (probably misguided) perception of
immigrants as competitors with the existing population for jobs, as well as for
housing, welfare and the like. An aggregate concept of exposure to risk, in this
sense, may differ from the conventional individual-based orientation, but it is far
from meaningless.

From a formal standpoint, the conclusion is that the amount model is a valid
way of incorporating immigration in the stable population model, but that the
appropriate way to incorporate emigration, ceferis paribus, would be as a
modification of survival. The acceptability of a model based on fixed rates of
net migration would require tolerance for an unorthodox interpretation of
exposure to risk. In choosing between these alternatives, two considerations
have tipped the balance in favour of the amount model. First, net emigration of
the native-born, in the case of Canada, seems very small; it appears likely, on
the basis of admittedly inadequate data, that the considerable majority of native-
born emigrants return. If so, the amount model would provide a tolerable
approximation to the current situation. Second, there is a pragmatic
consideration, evident in the foregoing account. A model in which rates of net
migration are fixed implies, with the passage of time, an older age distribution
of migrants because, as is highly likely, the base population becomes older. As
will be shown subsequently, there are deleterious consequences from an older
age distribution of migrants.

Selection of the amount model as the way to incorporate net migration in the
stable population mode! permits specification of any desired ultimate population
size — because the annual number of migrants required to attain that size is
readily determinable. For the projections to be discussed in the next section, we
propose to compare the replacement fertility model (closed to migration but with
R,=1) with a replacement migration model (current Ro and fixed yearly
migration). For the former, ultimate population size for females was shown
above to be 16.823 million. The associated value for males requires first the
multiplication of ultimate female birth cohort size by the sex ratio at birth
(1.054) and then multiplication by the male expectation of life at birth
(75.07912). The resuit is 16.418 million males.

To find the amounts of annual female and male net migration which would
ultimately yield the same total population size, female and male, as have been
determined for the fertility replacement model, the basic formula employed is
that presented previously: T = M*EM-+Use,, where U = M*RM/(1-R,). Given
the values of expectation of life for females at migration, EM, and at birth, e,
and the reproductive value for females, RM, a value of M, for females, is
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indicated for any specified value of T. In the present situation, the value of M is
80,777 (compared with the current number of 97,079 net female migrants).

The same equations are used to determine the number of male migrants required
to achieve the same ultimate total for them as in the fertility replacement model.
For males, the expectation of life at migration, a function of the current age
distribution of male emigrants, is 47.4053; the expectation of life at birth for
males, in the 1994 life tables, is 75.07912. The ultimate birth cohort size for
males is the product of the ultimate birth cohort size for females, already
determined, and the sex ratio at birth, 1.054. With these values, the requisite
number of male migrants turns out to be 86,448 (compared with the current
86,961). For perspective, the numbers of net migrants used in the migration
model are about ten percent less than the annual average in the past decade, but
about ten percent more than the annual average in the decade preceding that.

Although the total numbers of female and male migrants in the migration
replacement model differ from the values observed for Canada, 1994-95, the age
distributions of those migrants are retained: they are the determinants of the
values of the key parameters of reproductive value, for females, RM, and of
expectation of life after migration, EM, for females and for males.

Section 3. Comparison of Three Population Projections.

In the foregoing, the ultimate outcomes of several population models have been
considered. Yet the ultimate is a long way off; the realistic interest is in the
more immediate future. To this end we have prepared projections for the first
century beyond the outset, specifically the updated postcensal population
estimate for July 1, 1995, based on the 1991 census, adjusted for net undercount.

Projections have been prepared for three models: (1) Fertility fixed at the
current level, with no migration, to be called the subreplacement model; (2)
Fertility raised immediately to the replacement level, with no migration, to be
called the replacement fertility model; (3) Fertility fixed at the current level,
with fixed amounts of migration, to be called the replacement migration model.
In all three models, mortality is fixed at the 1994 level. The annual amounts of
migration, in the third model, are calibrated to yield the same ultimate
population size, female and male, as in the second model.

Most previous work in this genre has emphasized population size, e.g., Gesano,
1994. Our preference is to consider the consequent age distributions. (Although
that subject has not been ignored by others, the applications have concerned ad
hoc forecasts rather than stable models. Cf. Ahlburg and Vaupel, 1993;
Basavarajappa et al, 1993; Espenshade, 1994.) The justification for this
emphasis is that the import of the age distribution is almost self-evident,
whereas there seems to be no sensible advice, within very broad limits, that a
demographer can give concerning whether any particular future population size
would be too large or not large enough.
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All calculations have been carried out for five-year age groups and five-year
time periods, separately by gender. The results reported here are restricted to
twenty-year age groups and time periods, for the genders combined. Although
this is a coarse age/time grid, it suffices for present purposes; moreover the
results of interest do not depend on gender differences.

