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ABSTRACT

We present the results of a systematic study of the evolution of low- and intermediate-mass X-ray
binaries (LMXBs and IMXBs). Using a standard Henyey-type stellar-evolution code and a standard
model for binary interactions, we have calculated 100 binary evolution sequences containing a neutron
star and a normal-type companion star, where the initial mass of the secondary ranges from 0.6 to 7 M⊙

and the initial orbital period from ∼ 4 hr to ∼ 100 d. This grid of models samples the entire range
of parameters one is likely to encounter for LMXBs and IMXBs. The sequences show an enormous
variety of evolutionary histories and outcomes, where different mass-transfer mechanisms dominate in
different phases. Very few sequences resemble the classical evolution of cataclysmic variables, where the
evolution is driven by magnetic braking and gravitational radiation alone. Many systems experience a
phase of mass transfer on a thermal timescale and may briefly become detached immediately after this
phase (for the more massive secondaries). In agreement with previous results (Tauris & Savonije 1999),
we find that all sequences with (sub-)giant donors up to ∼ 2 M⊙ are stable against dynamical mass
transfer. Sequences where the secondary has a radiative envelope are stable against dynamical mass
transfer for initial masses up to ∼ 4 M⊙. For higher initial masses, they experience a delayed dynamical
instability after a stable phase of mass transfer lasting up to ∼ 106 yr. Systems where the initial orbital
period is just below the bifurcation period of ∼ 18 hr evolve towards extremely short orbital periods
(as short as ∼ 10 min). For a 1 M⊙ secondary, the initial period range that leads to the formation of
ultracompact systems (with minimum periods less than ∼ 40 min) is 13 to 18 hr. Since systems that start
mass transfer in this period range are naturally produced as a result of tidal capture, this may explain
the large fraction of ultracompact LMXBs observed in globular clusters. The implications of this study
for our understanding of the population of X-ray binaries and the formation of millisecond pulsars are
also discussed.

Subject headings: binaries: close – stars: neutron – pulsars: general – X-rays: stars – white dwarfs

1. introduction

Low-mass X-ray binaries (LMXBs) were discovered
nearly 40 years ago, and there are now ∼ 100 known in
the Galaxy. Based on their short orbital periods of . 10 d
and the absence of luminous companion stars, it is gen-
erally inferred that the donor stars in these systems are
typically low-mass stars (i.e., . 1M⊙). However, to-date
Cyg X-2 provides the only case in which a low mass for
the donor star has actually been confirmed dynamically
(Casares, Charles, & Kuulkers 1998; Orosz & Kuulkers
1998). Nonetheless, a fairly compelling picture of LMXBs
has emerged over the years, wherein a low-mass donor
star, of varying evolutionary states, transfers mass through
the inner Lagrange point to a neutron star (Lewin, van
Paradijs, & van den Heuvel 1995). Only relatively recently,
however, has attention been focused on the possibility that
many, or perhaps most, of the current LMXBs descended
from systems with intermediate-mass donor stars (here-
after IMXBs).

It has long been conventional wisdom that, if the donor
star in an X-ray binary is significantly higher in mass than
the accreting neutron star, mass transfer would be unsta-

ble on a dynamical timescale, and therefore such systems
would not survive. The first systematic study which indi-
cated that such a view was too simplistic was carried out
by Pylyser & Savonije (1988, 1989), who considered com-
pact binaries with initial donor masses up to 2 M⊙ and
initial orbital periods of . 2 d. Tauris & Savonije (1999)
extended this work to show that, even if the donor star is
a (sub-)giant, dynamical mass transfer is avoided provided
that the initial donor mass is . 2 M⊙.

More recent theoretical work in trying to understand the
origin of the “LMXB” Cyg X-2 and, in particular, the high
intrinsic luminosity of the donor star indicates that the
mass of the donor must originally have been substantially
larger (∼ 3.5 M⊙) than the current value of ∼ 0.6 M⊙

(King & Ritter 1999; Podsiadlowski & Rappaport 2000).
The case of Cyg X-2 is particularly important since it pro-
vides direct observational evidence that, even when the
mass-transfer rate exceeds the Eddington rate by several
orders of magnitude, such intermediate-mass systems can
survive this phase of high mass-transfer by ejecting most
of the transferred mass and subsequently mimick LMXBs.
Independently, Davies & Hansen (1998) have suggested
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that IMXBs may be the progenitors of recycled pulsars in
globular clusters. All of these recent developments have
led to a resurgence in interest in IMXBs (also see Kolb et
al. 2000; Tauris, van den Heuvel, & Savonije 2000).

In order to approach this problem in a more systematic
way, we have carried out binary stellar evolution calcula-
tions which cover a broad grid of starting binary parame-
ters, specifically the mass of the donor star, M2, and the
orbital period at the start of the mass-transfer phase, Porb.
At fixed M2, the value of initial orbital period effectively
determines the evolutionary state of the donor star. This
library of models comprises 17 different donor-star masses
between 0.6 M⊙ and 7 M⊙, and up to 8 different evolu-
tionary states (or, alternatively, values of Porb). The ini-
tial orbital periods span the range from ∼ 4 hours to 100
days. The starting parameter values associated with this
library of models are summarized in Figure 1. In this figure
we show the initial binary parameters in a Hertzsprung-
Russell (H-R) diagram for the companion star. Evolution-
ary tracks for stars of the same mass, but which evolve
as single stars are superposed for reference. Contours of
constant initial orbital period for the case of Roche lobe
overflow onto a neutron star of 1.4 M⊙ are also included.

In our binary evolution models, once mass transfer has
commenced, it is sustained by either (i) systemic angular-
momentum losses (e.g., magnetic braking or gravitational
radiation), or (ii) expansion of the donor star due to nu-
clear and/or thermal evolution. The mass transfer may
proceed on any of the timescales implicit in the mecha-
nisms listed above, or may in fact proceed on a dynamical
timescale under certain conditions. All of these are ex-
plored in detail in this study.

During the mass transfer phases, these objects will gen-
erally appear as X-ray sources (possibly LMXBs, IMXBs).
These sources could be steady or transient, depending on
the size and temperature of the accretion disk and on the
mass transfer rate through the disk. At the end of the
mass-transfer phase, many of these systems will become
binary radio pulsars, wherein the neutron star has been
spun up to high rotation rates by the accretion of matter.

One of the main objectives of this study is to provide
a library of models that covers the whole range of param-
eters for LMXBs and IMXBs using a self-consistent set
of binary calculations and to discuss the various physical
phenomena encountered in the process. In a subsequent
study (Pfahl, Podsiadlowski, & Rappaport 2001), we will
use this library to study the population of LMXBs and
IMXBs as a whole by integrating them into a binary pop-
ulation synthesis code and by comparing the results with
the observed population.

In §2 of this paper we describe in detail the stellar evo-
lution code and the binary model used in this study. In
§3 we discuss the various types of binary sequences en-
countered and compare them to previous studies. In §4
we consider the end products of this evolution and present
a new case study for the formation of ultracompact X-ray
binaries. Finally in §5 and 6, we discuss the implications
of these results for the population of X-ray binaries and
the formation of binary millisecond pulsars.

2. binary calculations

2.1. The Stellar-Evolution Code

All calculations were carried out with an up-to-date,
standard Henyey-type stellar evolution code (Kippenhahn,
Weigert, & Hofmeister 1967), which uses OPAL opacities
(Rogers & Iglesias 1992) complemented with those from
Alexander & Ferguson (1994) at low temperatures1. We
use solar metallicity (Z = 0.02), a mixing-length parame-
ter α = 2 and assume 0.25 pressure scale heights of con-
vective overshooting from the core, following the recent
calibration of this parameter by Schröder, Pols, & Eggle-
ton (1997) and Pols et al. (1997). To include the effects
of pressure ionization in the equation of state, which is
important for low-mass stars, we adopted the thermody-
namically self-consistent formalism of Eggleton, Faulkner,
& Flannery (1973) and calibrated the continuum depres-
sion term so that our models for single stars compare well
with the detailed models of Baraffe et al. (1998). Our
models agree with these models typically within a few per
cent in radius (for masses as low as 0.1 M⊙), although their
luminosities may differ by as much as ∼ 20 per cent. This
may be due, in part, to the fact that we required a helium
abundance of 0.295 for α = 2 to produce a good solar
model at the present age of the Sun, as compared to their
value of 0.282 for α = 1.9. Our single-star models become
fully convective at a mass of 0.351 M⊙.

2.2. The Binary-Evolution Code

Each of the binaries initially consists of a neutron-star
primary with an initial mass M1 = 1.4 M⊙ and a normal-
type secondary of mass M2. The effective radius of the
Roche lobe, RL, is calculated with the formula of Eggle-
ton (1983),

RL = a
0.49 q−2/3

0.6 q−2/3 + ln(1 + q−1/3)
, (1)

where a is the orbital separation and q = M1/M2 the mass
ratio of the binary components. To calculate the mass-
transfer rate, Ṁ , we adopted the prescription of Ritter
(1988),

Ṁ = Ṁ0 e
R−RL

Hp , (2)

where R is the radius of the secondary and Hp the pres-

sure scale height at its surface. The constant Ṁ0 is cal-
culated according to the model of Ritter (1988). The so-
lution of this equation requires an iteration in the stellar
models. We follow the method described by Braun (1997),
which uses a combined secant/bisection method (the Brent
method; see, e.g., Press et al. 1992).

Angular-momentum loss due to gravitational radiation
is calculated according to the standard formula (Landau
& Lifshitz 1959; Faulkner 1971),

d lnJGR

dt
= −

32

5
G3 c5 M1M2(M1 + M2)

a4
, (3)

where G and c are the gravitational constant and vac-
uum speed of light, respectively. To calculate the angular-
momentum loss due to magnetic braking, we use the pre-
scription of Rappaport, Verbunt, & Joss (1993) (their
eq. 36 with γ = 4), which is based on the magnetic-braking
law of Verbunt & Zwaan (1981),

d JMB

dt
= −3.8 × 10−30 M2 R4 ω3 dyn cm. (4)

1 The opacity tables were kindly provided to us by P. P. Eggleton.
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In this equation ω is the angular rotation frequency of
the secondary, assumed to be synchronized with the orbit.
We only include full magnetic braking if the secondary
has a sizable convective envelope, taken to be at least 2 %
in mass (see also Pylyser & Savonije 1988). For secon-
daries with convective envelopes smaller than 2 %, we re-
duce the efficiency of magnetic braking by an ad hoc factor
exp{−0.02/qconv + 1}, where qconv is the fractional mass
of the convective envelope. We also assume that magnetic
braking stops when the secondaries become fully convec-
tive (Rappaport et al. 1983; Spruit & Ritter 1983).

We do not follow the tidal evolution before the onset of
mass transfer (see, e.g., Witte & Savonije 2001), but start
our binary sequences assuming that the systems have al-
ready circularized when the secondaries are close to filling
their Roche lobes; to be precise we start our calculations
when the mass transfer rate as given by equation (2) is
∼ 10−14 M⊙ yr−1.

