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I. INTRODUCTION AND MOTIVATION
Considering the ubiquity of quantum emitters in 

both device application and understanding throughout 
all branches of the natural sciences, it should not be 
surprising to learn just how much research has gone into 
the prospect manipulating their behavior in the hopes of 
producing superior device performance  [1, 2]. Yet, despite 
the best efforts of the intellectual giants of the field, until 
incredibly recently a satisfactory method for significant 
broadband manipulation of emitter lifetime, the key 
parameter governing the properties of quantum emitters, 
had not been found  [3].

To gain a better understanding of what this parameters 
means, we begin by recalling Fermi’s golden rule:

     (1)

Where Ψ represents the intial quantum state,             the 
final density of states and H the Hamiltonian of the  system  
[4].

This equation allows us to see that the lifetime of an 
excited state relies heavily on the final density of states 
which the quanta of energy may occupy. For fluorophores, 
the examples of interest in this article, this means the 
lifetime of the excited vibrational state is determined by 
the states that the released photon could possibly occupy 
upon emission. Or, from a perhaps more instinctively 
strange anthropomorphic perspective, a photon is much 
more likely to come into being if its feelers find many places 
where could fit in. With this somewhat odd reflection in 
mind, engineering the lifetime of fluorophores, or any other 
quantum emitter, is a matter of altering the number of 
states a photon of a given frequency could exist in, or more 
concisely the photonic density of states.

Conventionally, the primary means for producing the 
desired enhancement to the photonic density of states has 

been through the use of resonator cavities, based on the 
ingenious work of noble prize winning physicist Edward 
Purcell. While perhaps overly simplistic, the effect bearing 
Purcell’s name can be understood almost entirely from 
considering an argument about emitted power1:

Given that it is possible to couple power from a photon 
emitter into the resonant modes of a cavity above and 
beyond what is possible in free space, provided there is an 
overlap between the bandwidth of the emission and that of 
the resonant mode [5]. In equal measure, it makes intuitive 
sense that an increase in the net power output must be 
directly tied to a reduction of the lifetime of any excited state 
from which photon emission occurs. Therefore, resonant 
cavity modes must cause an enhancement to the photonic 
density of states, and in turn offer an engineering solution to 
achieving control over devices based on quantum emitter .

Unfortunately, in practical application the resonant 
cavity approach is severally limited by the typically minuet 
bandwidth of resonant cavity modes in comparison to 
that of room temperature photonic emitters [6]. In order 
to produce a meaningful enhancement of the photonic 
density of states , required to get the best possible 
results from sensing and detection based devices, a new 
approach must be taken. This is no easy task in view of the 
possibilities presented by standard materials.

However, recent results suggest that this does not 
mean a new solution to broadband augmentation of the 
photonic density of states is not possible. The maturation 
of nanostructure fabrication techniques has turned many 
fantasies into practical standard recipes, and its a good 
guess to assume that once again it will play a leading role 
[7]. Using arrays of designer nanostructures, metamaterials 
with properties above and beyond anything found in nature 
can now be produced and functionally implemented with 
a high degree of precision; creating a new paradigm for a 
host of long standing engineering problems. As it currently 
appears, the problem of how to alter the photonic density 
of states can certainly be included in this category.

II. UNDERSTANDING HYPERBOLIC METAMATERIALS
Isofrequency Surfaces and Maxwell’s Equations

Perhaps the most efficient way to understanding 
the hyperbolic metamaterial solution to enlarging the 
photonic density of states is to return to the fundamental 
electromagnetic properties necessitated by Maxwell’s 
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Fig. 2 Cavity to Reduce Emitter Lifetime Via the 
Purcell Effect Michler et. al

1. A thorough derivation of the Purcell effect is fairly involved and will not be dealt 
with in this article.
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equations [8]:
      (2)

      (3)

      (4)

      (5)

Assumming plane wave solutions of the form:

      (6)

Where k the wave vector with a magnitude defined by      . 

Taking a simple approach, this quantity can be understood 
as a measure which is inversely proportional to wavelength 
that dictates the propagation direction of the plane wave 
by (6). If the curl of (5) is taken, in conjunction with the result 
of (3), in a linearly polarisable material free of charges and 
currents it can be found that:

      (7)

Which, if the frequency is fixed, has a form equivalent to 
the mathematical description of a sphere.