Common to all three projections is the survival history of those cohorts
constituting the population at the outset. For the two models closed to
migration, the remainder of the projection is based on the succession of new
birth cohorts. Cohort size declines by about twenty percent per generation in the
subreplacement model, but shows no change in the replacement fertility model,
in an asymptotic sense. In the early stages of the projection, cohort sizes for
both reflect common deviations for exponential trend, because of irregularities
in the age distribution of the current population.

There are three parts to the migration model. The first is identical with the
results for the subreplacement model. The second is the subpopulation of
migrants, gradually built up to an equilibrium size and age distribution over the
course of the first century. The third part consists of the descendants of
migrants, i.e., births to migrants, births to the children of migrants, and so forth,
in the form of staggered overlapping series. This is the component with a
determinate ultimate sum, approached over the long term, as discussed in the
preceding section.

Table 1 shows population size, and annual growth rates, for the three models.
All show growth in the first twenty years, as a consequence of the substantial
population momentum implicit in the initial age distribution. By the time sixty
years have elapsed, the growth rates are approximately as predicated in the
conventional stable model, for the two closed models. The migration
replacement model is by then four million larger than the fertility replacement
model, yet we know that ultimately they will have the same population size, of
33.241 million. That is the explanation for the negative growth rate in the
migration replacement model over the final decades of the first century; the
same characterizes the rest of the history of population size for that model.

To examine the pace of the approach of population size to its ultimate value, in
the migration replacement model, it is most convenient to think of the time
series of birth cohort size. It can be shown that the difference between birth
cohort size at year t and ultimate birth cohort size tends to decline exponentially
at rate r (the intrinsic rate of natural increase). The inference then is a very long,
very slow decline in population size, at a declining amount.

Were there a substantially smaller number of annual migrants, relative to initial
population size, the population in the model would show a long slow rise at a
declining rate. Consider, for example, the limiting case in which there is no
initial population — colonization of an empty land. The projection values for that
case can be obtained by subtracting the entries for the subreplacement model
from those for the migration replacement model. Over the first century, at
twenty-year intervals, the values would be 0, 3,745, 7,891, 11,853, 15,237,
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18,132 (in thousands) with the ultimate population size, as before, 33,241
thousand — because that value does not depend on initial population size. In

Table 1.

Three Projections for Canada
Population Size, N (in thousands), Growth Rate,
r (per thousand per annum)

Years from Subreplacement  Replacement Replacement
Outset Migration Fertility
N r N r N r

0 29,606 29,606 29,606
2.3 8.0 5.1

20 31,025 34,770 32,793
-2.8 34 1.5

40 29,315 37,206 33,802
' 1.6 -0.2 -11

60 25,187 37,040 33,075
-8.0 -0.5 0.1

80 21,466 36,703 33,150
-8.1 -0.4 0.1

100 18,245 36,377 33,237

summary, then, in the migration replacement model the long-term path of
population size is convex and declining when annual migrants are few relative to
initial population size, but is concave and rising when annual migrants are many
relative to initial population size. ’

Our next task is to find ways to parametrize the age distribution. The most
common index in the literature is the mean age. For the current Canadian
population, the mean age is 36.14. For the three models, at equilibrium, the
respective mean ages are 45.51 for the subreplacement model, 44.00 for the
replacement migration model, and 40.92 for the replacement fertility model. We
have chosen not to show this calculation for the projections for the first century
because it does not seem .evocative of the socioeconomic relevance of age
distribution differences. In its stead, we have devised three measures.

The first index is the dependency ratio, expressing the relation between those in
the nonworking ages — here approximated by N¢-N3, and Ng, following the
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subscript convention of the life table T — and those in the working ages, N2o-Neo.
Drawing on other discussions of the topic (Ahlburg and Vaupel, 1993;
Espenshade, 1994), we have chosen the following form for the index
[3(N~N20)+5Neo)/(4(N2-Neo)]. The results are shown in the upper panel of
Table 2.