For each sequence, we need to specify what fraction, β,
of the mass lost by the donor is accreted by the neutron
star and the specific angular momentum of any matter that
is lost from the system. We scale the latter with the spe-
cific orbital angular momentum of the neutron star, i.e.,
assume that the angular momentum loss due to mass loss
from the system is given by

d JML

dt
= −α (1 − β) a2

1 ω Ṁ, (5)

where α is an adjustable parameter and a1 the orbital ra-
dius of the neutron star. The change of the orbital separa-
tion due to the systemic mass loss alone can be calculated
analytically according to

a1

a0
=

(

M1
2

M0
2

)C1
(

M1
1

M0
1

)C2
(

M1
1 + M1

2

M0
1 + M0

2

)C3

, (6)

where superscripts 0 indicate initial values and super-
scripts 1 final values and where the exponents are given
by

C1 = −2

C2 = −2 − 2α (1 − β)/β (7)

C3 = 1 − 2α.

When β = 0, equation (6) has to be replaced by

a1

a0
=

(

M1
2

M0
2

)C1
(

M1 + M1
2

M1 + M0
2

)C3

× exp

{

2α

(

M1
2 − M0

2

M1

)}

. (8)

In all of our sequences, we take α to be 1, which implic-
itly assumes that all the mass lost from the system is lost
from the neighborhood of the neutron star (or its accre-
tion disk), and set β, somewhat arbitrarily, equal to 0.5.
In addition, we limit the maximum accretion rate onto
the neutron star to the Eddington accretion rate, taken
to be Ṁ = 2 × 10−8 M⊙ yr−1 and kept constant through-
out each run. In our calculations with relatively massive
secondaries, the mass-transfer rate can exceed the Edding-
ton accretion rate by many orders of magnitude. Most of
this excess mass must be lost from the system, as the case
of Cyg X-2 has demonstrated. This mass loss may, for
example, occur in the form of a relativistic jet from the

accreting neutron star or a radiation-pressure driven wind
from the outer parts of the accretion disk (see, e.g., King
& Begelman 1999). Evidence for both of these processes is
seen in the X-ray binary SS 433 (Blundell et al. 2001), the
only system presently known to be in an extreme super-
Eddington mass-transfer phase.

Since the pressure scale height at the surface of the
donor is generally a small fraction of the stellar radius
(often as low as ∼ 10−4 R), the calculation of the mass-
transfer rate according to equation (2) requires that the
radius of the star be calculated to very high precision.
To avoid discontinuous changes in radius and hence Ṁ , it
is important that the chemical profile of the initial star is
well resolved and that abrupt changes in the surface abun-
dances (for example, as a result of dredge-up) are avoided.
To calculate mass loss efficiently, we introduced a moving
mesh in the outermost 5 % of the mass of the star. We also
assumed that the outermost 10−4 of the envelope mass of
the donor star was in thermal equilibrium. This is neces-
sary since in each time step we typically take off a much
larger fraction of the mass of the star and since the struc-
ture variables often change by a large factor in this outer-
most layer. It is also justified since the thermal timescale
of this layer is much shorter than any mass-loss timescale
encountered in this study. (We have extensively tested
that our results are not sensitive to these assumptions, at
least for the mass-loss rates obtained, where we generally
limited the maximum mass-loss rate to 10−4 M⊙ yr−1.)

Despite of these precautions, our calculated mass-loss
rates are occasionally subject to numerical oscillations.
These tend to be almost negligible for stars with radiative
envelopes (typically less than a few percent), but can be
several 10’s of per cent for stars with convective envelopes
and occasionally much larger for evolved giants (in par-
ticular during dredge-up phases). We note that, in all of

the plots of Ṁ presented in this paper, these oscillations,
which do not affect the secular evolution of the systems,
have been averaged out.

2.3. Tests and Comparisons

To test our binary evolution code, we chose to calcu-
late the standard evolution of a cataclysmic variable (CV),
initially consisting of a white dwarf of 0.6 M⊙ and a sec-
ondary of 0.8 M⊙ (here we assumed that all of the mass
transferred from the secondary was lost from the system).
In this calculation, the system experienced a period gap
between 2.4 and 3.1 hr, somewhat smaller than the ob-
served gap (Ritter & Kolb 1998), but consistent with previ-
ous results for our adopted magnetic-braking law (Rappa-
port, Verbunt, & Joss 1983). The minimum period in this
calculation was 75min, somewhat longer than the mini-
mum period found in the most detailed studies of CVs
(see, e.g., Kolb & Baraffe 1999; Howell, Nelson, & Rappa-
port 2001).

We also compared our calculations to other recent sim-
ilar binary calculations by a number of different authors,
in particular the calculations by Pylyser & Savonije (1988,
1989); Han, Tout, & Eggleton (2000); Langer et al. (2000);
Kolb et al. (2000); Tauris et al. (2000). For comparable
models, we generally find excellent agreement between our
calculations and the calculations of these authors. The
only significant discrepancy to note is the early case B cal-
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Fig. 1.— Overview of the initial parameters of the secondaries in the Hertzsprung-Russell (H-R) diagram for the 100 binary evolution
sequences in the study. The thin solid curves represent evolutionary tracks of single stars with the masses as indicated. The thick solid curves
show the orbital periods of systems when the secondaries start to fill their Roche lobes at the particular positions along the evolutionary
tracks (assuming a mass for the primary of 1.4 M⊙, as appropriate for a neutron star). The symbols are placed at the initial positions of the
secondaries in our sequences, where the type of symbol indicates the final fate of the systems (squares: ultracompact systems; circles: He
white dwarfs; triangles: HeCO white dwarfs; filled stars: delayed dynamical mass transfer; unfilled stars: dynamical mass transfer; in cases
where it is not clear whether the system experiences a dynamical instability, symbols are plotted on top of a star).

culation for Cyg X-2 by Kolb et al. (2000), where the sec-
ondary has an initial mass of 3.5 M⊙ and has just evolved
off the main sequence at the beginning of mass transfer.
While our early-case B model (see Podsiadlowski & Rap-
paport 2000) is in excellent agreement with a similar cal-
culation by Tauris et al. (2000), in the Kolb et al. model,
the early super-Eddington phase is much longer, and as
a consequence the mass-transfer rate in the subsequent
slower phase about an order of magnitude lower than in
our model. We do not know the reason for this discrep-
ancy, whether it has to do with the treatment of mass loss
at these very high rates (∼ 10−5 M⊙ yr−1) or whether it is
caused by differences in the structure of the initial models
(U. Kolb 2000, private communication). For example Kolb
et al. (2000) do not include convective overshooting in their
calculations; this produces a different chemical profile just
outside the hydrogen-exhausted core, which may affect the
evolution of the secondary (the evolutionary track of their
secondary in the H-R diagram is indeed quite different).
Until this discrepancy is resolved, we note that there is
some uncertainty in the modeling of these systems with
extreme mass-transfer rates.

3. results of binary calculations

Altogether we carried out 100 binary stellar evolution
calculations with initial secondary masses ranging from
0.6 M⊙ to 7 M⊙ and covering, in a fairly uniform man-
ner, all evolutionary stages likely to be encountered for
LMXBs/IMXBs, with orbital periods from 4hr to 100 d
(see Fig. 1). In Figure 2 we present the evolutionary tracks
of these calculations both in a secondary mass – orbital
period diagram (log M2 – log Porb; Fig. 2a) and in a tradi-
tional Hertzsprung-Russell (H-R) diagram (Fig. 2b), where

the color coding indicates how much time a system spends
in a particular region of the diagrams. What these figures
do not show very well, however, is the actual variety in
these sequences. Some 70 of the 100 sequences are quali-
tatively different with respect to the importance and the
order of different mass-transfer driving mechanisms, the
occurrence of detached phases, the final end products, etc.
Indeed there are very few sequences that resemble the clas-
sical CV evolution where mass-transfer is driven solely by
gravitational radiation and magnetic braking. Instead of
presenting all of these sequences in detail, we will discuss
the various physical phenomena encountered and illustrate
them with particular evolutionary sequences. In the ap-
pendix we present the key characteristics of each sequence
in tabular form.

As Figure 2 shows, the sequences can be broadly di-
vided into three classes: (1) and (2) systems evolving to
long periods and short periods, respectively, and (3) more
massive systems experiencing dynamical mass transfer and
spiral-in (the short yellow tracks). The systems evolving
towards short and long orbital periods are separated by
the well-known bifurcation period that has been studied
by several authors in the past (see, in particular, Tutukov
et al. 1985; Pylyser & Savonije 1988; Ergma 1996; Ergma
& Sarna 1996). For our binary model, the bifurcation
period occurs around 18 hr for a 1 M⊙ model (see §4.2
for a systematic case study). This implies that all 1 M⊙

models that start mass transfer on or just off the main
sequence evolve towards short periods, while for the more
massive secondaries only relatively unevolved secondaries
do so (see Fig. 1), in agreement with the findings of Pyl-
yser & Savonije (1988). However, the value of the bifur-
cation period and the behavior of the evolutionary tracks
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Fig. 2.— Time-weighted evolutionary tracks for the 100 binary sequences in the secondary mass – orbital period plane (panel a) and for
the secondaries in the H-R diagram (panel b). The color of the tracks indicate how much time systems spend in a particular rectangular
pixel in the diagrams (from short to long: yellow, orange, red, green, blue, magenta, cyan). The minimum time displayed was chosen to be
100 yr, and the maximum time in each of the panels is ∼ 9.5Gyr. The 7 colors are distributed evenly in log t between these times. Circles
and triangles mark the starting and final points in the sequences, respectively.

near the bifurcation period is very sensitive to the model
assumptions, in particular the magnetic-braking law (Pyl-
yser & Savonije 1988 and § 4.2) and the assumptions about
mass loss from the system (Ergma 1996; Ergma & Sarna
1996). Because of the strong divergence of tracks below
and about the bifurcation period, one would expect very
few systems with final orbital periods near the bifurcation
period (Pylyser & Savonije 1988) unless a system started
its evolution very close to it initially (Ergma 1996).

Figure 2 also shows that, for the more massive systems,
the initial evolution is very rapid. As a direct consequence,
very few systems should be observable in this early rapid
phase, and X-ray binaries are most likely to have a rela-
tively low-mass secondary when they are observed at the
present epoch, even if they had a much more massive com-
panion initially.

3.1. Low-Mass Models and the Role of Magnetic Braking

If the secondary is a relatively unevolved low-mass
star initially (with mass . 1 M⊙), the only important
mechanisms driving mass transfer are systemic angular-
momentum losses due to magnetic braking and gravita-
tional radiation. This type of evolution is similar to the
classical evolution of CVs. The systems evolve towards
shorter periods, may experience a period gap when mag-
netic braking stops being effective (when the secondary
becomes fully convective) and ultimately reach a mini-
mum period just before hydrogen burning is extinguished
(Paczyński & Sienkiewicz 1981; Rappaport, Joss, & Web-
bink 1982). Beyond the period minimum (which depends
on the evolutionary stage of the initial model), the secon-
daries follow the mass-radius relation for degenerate stars
and the systems will expand, driven by gravitational radi-
ation alone.