We can now easily develop a graphical understanding 
of the photonic density of states. Given that each possible 
photonic state can be represented in wave vector space as 
a small cube of some dimension, dictated by the properties 
of the material in which the surface is plotted, the photonic 
density of states can be pictured as the amount of 
volume that would be added if the sphere were given an 
infinitesimal thickness, and turned into a shell, through an 
infinitesimal addition to the band of its frequency (7). This 
strictly geometric interpretation depicts a number of very 
important realizations. In particular, it shows the number of 
photonic states must be fixed as the volume of an added 
shell is always finite2.

Hyperbolic Metamaterials
Bearing this in mind, we can now begin to consider more 

complicated scenarios. If the dielectric constant of (7) were 
directional and of undefined sign, then (7), following the 
treatment descried in the beginning of this section, would 
be transformed into

                                                                      (8)
      

Which serves as the generating equation for a vast range 
of conic surfaces. In particular, if in two directions the 
dielectric were of positive sign and in the other negative, 
technically known as an extreme anisotropy in the dielectric 
tensor3, the relation of a hyperboloid would result. Returning 
briefly to the graphical scheme presented earlier in this 
section, if such a dispersion relation were possible then an 
unbounded density of states would be produced by virtue 
of the unbounded wave vector magnitude describe by:

      (9)

As has recently been explored in the context of creating 
a hyperlens  [9], a certain class of metamaterials, known as 
hyperbolic metamaterials, are capable of displaying

this exact behaviour. With a reasonable concept of 
the basis of the metamaterial solution firmly in place, our 
attention may now turn to how such materials may be 
fabricated, and a more rigorous description of their exact 
effects on photonic emitters.

Effective Medium Theory
On the macroscopic scale, the means for producing 

hyperbolic metamaterials, and thus gaining improved 
control over the decay rate of fluorophores, is strongly 
tethered to the averaging procedures4 which describes the 
reaction of an electromagnetic wave to sub wavelength 
features. If we consider a stack of materials with dielectric 
constants of alternating magnitude, it is not difficult to 
show that the relations imposed by Maxwell’s equations 
(2) between the electric flux density,   , and fields,   , of the 
alternating slabs are given by:

      (10)

      (11)
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Fig 3. Isofrequency Surface of the Free 
Space Dispersion Relation

2. The diffraction limit arises as the maximum magnitude of the wave vector, for 
propagating waves, is bound by the isofrequency sphere. Were one of the wave 
vector components larger than the fixed radius dictated by (7) one of the other 
two wave vector components would have to be imaginary, resulting in a decaying 
or evanescent wave through (6). Isofrequency surfaces may also be used to show 
why emission in hyperbolic metamaterial must be directional. As energy must 
always flow in the direction of group propagation, which through the gradient is 
always perpendicular to the iso-surface, for any particular hyperbolic metamate-
rial there will be a perferred direction for energy flow.

3. A tensor is an array of the second rank which maps the directionality of the 
dielectric into a form that can be used in conjunction with Maxwell’s equations 
(2-5).

4. For objects much smaller than the wavelength of light at a given frequency the 
bulk or macroscopic behavior can be well modeled by assuming the small objects 
form an effective medium. One of the more popular procedures for determining 
the parameters of this medium known as the Maxwell-Garnett theory.
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      (12)

Which, if the wavelength of the electromagnetic 
perturbation is sufficiently large in comparison to the 
thickness of a few layers, such that it may be assumed 
that and   remain constant over the interval, give rise to 
the effective media descriptions:

      (13)

      (14)

Where P represents a fill factor based on the proportion 
of one of the two alternating slabs to the other,           .

Looking carefully at these equations and recalling the 
result of (8), it can be seen that if one of the dielectrics 
is given a positive magnitude, which in the context of 
dielectrics will be referred to as a dielectric, and the 
other a negative magnitude, characteristic of metals, that 
the desired hyperbolic dispersion relation would result. 
Despite the seeming superficiality of this argument, the 
result is quite accurate provided that all of the assumptions 
made in its construction are satisfied. To implement a 
hyperbolic metamaterial all that is needed is defined layers 
of alternating metal and dielectric of the correct thickness.