The dependency ratio rises in all three models. This is a subject of much
current concern in developed countries. One obvious cause of the problem is the
long wave in fertility: abnormally low two generations ago and abnormally high
one generation ago. That sequence implies a lower dependency ratio when the
children of the depression become seniors while the postwar children are still in
the working ages, and then a higher dependency ratio when those postwar
children in their turn become seniors. '

Not so generally recognized is the circumstance that the sequence of lower
dependency followed by higher dependency would have occurred, albeit of
small magnitude, even without the long wave in fertility, because it is the natural
ending to the demographic transition. That transition, in brief, is a movement
from high to low levels of mortality and fertility, with mortality decline
preceding fertility decline. Over the course of such a transition, the
characteristic pathway of the dependency ratio is upward during the era in which
mortality but not yet fertility is declining, downward during the era of fertility
decline, and finally upward again.

The terminal reversal is occasioned by two independent circumstances. One
may think of the dependency ratio as an average of two ratios, of children to
parents, and of grandparents to parents. The former can be expressed as the
level of parental fertility (modified somewhat by comparative survival); the
latter can be expressed as the inverse of the level of grandparental fertility
(modified substantially by comparative survival). In abstraction from survival
considerations, the sum of parental fertility and the inverse of grandparental
fertility rises when fertility declines below replacement, or when it stops
declining at whatever level. In addition, the survival element in the child/parent
ratio can change very little, provided mortality is low, whereas the survival
element in the grandparent/parent ratio may increase appreciably. The
discrepancy in outcome occurs because only when mortality is not low, as in
older ages, can mortality decline have much effect on comparative survival.

In combination, the processes of change in fertility and in survival guarantee a
rise in the dependency ratio in the terminal phase of the demographic transition.
In perspective, the rise is characterized less aptly as a shift to a high ultimate
level than as a return to more usual values from a low penultimate level. The
penultimate stage, which developed countries are now about to leave, is a
demographically fortuitous transitory era in which there are fewer junior
dependents (because parental fertility is low) simultaneously with fewer senior
dependents (because grandparental fertility had been higher).
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Table 2.
Age Distribution Indices,
Three Projections, Canada

Years from Subreplacement Replacement Replacement

Onset Migration Fertility
Dependency Ratio

0 0.708 0.708 0.708
20 0.823 0.790 0.900
40 121 1.014 1127
60 1.143 1.031 0.998
80 1.134 1.022 1.031
100 1.139 1.022 1.031
Ultimate 1.138 - 1.017 1.025

- Percent of Seniors Very Old

0 168 -~ 16.8 16.8
20 17.3 17.0 17.3
40 21.5 20.2 21.5
60 254 23.4 254
80 26.5 24.1 222
100 254 23.4 - 226
Ultimate 25.7 23.4 232

Labour Force Birth Rate (per thousand)

0 26.0 26.0 26.0
20 21.4 27.1 23.9
40 219 28.7 26.5
60 21.9 28.1 25.5
80 21.7 27.8 255
100 21.8 27.8 25.5
Ultimate 21.8 28.2 25.6
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Beyond these commonalities, the dependency ratios show .meaningful
differences. Comparing the subreplacement model with that for replacement
fertility, the former begins with a lower dependency ratio because of its lower
fertility but soon shifts to a higher value; this is a characteristic negative feature
of a declining population. The dependency ratio for the replacement migration
model varies erratically relative to that for the replacement fertility model but is
on average lower during the first century and remains lower at equilibrium.

The dependency ratio is a crude measure of the “costliness” of the age
distribution. One way to reduce that crudity is to provide more information
about its numerator. Since senior dependency is a major concern, and since that
varies strongly and directly with age, we have chosen, as a second index to
calculate, the proportion of those 60 and older who are 80 and older (Nso/Neo).
This index is reconsidered subsequently.

The values of this index for the three models are shown in the central panel of
Table 2. In every model, the proportion of seniors who are very old increases
markedly with time. Because of the form of the index, the discrepancy between
the values for the subreplacement model and for the replacement fertility model
does not appear until t=80, but ultimately the former shows its characteristic
age. Over the first sixty years of the projection, this index is lower for the
replacement migration model, but ultimately it is almost the same as that for
replacement fertility.