This classical CV-like evolution is illustrated in Fig-
ures 3 and 4 for three binary sequences with initial sec-
ondaries of 1 M⊙ and different evolutionary stages (at the
beginning, the middle and the end of the main sequence).
Figure 3 shows the evolution of orbital period and mass-

transfer rate as a function of time since the beginning of
mass transfer (the evolutionary tracks of the secondaries
in the H-R diagram are shown in Fig. 4). These calcu-
lations serve to illustrate several points, already found in
previous studies (see, in particular, Pylyser & Savonije
1989). The maximum mass-transfer rate is of order a few
10−9 M⊙ yr−1, where the more evolved secondaries expe-
rience the lower rates. Indeed, this behavior is also often
found for more massive secondaries, where the somewhat
evolved stars generally tend to be more stable than the
unevolved ones. The period gap for the calculation with
the initially unevolved secondary is substantially smaller
(2.8 to 3.1 hr) than the period gap for a similar CV calcu-
lation where the secondary is a white dwarf of 0.6 M⊙ (2.4
to 3.1 hr). While the donor stars become fully convective
at more-or-less the same orbital period, they have differ-
ent masses, 0.336 M⊙ and 0.273 M⊙, respectively, since
the donor in the LMXB case is not as much out of ther-
mal equilibrium as in the CV case (the magnetic-braking
timescale is a factor of ∼ 2.2 longer in the LMXB case,
while the gravitational-radiation timescale is a factor of
∼ 2.6 shorter; cf eqs. 3 and 4).

The location and the extent of the period gap decreases
for the more evolved systems and completely disappears
for the most evolved one. The reason is that the more
evolved secondaries become fully convective at a lower
mass, which implies a shorter orbital period for the system;
but at shorter orbital periods, the timescales for angular-
momentum loss due to gravitational radiation and mag-
netic braking become more comparable, hence producing
a smaller gap. Since this type of evolution is similar to
the classical CV evolution, it has the obvious implication,
as emphasized by Pylyser & Savonije (1989), that the vast
majority of secondaries in CVs have to be essentially un-
evolved initially to prevent the appearance of too many
systems in the observed period gap (Ritter & Kolb 1998).

The minimum periods decrease for the more evolved sys-
tems, again consistent with previous studies (see §4.2 for
further discussion). The system that started mass transfer
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Fig. 3.— Evolution of orbital period (upper panel) and mass-
transfer rate (lower panel) as a function of time since the beginning
of mass transfer (with arbitrary offset) for three binary sequences
with an initial secondary of 1 M⊙ and three evolutionary phases
(beginning [blue], middle [green] and end of main-sequence phase
[red]; from down to up in the upper panel and up to down in the
lower panel at early times). The least evolved system experiences
a period gap between 2.8 and 3.1 hr and attains a minimum period
of 83min, the model in the middle of the main sequence has a pe-
riod gap between 2.2 and 2.4 hr and a period minimum of 80 min,
while the most evolved system experiences no period gap and has a
minimum period of 48min.

when the secondary had just completed hydrogen burning
in the center attains a minimum period of 48min (note

the spike in Ṁ near the minimum period in this case).

3.2. Thermal timescale mass transfer

If the donor is initially more massive than the accre-
tor, the Roche lobe radius generally shrinks. If this ra-
dius is less than the thermal equilibrium radius of a star
of the same mass, the secondary can no longer stay in
thermal equilibrium and mass transfer will proceed on a
thermal timescale or, in more extreme cases, on a dynam-
ical timescale (see § 3.3; for general reviews of thermal
timescale mass transfer see, e.g., Paczyński 1970; Ritter
1996, and for other recent discussions Di Stefano et al.

1997; Langer et al. 2000; King et al. 2001). It is custom-
ary to analyze the stability of mass transfer in terms of
mass–radius exponents where

ξeq =

(

d lnR

d lnM

)

eq

, ξRL =

(

d lnR

d lnM

)

RL

(9)

and ξad =

(

d lnR

d lnM

)

ad

(10)

define, respectively, the mass–radius exponents for stars
in thermal equilibrium, for the Roche-lobe, and for stars
losing mass adiabatically. If the Roche-lobe radius shrinks
more rapidly than the adiabatic radius (i.e., if ξRL > ξad),
then there is no hydrostatic solution for which the sec-
ondary can fill its Roche lobe (as defined by eq. 2) and
mass transfer will proceed on a dynamical timescale (see
§ 3.3). The case where mass transfer is dynamically stable,
but occurs on a thermal timescale is given by the inequal-
ities ξad > ξRL > ξeq.

For stars with radiative envelopes, ξad is generally very
large initially, and in most situations much larger than
ξRL (ξRL generally depends on the mass ratio and any
changes in orbital separation due to the transfer of mass
and systemic mass and angular momentum losses; see, e.g.,
Rappaport et al. 1983). To illustrate this, we show ap-
proximate adiabatic mass–radius exponents, ξad, in Fig-
ure 5 for stars with initial masses from 1.2 – 2.2 M⊙ and
the corresponding mass–radius relations (these were ob-
tained by taking mass off these stars at a high constant
rate of 10−5 M⊙ yr−1). The large initial values for ξad im-
ply that the star has to lose very little mass to shrink sig-
nificantly. This simply reflects the fact that, in radiative
stars, a large fraction of the envelope (in radius) contains
very little mass (for example, in an unevolved 2.1 M⊙ star,
the outer 40% of the radius contains just 1% of the mass).
Once this low-density, high-entropy layer is lost, ξad drops
dramatically to a value of order 1 and ultimately becomes
negative when the convective, flat-entropy core is exposed.
From this stage on, the radius of the star increases with
further mass loss. Since the whole star expands dramat-
ically in this phase, it will be very underluminous for its
mass (since most of the internal luminosity drives the ex-
pansion) and nuclear burning will ultimately be turned off
because of a dramatic decrease in the central temperature.
As long as ξad remains larger than ξRL, mass transfer re-
mains dynamically stable. The star, which is undersized
for its mass, will expand and try to relax to its equilib-
rium radius. It is this relaxation of the star on a thermal
timescale that gives this mode of mass transfer its name.

A characteristic mass-transfer rate for this phase is often
defined by an expression of the form (see, e.g., Rappaport,
Di Stefano, & Smith 1994; Langer et al. 2000)

Ṁth =
(M i

2 − M i
1)

tKH
, (11)

where M i
2 and M i

1 are the initial masses of the secondary
(the mass donor) and the primary, respectively, and tKH is
the Kelvin-Helmholtz timescale of the secondary (i.e., the
thermal timescale of the whole star),

tKH ≃
GM2

2

2RL
, (12)



Low- and Intermediate-Mass X-Ray Binaries 7

Fig. 4.— Evolutionary tracks of the secondaries in the H-R diagram for the illustrative sequences discussed in the text. The symbols at
the end points of the sequences identify the models (squares: low-mass models [§3.1]; triangles: thermal mass-transfer models [§3.2]; circles:
evolution on the giant branch [§3.3]; delayed dynamical instability [§3.3]). The sequences are terminated either near the period minimum
(‘low-mass’), at the onset of dynamical instability (‘delayed dynamical’), or at the end of mass transfer (‘giant’ and ‘thermal’). The grid of
dashed curves indicates the position of the main-sequence band and the evolutionary tracks for single stars of the masses as indicated.

Fig. 5.— Approximate adiabatic mass–radius relations (top panel)
and adiabatic mass–radius exponents, i.e., d lnR/d ln M , (bottom
panel) for unevolved stars of masses 1.2, 1.4, 1.6, 1.8, 2.0, and
2.3 M⊙. These were calculated by assuming a constant mass-loss
rate of 10−5 M⊙ yr−1. At this high rate, the entropy profile, S(M),
remains almost unchanged (“adiabatic”).

where R and L are the radius and the nuclear luminosity
of the secondary. As shown by Langer et al. (2000), equa-
tion (11) tends to overestimate the actual mass-transfer
rate by up to an order of magnitude for solar-metallicity
stars. In Figure 6 we present the binary sequence for a
2.1 M⊙ star that starts to fill its Roche lobe near the end of
the main sequence (when its central hydrogen abundance
was Xc = 0.096). Indeed, the maximum mass-transfer
rate of ∼ 2 × 10−7 M⊙ yr−1 is about an order of magni-
tude lower than what equation (11) would predict. Since
the mass-loss timescale is much longer than the thermal
timescale, the secondary is only moderately out of thermal
equilibrium throughout the high Ṁ phase.

Figure 7 shows a more extreme example of thermal
timescale mass transfer where the secondary has an ini-
tial mass of 4.0 M⊙ and is in a similar evolutionary phase
as the secondary in Figure 6. This system is, in fact, on
the brink of experiencing a delayed dynamical instability
(see § 3.3). In this case, equation (11) provides a good
estimate for the average mass-transfer rate in the thermal
mass-transfer phase of ∼ 4 × 10−6 M⊙ yr−1, but, as dis-
cussed by Langer et al. (2000), it does not describe the
detailed behavior of this phase very well. In the turn-on
phase, which lasts of order a Kelvin-Helmholtz time, Ṁ is
significantly less than Ṁth, simply because there is so little
mass in the outer layers of the donor star and very little
mass needs to be transferred for the secondary to adjust
its radius to the shrinking Roche-lobe radius (which again
is reflected in the large adiabatic mass–radius exponent).
Equation (11) also does not provide a good estimate for the

maximum Ṁ of 1.7×10−4 M⊙ yr−1. The reason is that, at
this high mass-transfer rate, only the outer layers will be
able to adjust thermally and drive the expansion and that,
in this case, tKH in equation (11) should be replaced by the
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Fig. 6.— Key binary parameters for a binary sequence where the
secondary has an initial mass of 2.1 M⊙ and fills its Roche lobe near
the end of the main sequence (when its core hydrogen abundance
Xc = 0.1). Top left: radius (solid curve) and Roche-lobe radius
(dashed curve) of the secondary; top right: the orbital period; bot-
tom left: the mass of the secondary (solid curve) and the primary
(dashed curve) and the mass of the hydrogen exhausted core (dot-
ted curve); bottom left: the mass-loss rate of the secondary. The
evolutionary track of the secondary in the H-R diagram is shown in
Figure 4.

Fig. 7.— Key binary parameters (similar to Fig. 6) for a binary
sequence where the secondary has an initial mass of 4 M⊙ and fills
its Roche lobe near the end of the main sequence (when Xc = 0.1).
The evolutionary track of the secondary in the H-R diagram is shown
in Figure 4.

shorter thermal timescale of this layer. What fraction of
the envelope can adjust thermally also depends to a large
degree on how the Roche-lobe radius changes (through the
Roche-lobe filling constraint, i.e., eq. 2), which in turn de-
pends on external factors such as the change of the mass
ratio and systemic mass and angular momentum loss and
not on the internal properties of the secondary. In the
somewhat extreme example shown in Figure 7, the sec-
ondary evolves essentially adiabatically near the peak in
Ṁ .

The secondary will only be able to re-establish thermal
equilibrium once the Roche-lobe radius starts to expand
(generally after the mass ratio has been reversed). At this
stage, the secondary will be significantly undersized and
underluminous for its mass. However, this equilibration
phase itself will take a full Kelvin-Helmholtz time and
a significant amount of mass (∼ 0.4 M⊙ in the sequence
shown in Fig. 7) will still be transferred before the sec-
ondary has re-established thermal equilibrium.

To illustrate this thermal relaxation phase further, we
calculated a separate mass-loss sequence for an unevolved
2.1 M⊙ star losing mass at a constant rate of 10−6 M⊙ yr−1

(∼ 5 × Ṁth) until its mass had been reduced to 1 M⊙

and then let it relax until it reestablished thermal equi-
librium. Figure 8 shows the evolution of the radius (solid
curve) and Figure 9 the evolution of the entropy profile
in this calculation. First note in Figure 9 that only the

outer layers of the secondary (in mass) are able to ther-
mally adjust significantly (and only at early times). Dur-
ing the mass-loss phase, the radius of the star is always
substantially smaller than the equilibrium radius of a star
of the same mass (shown as a dashed curve in Fig. 8). In
the subsequent relaxation phase, however, the radius over-
shoots the equilibrium radius by about 15%. The reason
is that a star does not relax in a uniform, homologous
way, but different parts of the star adjust on their local
thermal timescales which vary throughout the star. This
mismatch of timescales drives a thermal wave through the
star (associated with a luminosity wave) which causes the
overshooting in radius (and luminosity). This is also the
reason why the system in Figure 7 becomes detached im-
mediately after the thermal mass-transfer phase2.