Surface Plasmon Polariton (SPP)
While the effective medium approach is an extremely 

useful description of the macroscopic characteristics 
of a hyperbolic metamaterial (HMM), it provides little 
explanation of how these phenomena arrive from the 
nanosized building blocks. Thus, in order to have a firm 
enough grasp of the concepts involved in creating HMM 
to move on to a satisfactory exploration of their effects on 
fluorophores it is crucial to also understand the surface 
plasmon polariton state.

Directly, a surface plasmon polariton (SPP) mode is as 
quanta of energy trapped in an oscillatory mode which 
couples the free electron density at a surface to incoming 
photons. Or, in turning to the mathematical sophistication 
of Maxwell’s equations, as a TM electromagnetic boundary 
wave solution described by:

      (15)

(Found by guessing at the existence of a state 
characterized by a magnetic field perpendicular to the 
plane and an electric field in the other two perpendicular 
directions5 and an application of the boundary conditions 
from Maxwell’s equations.)6 (10)(11)

 While the general shape and field confinement of the 
SPP solution is interesting in and of itself, it is in applying 
the Drude model: 

where      is a material property known as the plasma 
frequency,  (8) to (15) that truly exciting behaviour occurs.

From the preceding plot of the SPP dispersion 
relation it can be seen that at the frequency    the over 
all behaviour of wave vector frequency relation becomes 

asymptotic; meaning that a photon coupled to the free 
electron density at the surface of a metal could once again 
access an essentially unlimited number of states by virtue 
of the unbounded magnitude of its wave vector. This is 
no coincidence, it turns out that through coupling to the 
SPP modes which exist simultaneously at each metal 
dielectric interface that the bulk properties of a HMM can 
be recovered . As these views are inherently interreliant, 
this consideration also gives an inkling to which metals are 
best suited for hyperbolic metamaterial implementations7.
We are now ready to pursue the mathematical treatment 
required to more fully comprehend fluorophore lifetime in 
the presence of hyperbolic metamaterials.

MATHEMATICAL TREATMENT FOR CALCULATING 
LIFETIME NEAR METAMATERIALS
Green’s Function Method

We will now derive a rather novel Green’s function 
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5. Electromagnetic fields with this type of orientation are more commonly referred 
to as transverse magnetic, or TM solutions.

6. Historically, the idea of a SPP was introduced by Zenneck and Sommerfeld 
to acount to the extra energy observed in radio transimissions compared to the 
expected free space values.

7. Based off this discussion it would seem that any metal with a strong SPP mode 
would be a good candidate. 

8. The Green’s function method for solving differential equations is based on the 
response of a system to a point source. This solution can then be moved and 
weighted to solve the problem for more complicated sources.
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approach to determine the lifetime of a quantum emitter, 
building on two primary considerations. First, as the 
Green’s function method 8 of solving partial differential 
equations is at its deepest level a complete description 
of the correlation between the sources and responses of 
a given system; a more thorough understanding of the 
underlying physics of a problem can generally be gleamed 
through the Green’s Function solution. Secondly, a proper 
mathematical description of the emitted power requires that 
we consider free space decaying waves which in general 
cannot be handled by first order perturbation theory.

General Form
Through an examination of the Green’s function solution 

to the Helmholtz equation, we will finally assemble the 
necessary mathematical machinery to reach our final 
theoretical task of determining fluorophore lifetime above 
a metamaterial.

      (16)

      (17)

      (18)

Now, setting r’=0 and transforming the problem into 
wave vector space (q), we get:

      (19)

      (20)

      (21)

Which must be true for all r, so:

      (22)

This equation, if we displace the poles from the real axis 
and make a transformation to polar coordinates, can be 
solved by making use of Cauchy integral theorem, leading 
to the famous Lippmann-Schwinger equation:

      (23)

      (24)

Which additionally, by making the ansatz that  , 
is also the general equation of a scattering potential.

      (25)

Maxwell’s Equations and Green’s Functions
Our next undertaking is to cast Maxwell’s equations in 

the form of the Helmholtz equation in order to make use of 
the results of the previous subsection. Using the fact that 
the electromagnetic vector potential [8] may be defined as:

      (26)

      (27)

Maxwell’s equations can be used to create a Helmholtz 
equation for the vector potential, and in turn the electric 
field, in linearly polarisable media by taking taking the cross 
product of (26) and using the results of (5) and (27) in the 
Lorentz guage leading to:

      (28)

Which, in Cartesian coordinates, through the use of the 
previous subsection and the well known Wyle identity has 
a Green’s function form of:

      (29)

related to the Green’s Function of the electric field by 

      (30)

Where the symbols are tensors and               .