The third index of the age distribution is the labor force birth rate. In a sense,
the purpose of this measure is to refine somewhat the denominator of the
dependency ratio. To explain: any population, as an aggregate of individual
characteristics, can be transformed, in adaptation to the changing environment,
in two general ways. The constituent individuals may by retraining acquire
different characteristics, or individuals with one set of characteristics, as they
retire, may be replaced by entrants with a different set of characteristics. The
latter process, which we have called “demographic metabolism” (Ryder, 1975),
has been much more important than retraining in the technological evolution of
the labor force in developed societies.

Demographic metabolism is a mode of aggregate adaptation, as a supplement to
and compensation for the limits of individual adaptability. Strictly speaking it
should encompass not only the inflow of persons into the labor force but also the
outflow through retirement or death. In terms of aggregate adaptability, the
inflow is of prime importance because it permits the active exploitation of role
allocation. (Retirement is non-random, but it tends to reflect the disposition of
individuals more than the needs of organizations.) Moreover, adaptability is
implicated not only in the hiring of new workers by existent organizations but
also in the creation of new organizations — for which the retirement process is
for the time irrelevant. Accordingly we have elected to focus on the rate of
inflow into the working ages, here labeled the labor force birth rate. For the
model closed to migration, this has been estimated as (No-N 0)/[40*(N20-Neo)].
For the migration replacement model, this is supplemented by the ratio of
migrants of ages 20 through 60 to the working age population, (N200-Neo).

14



Migration and Population Replacement

The indices are shown in the lower panel of Table 2. The values are
dramatically different among the models. The subreplacement model, as
expected because it is a declining population, has a lower labor force birth rate
than the replacement fertility model. The highest values are associated with the
replacement migration model — throughout the first century and at equilibrium.
Moreover, the net migration data used here tend to understate the magnitude of
flow into the working ages. Setting aside the continual turnover of the
subpopulation of nonpermanent residents, the migration replacement model has
109 thousand net migrants in the working ages, made up of 138 thousand
immigrants and an outflow of 29 thousand emigrants.

To summarize the account of age distribution indices, we have proposed three
measures of the age distribution, and compared their changes over the first
century, for projections based on three models. Depending on the index in
question, there is convergence on ultimate values within 40 to 80 years. The

primary measure of dependency increases substantially from its current value in
all three projections, but to a much higher level for the subreplacement model.
The index refining the numerator of the dependency ratio — the proportion of
seniors who are very old — also increases substantially from the outset, and again
particularly for the subreplacement model. To refine the denominator of the

dependency ratio we have proposed the consideration of adaptive capacity, as

measured by the labor force birth rate. . The comparative assessment in this case

is once again to the disadvantage of the subreplacement model, but substantially

to the advantage of the migration replacement model. Yet it is only fair to note
that there may be substantial aggregate costs associated with the assimilation of

foreign-born entrants into the work force.

Section 4. The Role of Migrant Age.

The outputs of the migration replacement model are conditional on the age
distribution of net migrants, assumed in the foregoing to be fixed at the current
relative values for Canada, 1994-95. Arthur and Espenshade (1988) have
studied the relation between population size and migrant age. First they
assumed that all migrants arrive at the same age. In that model there is a
strong inverse relation between ultimate population size and migrant age, for a
specified total number of migrants. The outcome is apparent in the formula
provided above for the relation between ultimate population size (T) and the
number of migrants (M). '

T/M =EM +RM * [e//(1-Ry)]
With increase in age at entry, the expectation of life after migration, EM,

declines, and so does the reproductive value of a (female) migrant, RM. (For
simplicity, the account in this section is confined to females.)

As they recognized, that demonstration is unsatisfactory because the model has
zero variance in the age distribution of migrants. Arthur and Espenshade met
this objection by taking an observed age distribution of migrants, and producing
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from it two alternatives, one somewhat older and the other somewhat younger.
Then they projected the three alternatives: the outcome was the same, but with a
much attenuated contrast.

To cope with the same problem, in a more general way, we propose to use a
model in which migrants are uniformly distributed over the range of ages from 0
to 2a, where a is the mean age at migration. To justify this choice on more
substantial grounds than mere convenience, we note that the square of the
coefficient of variation of a uniform distribution is 1/3. The same calculation for
the age distribution of net migrants for Canada, 1994-95, gives 0.34 for females
and 0.36 for males.

To implement the formula for the relation between annual number of migrants
and ultimate population size, in a uniform distribution model, the requirements
are the average values of EM(a), the expectation of life after migration, and
RM(a), the reproductive value of a female migrant, over the distribution from 0
to 2a, for various values of the mean age a. Given the female life table and net
reproduction function for Canada, 1994, this is a straightforward exercise.