The binary sequence shown in Figure 6 may, at early
times, represent the evolution for a system like HZ
Her/Her X-1, which has an orbital period of 41 hr and
contains a slightly evolved secondary of ∼ 2.35 M⊙ (e.g.,
Joss & Rappaport 1984). At late times, the sequence may
be appropriate for a system like the LMXB X-ray pulsar
GRO J1744-28 with an orbital period of 11.8 d (Finger et
al. 1996) and a donor mass that is likely in the range 0.2 –

0.4 M⊙ (Rappaport & Joss 1997). After the initial high-Ṁ
phase, mass transfer is driven by the nuclear evolution of
the star and starts to rise towards the end of the main-
sequence phase. The system becomes briefly detached at

2 To the best of our knowledge, this effect was first noted in calculations of Algol systems by R. P. Pennington in his Ph.D. thesis (Pennington
1986).
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Fig. 8.— Evolution of radius (solid curve) as a function of time
for an unevolved 2.1 M⊙ star losing mass at a constant rate of
10−6 M⊙ yr−1 for 1.1 × 106 yr until its mass is reduced to 1 M⊙.
The dashed curve shows the thermal equilibrium radius of a star of
the same mass at each time.

Fig. 9.— Evolution of entropy profile as a function of mass (top
panel) and radius (bottom panel) for the mass-loss and thermal re-
laxation calculation shown in Figure 8. The two thicker curves rep-
resent the initial and the final models in thermal equilibrium.

the point of hydrogen exhaustion (associated with a brief

shrinkage in radius). The subsequent peak in Ṁ occurs
when magnetic braking has become most active. As the
system expands, magnetic braking becomes less effective
and consequently Ṁ starts to decrease. At some point nu-
clear evolution on the sub-giant branch becomes the domi-
nant mass-transfer driving mechanism, and Ṁ rises as the
nuclear timescale becomes shorter. Eventually, the sys-
tem becomes detached when the secondary has a mass of
0.322 M⊙. Despite this low mass, the secondary still ig-
nites helium in its core and ultimately ends its evolution
as a HeCO white dwarf (see §4.1).

Figure 10 shows a sequence similar to Figure 6 for a
secondary with an initial mass of 2.1 M⊙, except that it
is less evolved initially (its initial, central hydrogen abun-
dance was Xc = 0.489). This sequence may provide a
model for the X-ray binary Sco X-1 with an orbital period
of 18.9 hr. In this case, the high observed luminosity of Sco
X-1 would be the result of thermal timescale mass trans-
fer. In this particular model, the secondary of Sco X-1 is
predicted to have a mass of ∼ 2 M⊙ and resemble an A
or F star (absent any X-ray heating effects; see the corre-
sponding evolutionary track in Fig. 4). After the thermal
timescale phase, mass transfer is driven by the nuclear
evolution of the core. As the star develops a convective
envelope, magnetic braking takes over as the dominant
mass-transfer driving mechanism, causing a spike in the
mass-transfer rate. As the system expands, magnetic brak-
ing becomes less effective and the system becomes briefly
detached as it evolves up the giant branch. Eventually,
after the secondary has lost most of its hydrogen-rich en-
velope, it evolves away from the giant branch and ends its
evolution as a He white dwarf with a mass of 0.231 M⊙.

The binary sequence in Figure 7 represents a slightly
more massive version of the evolution that may explain
the evolutionary history of Cyg X-2 (see Podsiadlowski &
Rappaport 2000). After the thermal timescale phase, the
system becomes detached and stays detached for the next

∼ 4 × 107 yr. In this phase, the secondary has the ap-
pearance of a ∼ 2.5 M⊙ main-sequence star in the H-R
diagram (see Fig. 4), except that it is significantly under-
massive with a mass of only ∼ 1 M⊙ and has a low surface
hydrogen abundance of 0.34 (by mass). The companion
may appear as a slightly spun-up radio pulsar, having ac-
creted ∼ 0.007 M⊙ of material. The secondary starts to
transfer mass again shortly after exhausting hydrogen in
its core. In this second mass-transfer phase, the evolution
is driven by nuclear shell burning (similar to the case AB
model of Podsiadlowski et al. 2000). The final mass of the
HeCO white dwarf is 0.466 M⊙.

3.3. Dynamically unstable mass transfer

A dynamical mass-transfer instability occurs when the
Roche-lobe radius shrinks more rapidly (or expands less
slowly) than the star can adjust either thermally or adi-
abatically, i.e., when ξRL > ξad (see § 3.2). This will
then most likely lead to a common-envelope and a spiral-in
phase (Paczyński 1976). For a binary initially consisting
of a (sub-)giant and a neutron star, the system will either
merge completely to form a rapidly rotating single object
(a Thorne-Żytkow object? Thorne & Żytkow 1977) or be-
come a short-period binary with a white-dwarf companion
if the envelope is ejected.

For a fully convective star (approximated by an n = 1.5
polytrope), the condition ξRL = ξad defines a critical mass
ratio qcrit ≃ 3/2 (where q = M1/M2; see, e.g., Faulkner
1971; Paczyński & Sienkiewicz 1972; Rappaport et al.
1982). If the accreting star is a neutron star of 1.4 M⊙,
this criterion applied literally would imply that mass trans-
fer would be dynamically unstable if the secondary is a
(sub-)giant larger than ∼ 0.9 M⊙. However, (sub-)giants
are generally not well represented by fully convective poly-
tropes. For example, Hjellming & Webbink (1987) (also
see Soberman, Phinney, & van den Heuvel 1997) showed
that the fact that (sub-)giants have degenerate cores of
finite mass can increase qcrit significantly. This criterion



10 PODSIADLOWSKI, RAPPAPORT, & PFAHL

Fig. 10.— Key binary parameters (similar to Fig. 6) for a binary
sequence where the secondary has an initial mass of 2.1 M⊙ and
fills its Roche lobe on the main sequence (when Xc = 0.489). The
evolutionary track of the secondary in the H-R diagram is shown in
Figure 4.

Fig. 11.— Key binary parameters (similar to Fig. 6) for a binary
sequence where the secondary has an initial mass of 1.8 M⊙ and fills
its Roche lobe on the giant branch (when it has a degenerate core
of 0.23 M⊙). The evolutionary track of the secondary in the H-R
diagram is shown in Figure 4.

also does not take into account any time delay between
the onset of mass transfer and the appearance of the dy-
namical instability, during which a substantial amount of
mass may already be transferred in a stable manner.

In our calculations, dynamical instability manifests it-
self by the fact that we can no longer satisfy the Roche-
lobe filling constraint in equation (2). The secondary will
subsequently overfill its Roche lobe by an ever increas-
ing amount. Since we generally limit the maximum mass-
transfer rate to 10−4 M⊙ yr−1, some stars near the brink
of dynamical instability will not be able to satisfy equa-
tion (2) in our calculations, but would do so without the
constraint of a maximum mass-transfer rate. We therefore
assume that all systems where the secondary overfills its
Roche lobe by at most a few per cent for a short amount
of time are stable against dynamical mass transfer3. In all
other cases, we continued the calculations until the over-
flow factor (fover ≡ R/RL) exceeded a value of 1.5.

Tauris & Savonije (1999) have recently examined the
dynamical stability for X-ray binaries with (sub-)giant
donors in detail, using realistic binary stellar evolution
calculations, and found that all systems with (sub-)giant
donor masses . 2 M⊙ were dynamically stable (they as-
sumed an initial neutron-star mass of 1.3 M⊙). In our cal-
culations we also find that all sequences with donor stars
up to 1.8 M⊙ are dynamically stable, irrespective of evolu-
tionary phase. Indeed, even for more massive secondaries,
we often find that mass transfer is either dynamically sta-
ble (if the secondaries start mass transfer at the beginning
of their ascent of the giant branch) or that the secondaries

overfill their Roche lobes by only a relatively moderate
amount (the most evolved secondaries in our sequences
with initial masses of 2.1, 2.4, and 2.7 M⊙ overfill their
Roche lobes by at most 9, 12, and 13%, respectively; see
Table A1). While the latter is likely to lead to the forma-
tion of a common envelope, it is not obvious that it neces-
sarily leads to a spiral-in phase, since there is no friction
between the immersed binary and the envelope, as long
as the envelope can remain tidally locked to the orbiting
binary (see, e.g., Sawada et al. 1984).

In Figure 11 we present the binary sequence for the most
evolved 1.8 M⊙ secondary we calculated. The initial peak
in the mass-transfer rate is very high (∼ 9 × 10−6 M⊙),
but mass-transfer remains stable. Even after the mass ra-
tio has been reversed, Ṁ is significantly super-Eddington.
The system becomes temporarily detached when the H-
burning shell starts to move into the region with a gra-
dient in hydrogen abundance, established during the hy-
drogen core burning phase, and the giant shrinks signif-
icantly (Thomas 1967). We find these temporarily de-
tached phases in most of our sequences where the sec-
ondary evolves up the giant branch. (These detached
phases on the giant branch have also been found in a num-
ber of other recent studies; Tauris & Savonije 1999; Han
et al. 2000; N. Langer 1999 [private communication].)

Many of the systems in which the initial secondary
mass is 4 M⊙ and probably all systems more massive than
∼ 4.5 M⊙ experience dynamical mass transfer (see Fig. 1
and Table A1), resulting in the spiral-in of the neutron star
inside the secondary. However, in all systems where the

3 In actual fact, this situation arose only in three sequences. In one case, we recalculated the sequence without the maximum constraint (the
sequence shown in Fig. 7) and, as expected, the system was then able to fulfill equation (2) at all times, confirming that it was stable against
dynamical mass transfer.
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Fig. 12.— Orbital period, radius, and mass-transfer rate (top to
bottom) as a function of time since the beginning of mass transfer
(with arbitrary offset) for an initially unevolved secondary of 4.5 M⊙

to illustrate the case of a delayed dynamical instability. Phases of
‘atmospheric’ and ‘radiative’ mass transfer are separated by a verti-
cal dashed line. The evolutionary track of the secondary in the H-R
diagram is shown in Figure 4.

secondary is still on the main sequence when mass transfer
starts, this dynamical instability is delayed (see Hjellming
& Webbink 1987) since the secondaries initially have radia-
tive envelopes with large adiabatic mass–radius exponents
(as discussed in § 3.2), which stabilizes them against dy-
namical mass transfer. Dynamical instability occurs once
the radiative part of the envelope with a steeply rising en-
tropy profile (the entropy spike near the surface in Fig. 9)
has been lost and the core with a relatively flat entropy
profile starts to determine the reaction of the star to mass
loss. This delay may last for up to ∼ 106 yr; during this
time the system should still be detectable as an X-ray bi-
nary, with a very high mass-transfer rate and quite possi-
bly some unusual properties (such as SS433?) in the last
104 – 105 yr before the onset of the dynamical instability.