Power and Final Results
Recalling the fundamental electrodynamic result that:

      (31)

The output power of a quantum emitter in free space, 
making use of the Green’s Function approach presented 
earlier, can be determinedto be9: 

      (32)

Where n is the material index, μ the magnetic permeability 
and α the dipole moment of the photonic emitter.Note 
that this is a correction to the standard Larmor formula 
of                      previously only observed following arguments 
from quantum electrodynamics. Taking this result and 
making use of the semi-classical result based on Fermi’s 
golden rule that:

      (33)
Where Γ is the photonic density of states. If we were to 

go back through the procedures presented in this section 
with the amendment that

      (34)

We would come to the final conclusion that in the 
presence of a material slab the emitted power, inversely 
proportional to lifetime, is given by:

      (35)

Where          , d is the thickness of the 
slab,  the reflection coefficient of the incident p-polarized 
electromagnetic wave and τ the lifetime.

(∇2 + k2)ψ =
2m

�2
V ψ

k =
2mE

�2

(∇2 + k2)g(r, r′) = δ(r)

g(r) =

∫∫∫
d3q

(2π)3
g(q)ei�q·�r

δ(r) =

∫∫∫
d3q

(2π)3
ei�q·�r

∫∫∫
(∇2 + k2)

d3q

(2π)3
g(q)ei�q·�r =

∫∫∫
d3q

(2π)3
g(q)ei�q·�r

g(q) =
1

k2 − q2

g(r) = −eikr

4πr

Ψ = Ψo −
∫

eik|r−r′|

4π|r − r′|
2m

�2
V (r′)ψdV ′

ψo = ei
�k·�r

Ψ = Ψo −
∫

eik|r−r′|

4π|r − r′|
2m

�2
V (r′)ei

�k·�rdV ′

∇2 �A− µε

c2
∂2 �A

∂t2
=

−4πµ �J

c

g(r) =
i

8π2

∞∫∫

−∞

∂kx∂ky
kz

ei(kxx+kyy+kzz)

G↔ = [I↔ +
�∇ · �∇
k21

]g(r)

k1 =

√
εµ

c

〈P 〉 =
∫

1

2
Re( �J · �E)dV

〈P 〉 = nµω4

3c3
|ξ|2

Γ =
P

�ω

〈P 〉 = nω4

3c3
|ξ|2

G↔ = G↔
emitted +G↔

reflected

Γ

Γo
=

τo
τ

= 1 +
3

2
Re

[∫ ∞

0

rp(s)S
3e2iszK0∗d

sz
ds

]

9. In this derivation it was assumed that the dipole emitter is pointing up out of 
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Fig. 7. Sample Quantum Emitter Lifetime Above a Metallic Slab Fig. 8. Sample Quantum Emitter Power Spectrum Above a Metallic Slab

Fig. 9. Sample Quantum Emitter Lifetime Above a Dielectric Slab Fig.10. Sample Quantum Emitter Power Spectrum Above a Dielectric Slab

IV. CONCLUSIONS 
Lifetime near a Homogeneous Slabs

Having completed our tour of the theoretical principles 
involved in calculating the lifetime of a quantum emitter in 
the presence of any type of material, we can now turn to 
the final results.

For materials with negative dielectric constants, as the 
fluorophore descends closer and closer to the interface

more power begins to couple to the plasmonic mode 
offering some degree of control over the lifetime of the 
fluorophore. However, as can be seen in the power spectrum 
plot, the dominant contributions to the enhancement of 
the photonic density of states are coming from coupling 
to lossy non radiative modes, a phenomenon known as 
quenching10. As this emitted power may not be extracted 
from the material for detection the situation is less than 
ideal.