In accordance with the presentation in the preceding section, we have calculated
the number of migrants required to achieve & specified ultimate population size,
as a function of mean age of migrant, over what seems to be a realistic range
from a=20 to a=40. Since the absolute numbers would depend on the size
selected, and since a comparative appraisal is appropriate, we have chosen to
express each outcome as a proportional deviation from that for mean age 30.
The results are shown in Table 3, the column labeled J(a). Since the values are
very close to linear, the result can be expressed simply as follows: a higher
mean age by one year implies an additional three percent of migrants required to
achieve any given ultimate population size.

The other column in Table 3, labeled K(a), is the proportion of the ultimate
population which is migrant. To obtain this, note that the migrant population is
M(a)*EM(a), and the nonmigrant population M(a)*RM(a)*e./(1-R.). It follows
that K(a) is the reciprocal of ([es/(1-Ro)]*[RM(2)/EM(a)] + 1). Note that the
expression is independent of the number of migrants, M(a).  Also, since
[e/(1-R,)] is fixed, K(a) depends on the relative change in RM(a) and EM(a).
Over the selected range, RM(a) declines by about 50 percent and EM(a) declines
by about 30 percent; moreover, the ratio declines at a decreasing rate.
Accordingly K(a) rises at a decreasing rate, as shown in Table 3.

The proportion of the population migrant is an important element in calculations
of parameters for the total population. The distributional properties of the
nonmigrant population are fixed: they are characteristic of the stationary
population in the life table. Accordingly, change in any parameter for the total
population, as a consequence of variation in migration age, depends on change
in the parameter in question, for the migrant population, and on change in the
proportion of the population migrants,
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Table 3.
Percent difference between number of migrants
of mean age a, and number of migrants of mean age 30,

to achieve a given population size, J(a); and percent of the
ultimate population migrant, K(a).

a J(a) K(a)
20.0 -29.4 21.6
22.5 -22.0 22.9
25.0 -14.7 24.1
275 -7.3 25.1
30:0 0:0 259
325 7.4 26.5
35.0 14.8 27.1
375 223 27.5
40.0 29.8 27.8

K(a) is significant in another way. Net migration is the only way to prevent a
population declining if fertility remains inadequate. The cost of that.solution —
on the assumption that it is regarded by the receiving population as not without
cost — is relative to the proportion of the population migrant. But we have seen
that that is independent of the magnitude of the annual migrant inflow. It is a
function of the reproductive value of females, RM(a), and the expectation of life
after migrating, EM(a), both dependent on the age distribution of migrants. The
“cost” of migration, as a way to achieve replacement, can be reduced by
lowering the mean age at entry of migrants.

As a footnote, it is assumed throughout that the fertility and mortality of
migrants are the same as for the receiving population. It would be feasible to
achieve a specified ultimate population size with a smaller ultimate proportion
migrant, if the migrants had higher fertility and mortality than the receiving
population. But this would introduce another dimension into the determination
of the “cost” of migration. The more different the migrants are from the
receiving population, the greater the “cost.” Higher fertility and mortality are
‘reasonable representatives of such difference. In crude terms, this mode of
population replacement would have lower “cost” because there were relatively
fewer of “them,” but higher “cost” because “they” differed more from “us.”

The next parameter considered is the mean age of the population. (Cf.
Espenshade, 1994) For migrants at any particular age X, there is a mean age for
the (stationary) population they produce subsequent to arrival. (A simple way to
calculate these mean ages from a single-year life table is to create a new life-
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table column, say Vy, where Vy is to Ty as T is to L.. Then the mean age for
entrants at age X is [(V«/Tx)+(x-0.5)].

Table 4 provides, for alternative values of mean age of migrant, the consequent
mean age of the migrant population, and of the total population. The latter is the
weighted average of the mean age for the nonmigrant population, fixed at 41.91,
and that for the migrant population, where the weights are to be inferred from
column K(a) in Table 3. As the mean age at entry increases, the mean age of the
migrant population becomes higher, and its weight in the total larger.
Nevertheless, the increase in mean age of the total population averages only 0.11
year for each year of increase in mean age of migrant at entry.