Figure 12 illustrates the case of a delayed dynamical in-
stability for an initially unevolved 4.5 M⊙ secondary. The
early mass-transfer phase can be divided into two separate

phases: (1) a phase of atmospheric Roche-lobe overflow

where Ṁ increases exponentially (according to eq. 2) be-
cause the radius of the star approaches the Roche-lobe ra-
dius; and (2) a phase (labelled ‘radiative’ in Fig. 12) where
the high-entropy material in the low-density envelope of
the secondary is lost. The binary parameters remain es-
sentially unchanged in the first phase, lasting ∼ 1.2×106 yr
in this example, but the secondary loses ∼ 0.5 M⊙ in the
second much shorter phase, lasting only ∼ 105 yr, and both
the radius and the orbital period shrink drastically. At the
onset of the dynamical instability (which we here take as

the point when Ṁ exceeds 10−4 M⊙ yr−1), the secondary
is extremely underluminous and has the appearance of a
∼ 1.3 M⊙ main-sequence star in the H-R diagram (see
Fig. 4).

4. end products

4.1. Pulsars with He, HeCO White Dwarfs

In Figure 13 we show the final distribution of the calcu-
lated systems in the secondary mass – orbital period plane
(for sequences that avoided dynamical instability). Here
the size of the symbols indicates how much mass a neutron
star has accreted. In systems with large symbols, the neu-
tron star has accreted at least 0.2 M⊙ (for our accretion
prescription) and may be reasonably expected to appear
as a millisecond pulsar. A circle indicates that the sec-
ondary ends its evolution as a He white dwarf. Note that
the He white dwarfs form a sequence that quite closely
follows the relation between white-dwarf mass and orbital
period for wide binary radio pulsars as calculated by Rap-
paport at al. (1995; solid and dashed curves). The new
sequence may be somewhat steeper at low masses (also
see Ergma 1996; Tauris & Savonije 1999) and lies system-
atically below the average sequence of Rappaport et al.
(1995). The latter can be easily understood since, when
the secondaries become detached from their Roche lobes,
they have already evolved somewhat away from a Hayashi
track and are hotter (and hence smaller) than a giant of
the same core mass (see Fig. 4), an effect that could not
be easily included without detailed binary evolution calcu-
lations. This suggests that one should rescale the average
relation of Rappaport et al. (1995) by a factor ∼ 0.65.

In systems with triangle symbols, the secondaries ig-
nite helium in the core and generally burn helium in a
hot OB subdwarf phase (after mass transfer has been
completed). Note that the lowest mass of a helium star
for which helium can be ignited is ∼ 0.3 M⊙, the min-
imum mass for helium ignition in non-degenerate cores
(see, e.g., Kippenhahn & Weigert 1990). While the more
massive helium stars convert most of their mass into car-
bon and oxygen (typically having a helium-rich envelope
of at most a few per cent), the lower-mass helium stars
only burn helium completely in the core and end their
evolution with large helium envelopes (this was found first
in calculations by Iben & Tutukov [1985] and more re-
cently by Han et al. [2000]). It is not clear at the present
time whether the fact that these low-mass HeCO white
dwarfs have large CO cores has detectable, observational
consequences. The most interesting aspect of the systems
with HeCO white dwarfs is, of course, that most of them
lie well below the white-dwarf – orbital period relation
without having experienced a common-envelope phase
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Fig. 13.— The final distribution of the calculated sequences in the secondary mass – orbital period plane (for sequences that avoided
dynamical mass transfer). Circles and triangles indicate that the secondaries are He white dwarfs and HeCO white dwarfs, respectively. The
size of the symbols indicates how much mass the neutron stars have accreted (systems with large symbols may be reasonably expected to
contain millisecond pulsars). The low-mass, ultracompact systems (M2 < 0.15 M⊙, Porb < 0.1 d) are plotted when the systems pass through
the orbital-period minimum. The solid and dashed curves give the average and the range of the white-dwarf mass – orbital-period relation
for wide binary radio pulsars (from Rappaport et al. 1995).

Fig. 14.— Hydrogen shell flashes for a 0.199 M⊙ helium white
dwarf originating from a secondary with an initial mass of 1.4M⊙:
H-R diagram (panel a); evolution of luminosity and radius as a func-
tion of time since the beginning of the initial mass-transfer phase
for all flashes (panels b and d) and for just the third flash (panel c
and e) with arbitrary time offset.

(also see Podsiadlowski & Rappaport 2000; Tauris et al.
2000).

Finally, it is worth noting that most of the He white
dwarfs with masses < 0.4 M⊙ and even some of the more
massive HeCO white dwarfs experience several dramatic
hydrogen shell flashes (typically 2 to 4) before settling on
the white-dwarf cooling sequence. These flashes have been
extensively discussed in the literature (e.g., Kippenhahn,
Thomas, & Weigert 1968; Iben & Tutukov 1986). More re-
cently, Sarna, Ergma, & Gerškevitš-Antipova (2000) pub-
lished a detailed study of hydrogen shell flashes for low-
mass He white dwarfs and their implications for the calcu-
lations of cooling ages in companions of binary millisecond
pulsars.

During these flashes, the luminosity typically rises by
a factor of 1000 and the radius increases by a factor of
10 or more on timescales of a few decades. Indeed, dur-
ing these flashes the secondaries tend to fill their Roche
lobes again, leading to several short mass-transfer phases
with mass-transfer rates that are often much higher than
the rates achieved in earlier phases (typically with Ṁ ∼
several × 10−6 M⊙ yr−1). In Figure 14 we present an ex-
ample of a He white dwarf of 0.199 M⊙ which experiences
3 such flashes (the secondary originally had a mass of
1.4 M⊙ and filled its Roche lobe near the end of the main
sequence).

4.2. Ultracompact X-ray Binaries

As Figures 2a and 13 show, systems with initial orbital
periods below the bifurcation period (∼ 18 hr) become ul-
tracompact binaries with minimum orbital periods in the
range of 11 – 83 min. The shortest period is similar to the
11 min period in the X-ray binary 4U 1820-30 in the glob-
ular cluster NGC 6624 (Stella et al. 1987). Unlike the
two better-known models for the formation of this system,
this evolutionary channel involves neither a direct colli-
sion (Verbunt 1987) nor a common-envelope phase (Bai-
lyn & Grindlay 1987; Rasio, Pfahl, & Rappaport 2000) and
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therefore constitutes an attractive alternative scenario for
4U 1820-30. This alternative evolutionary path for the ori-
gin of 4U1820-30 was originally suggested by Tutukov et al.
(1987)4. Fedorova & Ergma (1989) made the first detailed
case study of this scenario and showed that, if mass trans-
fer starts near or just after the point of central hydrogen
exhaustion, orbital periods as short as 8 min could be at-
tained and that a system like 4U 1820-30 can pass through
an orbital of 11 min twice, while approaching the period
minimum and after having passed through it. In related
studies, Nelson, Rappaport & Joss (1986) and Pylyser &
Savonije (1988) found minimum periods as short as 34 and
38 min, respectively. These authors were not specifically
trying to explain 4U 1820-30 but their Galactic counter-
parts 4U 1626-67 and 4U 1915-05 with orbital periods of
41min (Middleditch et al. 1981; Chakrabarty 1998) and
50min (Chou, Grindlay, & Bloser 2001), respectively.

To determine the shortest orbital period that can be
attained through this channel, we performed a separate
series of binary calculations for a 1 M⊙ secondary with
parameters appropriate for 4U 1820-30 in the metal-rich
globular cluster NGC 6624 (i.e., with Z=0.01, Y=0.27).
Our results confirm the earlier results of Fedorova &
Ergma (1989) that, if the secondaries start mass trans-
fer near the end of core hydrogen burning (or, in fact,
just beyond), the secondaries transform themselves into
degenerate helium stars and that orbital periods as short
as ∼ 5 min can be attained without the spiral-in of the

neutron star inside a common envelope. The top panel in
Figure 15 shows the relation between initial orbital period
and the minimum period, while the other panels give the
secondary mass, M2, mass-transfer rate, Ṁ , and surface
hydrogen abundance, Xs, at the minimum period. There
is a fairly large range of initial orbital periods (13 – 17.7 hr)
which leads to ultra-compact LMXBs with a minimum or-
bital period of less than 30 min. The drop in Pmin at 13 hr
occurs for a model where the secondary has just exhausted
hydrogen in the center at the beginning of mass transfer.
The shortest minimum period is attained for systems just
below the bifurcation period (in this case ∼ 18 hr). The
mass-transfer rate at the minimum period increases signif-
icantly as the minimum period decreases, simply because
the time scale for gravitational radiation, which drives the
evolution at this stage, becomes so short.

Figure 16 shows the details of four representative se-
quences: sequence (a; black) has an initially unevolved
secondary, in sequence (b; green) the secondary has just
completed hydrogen burning in the center, while in se-
quences (c; red) and (d; blue) the secondaries have pure
helium cores of 0.024 M⊙ and 0.028 M⊙, respectively, at
the beginning of mass transfer. Open circles show when
the sequences reach the period minimum, and other sym-
bols indicate when they pass through the periods of the
three known ultracompact X-ray binaries in globular clus-
ters (see Table 1). The shortest minimum periods are ob-

4 Another model suggested for 4U 1820-30 involves a non-degenerate, helium-star companion (Savonije, de Kool, & van den Heuvel 1986).
However, such a model requires a complex triple-star interaction in order to form a non-degenerate helium star at the present epoch (see the
discussion in van der Klis et al. 1993).
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Fig. 15.— Formation of ultracompact LMXBs. From top to bot-
tom: the minimum orbital period, the mass of the secondary, the
mass-transfer rate, and the surface hydrogen abundance (all at the
minimum period) versus initial orbital period. All calculations start
with a 1.4 M⊙ neutron star and a 1 M⊙ secondary. The vertical
dashed line indicates the initial orbital period above which systems
become wider rather than more compact (i.e., the bifurcation pe-
riod). The dots indicate the results of the calculated sequences.
The dashed curves in the top panel indicate the range of minimum
periods if mass transfer is assumed to be either fully conservative
(upper curve) or fully non-conservative (lower curve).

Fig. 16.— Selected binary sequences illustrating the formation
of ultracompact LMXBs: sequence (a; black), sequence (b; green),
sequence (c; red), sequence (d; blue). The individual panels show
the evolutionary tracks in the H-R diagram (top), and the evolu-
tion of orbital period (middle) and mass-transfer rate (bottom) as a
function of time since the beginning of mass transfer. The open cir-
cles show where the systems in the individual sequences reach their
period minimums. Other symbols indicate when the systems pass
through the periods of the three ultracompact LMXBs in globular
clusters presently known (triangles: X1832-330; squares: X1850-087,
stars: X1830-303).

tained for systems that exhaust all of the hydrogen left in
their surface layers just near the point where they become
degenerate and hence manage to transform themselves into
essentially pure helium white dwarfs. In the phase where
the hydrogen shell is being extinguished, the luminosity
of the secondary briefly increases in the sequences with
the shortest minimum periods (top panel), before the sec-
ondaries descend on the cooling sequence for He white
dwarfs. In sequence (d; blue), the secondary becomes de-
tached at an orbital period of 4.3 hr. Gravitational radia-
tion then causes the system to shrink, and the secondary
starts to fills its Roche lobe again at an orbital period
of 35min. Note also that after the minimum period, Ṁ
generally drops dramatically.