Materials with strictly positive dielectric constants, as 
initially predicted, also fail to provide the needed photonic 
density augmentation to provide a suitable solution to 
engineering the lifetime of fluorophores. As can be seen 
from the power spectrum graph of a model dielectric 
(seen above), the decrease in photonic lifetime in the 
dielectric case is due to the resonant Fabry-Perot modes 

of the slab producing a increase in the photonic density of 
states via the Purcell effect. As previously discussed in the 
introduction of this report, this is an unsatisfactory solution 
in several regards.

Lifetime near Metamaterial Slabs11

Contrary to the plots produced by a homogeneous 
slab, the modeled behaviour of a quantum emitter above a 
metamaterial provides significant lifetime reduction with the 
dominant portion of the power coming from the coupling 
into surface plasmon modes. With this conformation of our 
intial inquiry we are ready to produce first order designs of 
hyperbolic metamaterials for sensing applications.

Designing Metamaterials for Fluorophore Sensing
Creating the best initial design for HMMs to enhance 

fluorescence based detection beings with choosing the 
proper materials. Drawing from the theoretical investigation 
of the underlying physics of hyperbolic metamaterials, we 

10. This can be determined graphically by noting that only one fairly narrow peak 
exists, yet the lifetime drops quite quickly.

11. The difference between type one and two begin which of the dielectric tensor 
components is negative. In type 1 this is parallel component; type 2 the 
perpdicular.
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can deduce that in part this amounts to choosing the metal 
with the smallest imaginary dielectric component, and a 
complementary dielectric to create reasonable fill factors 
(14) in the ranges of interest. However, also of concern is the 
fact that these designs are meant to eventually to provide 
a basis for creating physical devices, and that as such only 
materials and procedures which could be accessed by the 
average high end fabrication facility should be proposed. 
With these considerations in mind, a careful search dictated 
by material parameters leads us to focus on Silver, due to it 
having the smallest imaginary dielectric component as well 
as favourable properties for fabrication, and TiO2 for the 
reasons mentioned above12.

The fill factor for these materials can then be calculated 
at the wavelengths of interest13 by setting the value of the 
dielectric parallel to the interface equal to negative one, in 
order to provide the best possible coupling as predicted by 
Maxwell’s equations. Leading to the following results:

Taking these results and performing a similar procedure 
to the work of Joseph Lakowicz [11], leads to us to the 
conclusion that it is reasonable to assume that HMM 
designs will offer at least an order of magnitude increase 
above and beyond the resolution of state of the art 
silver fluorescence based sensors. Considering the ease 

with which HMM systems can be designed, commerical 
application is probable and possibly already in progress.

V. CONCLUSION
In this article I have presented the basis for understanding 

how the lifetime of a quantum emitter can be manipulated 
through the use of hyperbolic metamaterials. Although 
the details of how a reduced lifetime corresponds to 
enchanced resolution is left to other authors [12], the basic 
idea of a flash begin easier to detect than a constant low 
level source should be reason enough to believe that this 
is indeed the case. If you have any questions about the 
article, or would like more information on any of the topics 
presented, please feel free to email address listed at the 
beginning of the article.

12. Silver may be deposited down to approximately 11nm by sputtering and in 
thinner films by atomic layer deposition[10]. TiO2 can be deposited over silver 
ether by chemical vapour deposition or by once again using atomic layer depotion.

13. Six hundred and eight hundred nanometer wavelengths were chosen due to 
the large number of commonly used fluorophores in these regions, such as QDOT 
800 and AlexaFluor 555 (source: Invtrogen).

Fig.11. Sample Quantum Emitter Lifetime Above a Slab of Type 1 HMM Fig.12. Sample Quantum Emitter Power Spectrum Above a Slab of Type 1 HMM

Fig. 13. Sample Quantum Emitter Lifetime Above a Slab of Type 2 HMM Fig.14. Sample Quantum Emitter Power Spectrum Above a Slab of Type 2 HMM
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Table 1. Comparison of Reflectance between Metamaterial Design and Current 
Plasmonic Enhanced Slab

Material Reflectance Average [%]

Silver (800 nm) 86.9

Silver (600 nm) 73.6

HMM (800 nm) 19.8

HMM (600 nm) 19.8

Fig. 15. Comparison of Lifetime Between HMM Design and Current Plasmonic 
Enhanced Slab at 800nm

Fig.16. Comparison of Lifetime Between HMM Design and Current Plasmonic 
Enhanced Slab at 600nm
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