Since it is difficult to perceive whether the observed change in mean age of the
population is large or small in its consequences, we turn to an examination of
the indices of the age distribution, described in the preceding section. These are
shown in Table 5 for various mean ages of migrant at entry. The dependency
ratio varies directly with the mean age of migrant, by about 0.6 percent per year
of age. For perspective on these values, the dependency ratio for the
equilibrium non-migrant population is 1.097, a value exceeded by that for the
total population only when migrants have mean age of at least 30. It is clearly
advantageous, from the standpoint of the dependency ratio, to seek a younger
age distribution of migrants at entry.

Table 4.
Mean Age of Migrant Population and of Total Population,
as a function of mean age of migrants, a.

Mean Age of Population

a Migrant Total
20.0 51.19 43.91
22.5 52.16 44.26
25.0 53.07 44.60
27.5 53.92 4492
30.0 54.70 4521
325 55.40 45.49
35.0 56.02 45.73
375 56.56 45.93
40.0 57.00 46.10

An interesting feature of the other two indices is that the proportion of seniors
very old is invariant over the range of mean entry ages from 20 to 30, and the
labor force birth rate is invariant over the range from 30 to 40. These outcomes
are the algebraic consequences of the assumption of uniform distribution of
migrants by age, in conjunction with the particular age limits used in the
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formulae for the indices. That by no means trivializes the outcome. Provided
the distribution of migrants by age does not depart substantially from uniform,
the indices would show similar insensitivity to mean age of migrant at entry,
over the indicated ranges.

A higher proportion of seniors very old, and a lower labor force birth rate, would
be interpreted as unfavorable. The former is associated with a higher, and the
latter with a lower age at entry. The variation is significant only at the extremes
of entry age, and in any event represents a trade-off between these two
characteristics of the age distribution.

Table 5.
Age Distribution Indices as a Function

of Mean Age of Migrant, a.

a Dependency Percent of Labor Force
Ratio Seniors Birth Rate
Very Old (per thousand)
20.0 1.057 26.8 263
225 1.066 26.8 26.8
25.0 1.079 26.8 273
27.5 1.097 26.8 28.0
30.0 1.120 26.8 28.8
325 1.143 26.9 28.8
35.0 1.162 27.1 28.8
37.5 1.177 27.6 28.8
40.0 1.189 28.3 28.8

The decision to- base the calculations in this section solely on the females
requires some justification. To achieve the objective of a specified ultimate
population size, with fertility and mortality fixed, the key parameter is the
average reproductive value of a female, RM(a). In principle it is feasible to
reduce the proportion migrant in the population by reducing the number of male
migrants, in the limit to zero. Yet female fertility would not remain fixed if
there were a large increase in the female but not in the male population. The
constraint on the supply of prospective parents in such a situation would become
the size of the male population. Doubtless there would be some increase in birth
output, but certainly far less than required to compensate for a substantial
shortfall below replacement in reproductivity.

The implicit condition underlying the use of the net reproduction function for

the receiving population as the basis for calculating a reproductive value for
migrant females is that the supply of partners for the latter is as adequate as it is
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for females in the receiving population. How to measure adequacy in this sense
is a perplexing demographic problem.

The consequences for the above analysis of including males as well as females
are small. For example, consider the proportion of the population migrant.
When the average age of migrant female is 30, the value is 25.9 percent. With
equal numbers of males and female migrants, of the same age, the value is 25.8
percent. There are two reasons why the value is a little less. For any migrant
age, the proportion of total lifetime still to be spent after migration, where age at
migration on average is 30, is 64 percent for females and 62 percent for males
(because their respective survival curves differ). In the second place, the
reproductive value of females, in terms of male births, is about five percent
larger than it is in terms of female births, because of the sex ratio at birth. In
consequence the native-born proportion of males is increased relative to that for
females. In brief, there are differences, but they are insufficient to merit
separate exposition.

Section 5. Qualifications

The migration replacement model described above is an imprecise instrument
for policy guidance. In the first place, the data used (for distribution of migrants
by age and gender) are the amounts of net migration in a particular year; those
numbers have changed appreciably from year to year.

Net migration signifies all change in population size other than births and
deaths. Although this is formally unproblematic, it does not suffice to inform
immigration policy. In the 1994-95 Canadian data, four categories of population
movement constitute net migration: 214,296 immigrants; 22,292 returning
Canadian citizens; 45,862 emigrants; and a net decline of 7,315 in the number of
nonpermanent residents (Statistics Canada, 1996). In the year considered, the
last number was fortuitously trivial, but the same would not have been so in
particular other years. In 1988-89, the subpopulation of nonpermanent residents
increased by 141 thousand; in 1993-94, it decreased by 83 thousand. Policy
with respect to non-permanent residents is a separate consideration from that
concerning the permanent population. Moreover, the size of the former is
difficult to estimate, in large part because of undocumented entries and exits. In
retrospect, it would have been preferable to restrict attention to the permanent
resident population.