In Table 1 we list all X-ray binaries in globular clus-
ters with known orbital periods. Strikingly, three of the
six systems have ultra-short periods. In this table, we
also list the timescales for the orbital period changes for
the three compact systems based on the sequences shown
in Figure 16 as well as on a simple model where the sec-
ondary is a fully degenerate He white dwarf and the system

is driven by gravitational radiation alone (labelled ‘GR’).
The 11min system (4U 1820-30 = X1820-303) is partic-
ularly interesting since its orbital period is observed to
be decreasing rather than increasing (Tan et al. 1991), as
would be expected for a fully degenerate secondary. While
it had been argued that this apparent orbital period de-
crease could be caused by gravitational acceleration within
the globular cluster (Tan et al. 1991), van der Klis et al.
(1993) subsequently concluded that, using a more real-
istic mass model for the globular cluster NGC 6624, it
was unlikely that the negative Ṗ could be fully explained
by cluster acceleration. On the other hand, as Table 1
shows, the theoretical P/Ṗ in sequence (c; red) is in ex-
cellent agreement with the observed value, and the value
in sequence (d; blue) is in reasonable agreement (Fedorova
& Ergma [1989] obtained similar values). This provides
additional support for this evolutionary channel for these
ultracompact globular-cluster systems. One potentially
testable prediction is that some of these systems still con-
tain hydrogen in their envelopes (up to 40% by mass in
the sequences shown). After the period minimum, the sec-
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Fig. 17.— Contact period as a function of relative capture distance for X-ray binaries that formed as a result of tidal capture. The
contact period defines the initial orbital period at which mass transfer commences. The relative capture distance gives the ratio of the initial
periastron distance to the radius of the star (with M2 = 1 M⊙ and Z = 0.01) captured by a neutron star (with M1 = 1.4 M⊙). Different
curves show the contact period for different radii (i.e., evolutionary stages) of the captured star at the epoch of capture. It is assumed that
the systems are brought into contact by the combined effects of magnetic braking and evolution of the secondary.

ondaries in sequences (c; red) and (d; blue) become pure
He white dwarfs, and their evolution is identical to that
of systems with He white dwarfs, driven by gravitational
radiation alone.

Since the value of the bifurcation period is sensitive to
the adopted magnetic-braking law, the range of initial or-
bital periods which leads to ultracompact systems will also
depend on it. To examine this dependence, we carried out
two additional series of calculations where we increased
and decreased the efficiency of magnetic braking by a fac-
tor of 5 with respect to our standard model, respectively.
As expected, the bifurcation period increased to ∼ 20 hr
for the more efficient magnetic-braking law and decreased
to ∼ 15 hr for the less efficient one. In both cases, we ob-
tained systems with minimum periods as short as 9 and
16min, respectively (note, however, that this exploration
was not as comprehensive as for the standard case).

It is quite remarkable that one of our binary sequences
(sequence c; red), with an initial orbital period around
17 hr, appears to be a suitable sequence to explain all
six LMXBs in globular clusters whose orbital periods are
presently known, from the system with the longest pe-
riod (AC211/X2127+119 in M15; Porb = 17.1 hr; Ilovaisky
et al. 1993) to the 11-min binary. Furthermore, systems
with an initial period in the range of 13 – 18 hr are quite
naturally produced as a result of the tidal capture of a
neutron star by a main-sequence star (Fabian, Pringle, &
Rees 1975; Di Stefano & Rappaport 1992) and are not the
generally expected outcome of a 3- or 4-body exchange
interaction (see, e.g., Rasio et al. 2000).

To illustrate this, we calculated the orbital period at
which mass transfer commences, the contact period, for
systems that form as a result of the tidal capture of a
1 M⊙ normal star by a 1.4 M⊙ neutron star. Figure 17
shows the contact period as a function of the relative cap-
ture distance (i.e., the ratio of initial periastron distance
to the radius of the star) for different radii (i.e., evolution-

ary stages on the main sequence) of the secondary at the
epoch of capture. In these calculations we assumed that
the systems formed by tidal capture circularized quickly
(on a timescale short compared to the magnetic-braking
timescale and the evolutionary timescale of the secondary)
and that the system was brought into contact by the com-
bined effects of magnetic braking (causing the orbit to
shrink) and the evolution of the secondary.

It has been estimated that for the tidal capture of a
main-sequence star by a neutron star, the initial perias-
tron distance has to be . 3 stellar radii (Fabian et al.
1975; Press & Teukolsky 1977; McMillan, McDermott, &
Taam 1987). It also has to be larger than ∼ 1.5 stellar
radii, so that in the circularized system (which has a sepa-
ration twice the initial periastron distance) the secondary
underfills its Roche lobe. As Figure 17 shows, this range
of initial capture distances produces systems which start
mass transfer between 9 and 21 hr, depending on the ra-
dius of the secondary at the time of capture. The range
of radii chosen corresponds to the change in radius of a
1 M⊙ star on the main sequence (i.e., as it evolves from
the zero-age main sequence to the terminal-age main se-
quence). Since all stars on the main sequence have roughly
equal probability for a dynamical encounter with a neutron
star, this predicts a fairly uniform distribution of contact
periods in this range. In fact, stars with a larger radius
are somewhat more likely to be captured since the capture
cross section increases linearly with radius (Fabian et al.
1975; Di Stefano & Rappaport 1992). This suggests that
at least half of the X-ray binaries formed by tidal capture
may start mass transfer with orbital periods in the range
of 13 to 18 hr, the range which produces ultracompact sys-
tems. This may explain the surprisingly large fraction of
ultracompact systems (3 out of 6 systems with known or-
bital periods) in globular clusters.

One well-recognized problem with the tidal-capture sce-
nario for the formation of LMXBs in globular clusters is
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the fact that the total energy that needs to be tidally dis-
sipated during the capture and subsequent circularization
process is of order the binding energy of the secondary.
Since all of this energy is deposited in the secondary, it
may lead to its destruction either by dynamical effects
(Rasio & Shapiro 1991) or due to the thermally driven ex-
pansion of the secondary that is tidally heated (McMillan
et al. 1987; Ray, Kembhavi, & Antia 1987; Podsiadlowski
1996). As a consequence, the initial capture distance for
which a 1 M⊙ star can be captured and survive the process
may be much more limited than the range used above. In-
deed, this is the reason why it has been popular in recent
years to dismiss this formation channel altogether. How-
ever, we would like to emphasize (1) that the details of the
tidal capture process, in particular the response of the sec-
ondary to tidal heating (see Podsiadlowski 1996), are still
rather uncertain; (2) that, as shown here, tidal capture
naturally produces the range of orbital periods actually
observed in globular-cluster LMXBs; and (3) that alterna-
tive scenarios, 3- or 4-body interactions, do not generally
lead to systems in the observed range. This suggests to
us that it is not only premature to rule out tidal capture
as a formation scenario for LMXBs, but that the LMXBs
in globular clusters with well-determined orbital periods
actually provide observational evidence in its favor. An
unbiased re-examination of the whole process is therefore
clearly warranted.

5. application to the population of x-ray

binaries

In the previous sections we have presented the results of
our 100 binary evolution models for LMXBs and IMXBs
which cover a systematic grid of binary parameters at the
onset of mass transfer. We have shown specifically that
a number of these binary sequences pass through states
which would closely resemble many of the well known and
individually studied LMXBs and IMXBs. This includes
X-ray binaries with long and short orbital periods, very
low- to moderate-mass secondaries, a wide range of X-ray
luminosities, and systems in and out of globular clusters.
All but a few of our 100 binary evolution sequences started
with donor stars of mass > 1M⊙, and the majority had
donors > 2M⊙. One of the more striking results of these
calculations is that most of the evolution time these sys-
tems spend as an X-ray binary occurs after the mass of
the donor star has been reduced to . 1M⊙ (see Fig. 2a).
Thus, a large fraction of the systems which we commonly
refer to as “LMXBs” may actually have started their lives
as “IMXBs.” This has important implications for both (i)
the retention of neutron stars in binaries at the time of the
supernova explosion which gives birth to the neutron star
(i.e., it is easier to keep the neutron star bound with a 2 or
3 M⊙ companion than with a truly low-mass companion),
and (ii) the evolutionary state of the companion stars in
LMXBs that we observe today (i.e., they are probably not
nearly as unevolved as was previously assumed).

One observational consequence is that many of these
systems should be hydrogen deficient and helium enriched,
and that the surface composition of many secondaries
should show evidence for CNO processing (i.e., be en-
hanced in N and depleted in C and O). Our calculations
predict that at a particular orbital period (& 80 min), the

surface hydrogen abundance can vary typically between
∼ 1/3 of the solar value and solar (at shorter orbital peri-
ods, all systems should be hydrogen-deficient). While the
hydrogen (or helium) abundance can usually not be mea-
sured directly, an increased helium abundance affects the
behavior of accretion, e.g., by increasing the Eddington
accretion rate. This could provide some indirect evidence
for helium enrichment in some of these systems.

While it is, of course, rather gratifying to be able to
“explain” possible evolutionary paths leading to some of
the best known X-ray binaries, there remain several out-
standing issues: (1) how unique are the evolutionary paths
we have found; (2) are types of systems suggested by
other reasonably long-lived phases of our binary evolutions
represented in the observed binary X-ray source popula-
tion; and (3) is our complete ensemble of binary evolution
models consistent with the overall population of observed
LMXBs and IMXBs?

In order to properly investigate these questions one
needs to carry out a full binary population synthesis (BPS)
study, starting from primordial binaries and utilizing a
library of binary evolution models of the type we have
generated. Such a BPS study is beyond the scope of the
present paper, but has been initiated (Pfahl et al. 2001).
One objective of a BPS study will be to produce probabil-
ity distributions, at the current epoch, for finding LMXBs
and IMXBs with various values of M , Ṁ , Porb, as well as
in different evolutionary states, locations in the Galaxy,
space velocities, and so forth. Such a study will involve
weighting each of the binary evolutions in our library by
the probability that each of the initial binary parameters
would be realized in nature. For the present study we uti-
lize our evolution tracks to produce a simplified estimate
of the likelihood of finding LMXBs and IMXBs in vari-
ous locations in the Ṁ − Porb plane. The choice of these
two parameters – Ṁ and Porb – is motivated by the fact
that these are the easiest to determine for LMXBs. In
fact, observationally, very few LMXBs and IMXBs (HZ
Her/Her X-1, Cyg X-2) have well determined constituent
masses or have much known about the state of the donor
star. On the other hand, if an estimate of the distance is
known, then Ṁ can be inferred from the X-ray luminosity
(at least in the case of conservative mass transfer), and
the orbital period can be inferred from X-ray or optical
photometry, rather than requiring Doppler measurements
of either the companion or the neutron star.

To relate our binary models to the Galactic population
of LMXBs and IMXBs on a statistical basis, we have con-
structed a plot which estimates the probability of finding
an LMXB or IMXB in a particular region of the Ṁ −Porb

plane. We do not attempt to weight each of the binary
evolution runs (in the library). We do, however, take into
account the amount of time spent in a particular part of
the evolution, as each of our model binaries traverses the
Ṁ − Porb plane. We make the implicit assumption of a
steady-state production of LMXBs and IMXBs which then
proceed through their entire evolution, well within the life-
time of the Galaxy. This, of course, will become less valid
for systems with evolutionary phases comparable to the
age of the Galaxy. To construct our probability distribu-
tion in the Ṁ −Porb plane, we proceeded as follows. First,
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Fig. 18.— Cumulative (smoothed) probability distribution for the mass-accretion rate onto the neutron-star primary as a function of orbital
period for the 100 binary calculations (with equal weighting for all sequences). The thick, solid central curve gives the median mass-accretion
rate; the pairs of curves moving progressively outwards from the median curve include 20, 40, 60, 80, and 98 per cent of the distribution,
respectively. The shaded region contains 50 per cent of all systems around the median. The symbols indicate the mass-transfer rates of
selected observed X-ray binaries (triangles: Z sources; squares: atoll sources; stars: X-ray pulsars; circles: systems with accretion-disk coronae
[lower limits]). The individual systems are (in ascending order of orbital period, as given in parentheses): (1) 1626-67 (0.69 hr), (2) 1916-
053 (0.83 hr), (3) 1636-536 (3.8 hr), (4) 0748-676 (3.82 hr), (5) 1254-690 (3.93 hr), (6) GX9+9 (4.2 hr), (7) 1735-555 (4.65 hr), (8) 2129+470
(5.24 hr), (9) 1822-37 (5.57 hr), (10) 1658-29 (7.11 hr), (11) Sco X-1 (18.9 hr), (12), 1624-590 (21 hr), (13) Her X-1 (40.8 hr), (14) 0921-630
(216 hr), (15) Cyg X-2 (236 hr), (16) GX1+4 (> 1000 hr) (taken from the catalogs by van Paradijs 1995 and Christian & Swank 1997).

we divided up the Ṁ − Porb plane into a finely spaced,
discrete, two-dimensional array. Each of the 100 binary
evolution tracks was then placed into this array, weighted
by the evolution time spent in each element of the array.
The probability of finding an LMXB/IMXB in any partic-
ular array element is then proportional to the combined
evolution time of all the tracks passing through that ar-
ray element. However, since there are only 100 evolution
tracks, the entire Ṁ−Porb plane is not completely sampled
(for an analogous sampling effect in the M − Porb plane
see Fig. 2a). In order to circumvent this problem some-
what, we computed, for each value of Porb, a cumulative
probability distribution in Ṁ . We then utilized these to
compute contours of constant probability which are plot-
ted in Figure 18. The central heavy curve is the median
value of Ṁ , while the contours on either side are in incre-
ments of 10% in probability, except for the top and bottom
curves which represent 1% and 99% of the systems. The
shaded region represents 50% of all systems around the
median.

As one can see from a perusal of Figure 18, there should
theoretically be a general positive correlation between or-
bital period (for Porb & 1 hr) and Ṁ , with the value of

Ṁ a few hundred times larger at periods of ∼100 days as
compared with 1 hr. At a given Porb, typically half of the
systems are contained within a range of about a factor of

∼ 6 in Ṁ , centered on the median value. The next step is
to compare the model results shown in Figure 18 with the
positions of known LMXBs and IMXBs in this diagram.
We excluded all obviously transient LMXBs and IMXBs
since, in most cases, it is unclear how to estimate the
long-term average X-ray luminosity5. We then selected 16
LMXBs and IMXBs (i) whose orbital periods are known,
(ii) whose X-ray luminosities do not vary wildly, and (iii)
where a distance to the source could be estimated. These
are shown overplotted on Figure 18; they include 2 “Z
sources” (triangles), 8 “atoll sources”(squares), 3 X-ray
pulsars (stars), and 3 “accretion disk corona sources” (cir-
cles). (For references see, e.g., van Paradijs 1995; Chris-
tian & Swank 1997.) For the latter group of sources, the
observed X-ray flux is thought to be severely affected by
an accretion disk corona, and therefore the inferred value
of Ṁ is shown only as a lower limit. We used a simple
factor of 10−8M⊙ yr−1 ≡ 1038 erg s−1 in converting X-ray
luminosity to mass-accretion rate.

The first obvious fact in comparing the theoretical prob-
ability distribution to the locations of known LMXBs and
IMXBs in the Ṁ −Porb plane (Fig. 18) is that only a rela-
tive handful lie plausibly in or near the shaded region. In
fact, 10 of the 16 sources lie at or outside the 1% upper
and lower probability contours. The largest discrepancies
come from luminous LMXBs with shorter orbital periods

5 We note that the issue of determining the long-term luminosity of an X-ray source is quite difficult – even for so called “steady sources”. The
entire history of X-ray astronomy is shorter than 40 years; while the typical timesteps in our binary evolution code may range from 102 − 107

years. Therefore, even X-ray sources which appear steady over the entire history of X-ray astronomy may, in fact, be transient over the longer
term, e.g., comparable to the time steps in our evolution code.
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(i.e., . 1 day). There are several important caveats to
note before viewing the comparison made in Figure 18
as being grossly discrepant. First, as mentioned above,
the evolution tracks that went into the production of the
probability contours in Figure 18 are not weighted by the
relative probabilities of achieving their initial binary con-
figurations in nature. Second, no transient X-ray sources
have been included in the figure. Many of these sources
probably have mean values of Ṁ of . 3 × 10−10M⊙ yr−1

(and possibly even higher for the larger values of Porb;
van Paradijs 1996; King, Kolb, & Sienkiewicz 1997) which
cover a substantial portion of the shaded (high probabil-
ity) region. Third, there are serious observational selec-
tion effects to consider, in that it is generally true that the
most luminous X-ray sources are studied in detail, yield-
ing higher probabilities of optical identifications which, in
turn, can lead to orbital period determinations. At least
the first two of these shortcomings of Figure 18 will be
addressed in our binary population synthesis study (Pfahl
et al. 2001).

One potentially very important effect that has not been
included in our binary calculations is the effect of X-ray
irradiation on the secondary which could significantly al-
ter the evolution of these systems and increase the mass-
accretion rate by either driving a strong wind from the
secondary (Ruderman et al. 1989) or by causing significant
expansion of the secondary (Podsiadlowski 1991; Harpaz &
Rappaport 1991). While these irradiation effects are still
poorly understood, even a relatively moderate irradiation-
driven expansion of the secondary may cause mass-transfer
cycles (Hameury et al. 1993) characterized by relatively
short phases of enhanced mass transfer and long detached
phases. During the X-ray phases these systems would ap-
pear to be much more luminous than without the inclusion
of X-ray irradiation effects. We also plan to examine this
possibility in our BPS study.

6. application to binary millisecond pulsars

There are currently about 1400 radio pulsars known
(Taylor, Manchester, & Lyne 1993; V. Kaspi 2001, pri-
vate communication). Of these, ∼ 100 have at least one
of the following properties (V. Kaspi 2001, private com-
munication): (i) a very short pulse period (∼ 77 with
P . 12 ms); (ii) a relatively weak magnetic field (∼ 46
with B . 1010 G); (iii) membership in a binary system
(∼ 66); and/or (iv) location in a globular cluster (∼ 45).
These systems are widely believed to be “recycled” pulsars,
i.e., NSs whose magnetic field has decayed away and which
have been spun up to high rotation rates by the accretion
of matter from a companion star (see, e.g., Bhattacharya
& van den Heuvel 1991). In the Galactic plane, there are
several distinct classes of binary radio pulsars. One major
class involves systems with low-mass companions (0.10 –
0.4 M⊙) and nearly circular orbits. These range in Porb

from a fraction of a day to 1000 days. There is a dearth of
these pulsars in the period range of 12 and 68 days. The
masses of most of the companions to these pulsars are
known only approximately from the measured mass func-
tions. Based on the scenario for their formation, which
involves stable mass transfer from a low-mass giant, there
is a theoretically predicted relation between the orbital
period of these systems and the mass of the remnant com-

panion white dwarf (see, e.g., Rappaport et al. 1995). In
fact, the locus of points in Figure 12 tracing the maximum
value of Porb at any given white dwarf mass matches the
theoretical relation rather closely (see also § 4.1). Most
of the model systems helping to define this relation, how-
ever, have orbital periods between ∼12 and 120 days – at
least the first half of which fall in the period “gap” found
observationally. There is also another cluster of model sys-
tems with Porb between ∼11 and 85 minutes; these are of
shorter periods than any of the binary pulsars discovered
thus far in the Galactic disk. Again we note the caveat
discussed in § 5 that our library of binary models has not
been weighted according to the probability of achieving
their initial binary parameters at the onset of mass trans-
fer, e.g., in the context of a full binary population synthesis
calculation.

Another class of binary radio pulsars are the ones with
substantially more massive white dwarf companions which
distinctly do not fit the scenario described above (with a
low-mass giant donor) and do not lie in the Porb – Mwd

plane near the associated theoretical relationship. These
systems also have nearly circular orbits and Porb in the
range of ∼ 1 – 10 days. It has been proposed for some
time now that these systems result from donor stars which
are more massive than the neutron star, thereby leading
to unstable mass transfer and a common envelope phase
(see, e.g., Taam & van den Heuvel 1986). Our models
with donors that are initially of intermediate mass natu-
rally lead to this type of system without a common en-
velope phase (see also § 4 and Tauris et al. 2000). Such
model systems are found in abundance in Figure 13 (trian-
gles situated well below and to the right of the theoretical
curve).

Yet another class of binary radio pulsars are systems
that contain planetary mass companions (i.e., M .
0.02M⊙) which are in the process of being ablated by the
radiation from the pulsar (e.g., 1957+20; Fruchter, Stine-
bring, & Taylor 1988). In this regard, we note that in
our binary evolution calculations, the mass transfer is al-
lowed to continue until either the donor star becomes de-
tached from its Roche lobe or its non-degenerate envelope
has been completely stripped. Of course, as the neutron
star accretes matter from the companion it will be spun
up by accretion torques – the maximum spin period be-
ing determined by a combination of, Ṁ , the total mass
accreted, and the strength of the neutron star’s magnetic
field. For weak surface magnetic fields (i.e., . 109 G),
the accretion-induced spin period is given approximately
by P = 3.5 × (∆M/0.01M⊙)−1/2 ms, where ∆M is the
accreted mass. For higher magnetic fields, the minimum

accretion induced rotation period scales as 1.9B
6/7
9 ms,

for an Eddington-limited luminosity, where B9 is the sur-
face dipole field strength in units of 109 G (see, e.g., Bhat-
tacharya & van den Heuvel 1991). Thus, at some point
in the evolution, prior to the exhaustion of the donor’s
envelope, a spun-up neutron star may turn on as a radio
pulsar. This could have two important consequences for
the subsequent evolution of the binary. First, the pulsar
radiation (in the form of both electromagnetic waves and
a relativistic wind) may exert sufficient pressure on the in-
coming accretion flow that all further accretion is halted.
Second, the pulsar radiation may ablate material from the
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donor star, and in some cases possibly evaporate it alto-
gether (see, e.g., Ruderman, Shaham, & Tavani 1989; van
den Heuvel & van Paradijs 1988, Bhattacharya & van den
Heuvel 1991). In the present binary evolution calculations,
we do not take either a possible pulsar turnon into account
or the subsequent effects of the pulsar radiation on the
donor star. In our BPS study we will attempt to use sim-
plified prescriptions to handle both of these processes, i.e.,
pulsar turnon and ablation of the donor, although there
are obviously still many uncertainties concerning both of
these.

The final class of binary pulsars we comment on consists
of a pair of neutron stars. While these systems are impor-
tant for exploring binary evolution, acting as laboratories
for general relativity, and yielding potentially detectable
gravity wave signals when they merge, our study does not
shed any new light on their formation. This results from
the fact that our highest mass donor stars are 7 M⊙ which
is too low to form a second neutron star.