The critical variable when one is considering immigration policy is the number
of non-citizens taking up permanent residence in Canada. The other categories
of net migration (returning Canadians, and emigrants) are uncounted; their
numbers must be estimated from administrative data collected for other
purposes. It would be preferable to model these types of population change as
processes dependent on characteristics of the exposed population, as with
mortality and fertility, because they are not subject to regulation. Lacking a
base for returning Canadians, that category can only be handled in an ad hoc
manner.
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The migration replacement model is unsophisticated because the requisite
information is missing, and must therefore be assumed away. With more
information, a considerable advance could be made by distinguishing the native
and foreign subpopulations, and evaluating separately their fertility, mortality
and emigration. As an example of the importance of what is now necessarily
missing, the key element in the calculation of ultimate birth cohort size, in the
migration replacement model, is the ratio of the reproductive value of a foreign
female migrant to the complement of the native net reproduction rate. Native
and foreign net reproduction have been assumed identical, but that may not be
s0.

Furthermore, immigration policy is not determined solely in terms of its
perceived consequences for the receiving population. Most immigrants are
admitted by criteria independent of the achievement of demographic objectives.

The 1976 ITmmigration Act established three classes of immigrant: the family
class, admitted on the basis of family connection; the refugee class, admitted on
humanitarian grounds; and a residual class admitted in terms of criteria like
education and training, but also including kinship. In 1991, the former two
classes were 60 percent of the whole (Basavarajappa et al., 1993). Since their
levels are likely to change over time, there is substantial constraint on the
feasibility of a demographically oriented immigration policy.

The next qualification to the relevance of the models is the assumption — in both
the subreplacement and migration replacement models — that fertility remains
fixed at its current level. Elsewhere (Ryder, 1990), for a comparable population
in most respects, we have argued that future fertility is likely to remain close to
its current value, with a higher likelihood of decline than rise, but the emphasis
should be on the skepticism with which any fertility forecast should be regarded.

Future change in fertility would have large consequences for the outputs of the
migration replacement model. Referring again to the key determinant of
ultimate cohort size, the ratio RM/(1-R,), it is evidently sensitive to fertility
change. To get an impression of the magnitudes involved, we assumed that
fertility became ten percent higher or lower than currently and determined that
the ultimate proportion of the population migrant would decline from 26 percent
to 16 percent in the former case, and would rise to 35 percent in the latter case.
(The elasticity of proportion of population migrants, with respect to fertility
level, is approximately 3.6.) This would be important for the comparisons
reported above because, as noted in the preceding section, all age distribution
measures are affected by the proportion migrant. As a more general statement,
both the subreplacement model and the migration replacement model converge
on the fertility replacement model (in terms of age distribution) as the fertility
level rises toward replacement, and conversely should it decline.

The final set of qualifications concerning the work presented above begins with
the assumption, common to all three models, that mortality remains fixed at its
current level. Mortality decline is a dominant characteristic of the twentieth
century, and it has a major influence on the age distribution, particularly in its
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upper reaches. Moreover, mortality in the older ages is likely to decline
appreciably in the future. Such decline is likely to affect the age distribution
indices in all three models in much the same way. This raises the question of
the validity of the age distribution indices.

To document the decline in mortality, we have calculated, from official life
tables (Nagnur, 1986; Statistics Canada, 1995) mortality rates by age and gender
for 1940-42, 1965-67 and 1990-92. The fifty-year span is divided in two to
monitor change in change. The data are shown in the upper panel of Table 6.
Decline is substantial throughout, although greater in the younger than in the
older ages, and greater for females than for males. Of particular note with
respect to the likelihood of continuation, there is no sign of a slackening of
decline from the first to the second 25 years.

In the lower panel of Table 6, we show the increase in stationary population size
consequent upon these mortality declines. For the replacement fertility model
these would represent changes in the ultimate age distribution. Here the changes
are relatively much greater in the older than in the younger ages. There are two
simple reasons for this. First, the elasticity of change in p, with respect to my is
approximately -m.. In other words, only when mortality is high does a change
in mortality lead to much of a change in survival. Second, gains in survival
cumulate age by age, so that the proportional increase necessarily enlarges with
advance in age. '

In reflection of the changes in stationary population size by age, the age
distribution indices for the 1990-92 life table, in comparison with those for the
1940-42 life table, show an increase of 18 percent in the dependency ratio, an
increase of 78 percent in the proportion of seniors very old, and a decrease of 4
percent in the labor force birth rate. These are the kinds of change to be
anticipated henceforth, should mortality continue to decline.

The reshaping of the age distribution of replacement populations, particularly in
the older ages, however measured, has been the subject of concem if not alarm.
Some reconsideration seems in order. The index which changes most
dramatically is the proportion of seniors who are at least age 80. The intent of
this index is to measure the extent of frailty in the senior population. Based on
the 1940-42 life table, the value of the measure was 13 percent; for the 1990-92
life table it was 23 percent. The assumption implicit in the comparison is that
the same chronological age (80) has the same signification with respect to
frailty, at the two time points, and thus independent of the change in survival
between them.

When the chronological age is used to indicate frailty, the referent is length of
time elapsed since birth. An alternative, more appropriate, referent in the
circumstance would seem to be the length of time that will elapse until death.
(Cf. Ryder, 1975). Accordingly, as an alternative measure, we suggest the
proportion of the senior population who die within some specified arbitrary
number of years, say five. In life table terms, the calculation is 1-Tss/Te. That
gives 28.2 percent for 1940-42 and 22.4 percent for 1990-92.
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Table 6.
Change Over Time in Two Life Table Parameters

percent decrease in mortality ,M; from 1940-42 to 1965-67
and from 1965-67 to 1990-92

Female Male
1st 25 2nd 25 1st 25 2nd 25
years years years years
0/20 64 66 60 64
20/40 68 37 37 27
———40/60———41 35 12 40
60/80 34 34 8 29
80+ 23 . - 30 15 18

Percent increase in stationary population size ,L,

Female Male

1st 25 2nd 25 1st 25 2nd 25

years years years years
0/20 64 66 60 64
20/40 68 37 37 27
40/60 4] 35 12 40
60/80 34 34 8 29
80+ 23 30 15 18

Thus the index used in the body of the paper shows a rise (of 78 percent)
whereas the new index, designed for the same purpose, shows a decline (of 21
percent). It is not surprising that the change is in the opposite direction. Since
the particular cutting points are arbitrary, consider the subpopulation above age
X. The proportion of them who are above age y is T,/Ty; that is the form of the
original measure. But the proportion of them who die within (y-x) years, the
form of the newly proposed measure, is the complement of this, 1- T,/Tx. No
wonder they move in opposite directions. If the case for revision is valid, then
the measure used in the above text is not only ill-suited, it is perverse.

The question of the appropriateness of using measures based on fixed

chronological ages for comparisons over time is quite general. Consider, for
example, the age limits of the dependency ratio. Age at entry is likely to rise
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over time as the demands for education increase with technological advance.
The question of the retirement age is more complex. To the extent that it is
justified as a physiological correlate, it requires reconsideration as mortality
declines. It is partly dependent on custom and law, and they may change over
time. To some extent it reflects personal choice, but to some extent the choice
of the employer, based on evidence or assumptions concerning the decline of
productivity with age. The issue is not the particular upper age limit selected for
calculating the index, but retaining the same limit over time.

A comparable issue concerns the equal treatment by gender in calculating the
dependency ratio. If that ratio is used to indicate the taxes required from
workers to support those in the dependent ages, and if the entry of women into
the labor force is strongly impeded by social practice, a measure which fails to
take gender into account is faulty. Relaxation of those impediments over time
would realistically reduce the ratio of dependents to workers, but that would not
be seen from any age distribution index in which the role of gender is held fixed
over time.

The general point is that the measures of age distribution reported in the main
body of the text, because they implicitly assume the invariant substantive
significance of age and gender, are suspect during a time of mortality change
and more broadly of social change. Indeed it is not unlikely that large changes
in indices measured with fixed boundaries by age and gender will provoke not
only responses in the form of immigration policy but also responses directed at
the boundaries themselves. Status ascription by gender has been and will
continue to be an important institutional variable in projections; status ascription
by age is likely to become a comparably important institutional variable. In
consequence, exercises like the present one can provide little more than a
suggestive skeleton of what is required for meaningful analysis.
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