Many of the same classes of binary radio pulsars that are
found in the plane have also been discovered in globular
clusters. In particular, there are 22 radio pulsars known
in 47 Tuc (Camilo et al. 2000), 8 in M15 (Anderson 1992),
and 2 each in M5, M13, Ter 5, and NGC 6624. At least 10
of the radio pulsars in 47 Tuc are in binary systems with
periods ranging from 1.5 hr to 2 days. This abundance of
recycled pulsars in globular clusters is widely attributed
to the dense stellar environment which can lead to 2-, 3-,
and 4-body stellar encounters at interestingly high rates.
Thus, through a combination of processes such as 2-body
tidal capture (e.g., Fabian, Pringle, & Rees 1975; Di Ste-
fano & Rappaport 1992) and exchange interactions where
a field neutron star replaces a normal star in a binary, nu-
merous neutron star binaries should be formed (see, e.g.,
Rasio, Pfahl, & Rappaport 2000; Rappaport et al. 2001).

We have already discussed in § 4.2 how the globular-
cluster X-ray sources fit our evolution scenarios. However,
we need to check if the binary millisecond pulsars also
fit naturally into the same evolutionary scenarios. In 47
Tuc, there is a group (“A”) of five pulsars which have
masses of 0.02− 0.03 M⊙ and periods of 1.5 – 5.5 hr, while
a second group (“B”) has masses approximately 10 times
higher and periods of 0.1 – 2 d. The evolutionary scenarios
for producing the ultracompact X-ray binaries discussed
in §4.2 may also provide a possible path to the formation
of binary radio pulsars of the type found in the 47 Tuc
group A pulsars. In the process of evolving to very short
periods (11–83 min)., these mass transfer binaries will nat-
urally pass through orbital periods of 1.5–5 hr. However,
at these periods the donor masses are substantially larger
than the typical values of ∼ 0.025M⊙ found for the com-
panions in the group A systems. On the other hand, if at
some point in the binary evolution, the neutron star has
been spun up to msec periods, pulsar radiation may turn
on and both shut off further mass transfer and ablate the
donor star until it has been reduced to planetary mass.
It is also true that after the minimum period is reached
in the ultracompact systems (see §4.2), the orbit will, in
principle, expand back into the range of about an hour
or so within a Hubble time. In order for such systems to
return all the way back to periods of 1.5–5 hours, some
other effect, such as sustained tidal heating, would be re-

quired (as is also invoked for the case of the post-common
envelope scenario proposed by Rasio et al. 2000). A char-
acteristic of our “ultracompact” evolutionary scenario is
that the correct initial orbital periods between ∼ 13 − 18
hr arise naturally from tidal capture in globular clusters.
By contrast, the common envelope scenario proposed by
Rasio et al. (2000) follows more naturally from the wider
orbits left by 3-body encounters.

The orbital period range of ∼ 0.1−2 days for the group
B pulsars is traversed in many of our binary evolutions
(see, e.g., Fig. 2a). However, in all but 2 cases, the masses
of the donor stars in this period range are much higher
than the group B pulsar companions. In addition, the
donor stars at this phase of the evolution are still quite
H-rich and would therefore not resemble the inferred He
white dwarf companions of these pulsars. Again, it is pos-
sible that these evolutions are interrupted by the turn-on
of a strong radio pulsar at just the right values of Porb to
match the group B systems. At present, we do not have
a good explanation for how this would happen, nor do we
know the reason for the existence of two rather distinct
groups of msec pulsars.

A long-standing problem in our understanding of mil-
lisecond pulsars, known as the birthrate problem, is that,
in the standard model of LMXBs, the birthrate of LMXBs
appears to be a factor of 10 to 100 lower than the birthrate
of millisecond pulsars, which are believed to be their direct
descendants. This problem exists for millisecond pulsars
both in the Galactic disk (Kulkarni & Narayan 1988; John-
ston & Bailes 1991) and in globular clusters ( Fruchter &
Goss 1990; Kulkarni, Narayan, & Romani 1990). This
discrepancy may be the result of an overestimate of the
LMXB lifetime, typically taken to be ∼ 5×109 yr in these
estimates. If a large fraction of X-ray binaries are IMXBs,
one might expect that the time these systems spend as X-
ray emitters could be significantly reduced, which would
then alleviate the problem. However, our calculations
show that even IMXBs spend most most of their X-ray
active lifetime as low-mass systems and that consequently
the duration of the X-ray active lifetime is generally not
much lower than for true LMXBs (see the column ∆tṀ
in Table A1). Thus the inclusion of IMXBs does not
immediately solve the birthrate problem. This problem
may also be related to the problem of the low median
X-ray luminosities found in our calculations (as discussed
in § 5) and may have a similar resolution: if irradiation-
driven mass-transfer cycles operate for low-mass systems
(see § 5), these would not only increase the mass-transfer
rates during the X-ray active portion of the cycles but also
reduce the duration of the X-ray active lifetime of these
systems by a proportionate amount. This could provide a
simultaneous solution to both of these problems, the X-ray
luminosity and the birthrate problem.

As we have shown, our binary evolution models per-
tain directly to the binary radio pulsars found in both the
Galactic plane and in globular clusters. However, before
we can draw definitive conclusions about the relative and
absolute populations of the different classes of these ob-
jects, in both the plane and in clusters, we must await the
results of our binary population synthesis study (Pfahl et
al. 2001).
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7. summary and outlook

As this study has shown, the evolution of low- and
intermediate-mass X-ray binaries is much more complex
than previously believed, and the standard model for these
systems where mass transfer is driven only by magnetic
braking, gravitational radiation, and occasionally nuclear
evolution is the exception rather than the rule. Our evo-
lutionary sequences show an enormous variety of evolu-
tionary channels which may explain the large diversity in
observed systems. Indeed many of the best-studied sys-
tems in the Galactic disk (e.g., Her X-1, Cyg X-2, Sco
X-1, GRO J1744-28, 4U 1626-67 and 4U 1915-05) as well
as all globular clusters sources with known orbital periods
can be identified with particular sequences in our library of
models. This demonstrates the importance of these results
for our understanding of X-ray binaries and millisecond
pulsars, believed to be their descendants.

However, our results also show that there are a num-
ber of problems still remaining, in particular the low me-
dian X-ray luminosities as compared to the luminosity of

well observed systems, the orbital-period distribution of
millisecond pulsars, and the millisecond pulsar birthrate
problem. To shed more light on the significance of these
discrepancies, we have initiated a systemic binary popu-
lation synthesis study (Pfahl et al. 2001) where we imple-
ment this library of models in a population synthesis code.
This will not only allow us to quantify these discrepancies
more precisely, but also to examine possible solutions (e.g.,
irradiation-driven cycles, pulsar turnon, pulsar evapora-
tion, etc.) and should ultimately help us to improve our
understanding of the evolution X-ray binaries and the for-
mation of millisecond pulsars.
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APPENDIX

In this appendix, we present in tabular form (Table A1) some of the main characteristics of the 100 binary sequences in
this study, where the selected parameters depend on the type of evolution encountered. In all sequences, the initial mass
of the compact object, assumed to be a neutron star, was taken to be 1.4 M⊙. The initial mass of the secondary, M2,
ranges from 0.6 to 7 M⊙. For these masses, the table first lists (in the first row) the initial parameters for each sequence:
the initial central hydrogen mass fraction, X i

c; the initial fractional mass of the H-exhausted core, M i
c/M ; the age of the

secondary at the beginning of mass transfer, ti (yr). The next parameters give the key binary parameters at the end of

each calculation and the type of end product, where Mf
2 and Mf

1 are the final masses of the secondary and primary (in
M⊙), respectively, P f is the final orbital period (in d), ∆t gives the total time since the beginning of mass transfer (in
yr) and ‘Type’ indicates the type of end product (‘short’: compact system; ‘He’: wide system with a He white dwarf
secondary; ‘HeCO’: wide system with a HeCO white dwarf secondary; ‘del dyn’: delayed dynamical instability; ‘dyn’:
dynamical mass transfer; ‘?’ indicates that the system may be dynamically unstable).

Note that the calculations were terminated at different points for the different types of evolution. For the ultracompact
systems, the calculations were generally terminated just after the period minimum when the secondaries have become fully
degenerate. In systems where the secondary becomes a He or a HeCO white dwarf, the calculations are continued either
up to the point where the secondary has settled on the cooling sequence for degenerate stars or until the beginning of
the first hydrogen shell flash (although in many cases, we continued the calculations through all flashes). In systems that
experience a dynamical instability, the calculations were generally terminated when the secondaries overfilled their Roche
lobes by a factor of 1.5. In cases, where the maximum overflow factor was less than 1.5, we continued the calculations
(pretending that the systems did not experience a spiral-in phase) just as for the systems that were dynamically stable
(these are the systems marked with ‘?’ in the ‘Type’ column).

The next three parameters in the first row give the average and the maximum mass-transfer rate, < Ṁ > and Ṁmax

(in M⊙ yr−1), respectively, and the total duration of the mass-transfer phase for each sequence, ∆tṀ (in yr), where we

considered only phases where Ṁ exceeded a rate of 10−12 M⊙ yr−1. The last column in the first row indicates whether
the secondary experienced hydrogen shell flashes before settling onto the sequence for degenerate stars.

In the second row, the first four parameters apply to systems that evolve towards short periods: column ‘gap’ gives the
range of orbital periods (in hr) for the sequences that experienced a period gap; Mmin

2 gives the secondary mass (in M⊙)
at the period minimum, Pmin (in min), and Xmin

s the surface hydrogen abundance at the point.
The last 6 columns apply to systems that (may) experience dynamical mass transfer, where fover is the maximum

overflow factor (i.e., the ratio of the secondary radius to the Roche-lobe radius), tatm and trad give the duration of phases
with ‘atmospheric’ and ‘radiative’ Roche-lobe overflow (in kyr), respectively, before the onset of the dynamical instability.

Finally, Mdyn
2 and Mdyn

1 are the secondary and primary masses (in M⊙), respectively, and P dyn is the orbital period
(in d) when the mass-transfer rate starts to exceed 10−4 M⊙ yr−1, which is close to the point where many/most of these
systems are expected to become dynamically unstable.
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Paczyński, B. 1970, in IAU Colloq. 6, Mass Loss and Evolution in
Close Binaries, ed. K. Gyldenkerne & R. M. West (Copenhagen:
Copenhagen University Publications), 139
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Thorne, K. S., & Żytkow, A. N. 1977, ApJ, 212, 832
Tutukov, A. V., Fedorova, A. V., Ergma E., & Yungelson, L. R. 1985,

SvA, 11, 123
Tutukov, A. V., Fedorova A. V., Ergma E., & Yungelson L. 1987,

Sov. Astron. Lett., 13, 328
van den Heuvel, E. P. J., & van Paradijs, J. 1988, Nat, 334, 227.
van der Klis, M., et al. 1993, MNRAS, 260, 686
van Paradijs, J. 1995, in X-Ray Binaries, ed. W. H. G. Lewin, J.

van Paradijs, & E. P. J. van den Heuvel (Cambridge: Cambridge
University Press), 536

van Paradijs, J. 1996, ApJ, 464, L139
Verbunt, F. 1987, ApJ, 312, 23
Verbunt, F., & Zwaan, C. 1981, A&A, 100, L7
Witte, M. G., & Savonije, G. J. 2001, A&A, 366, 840



22 PODSIADLOWSKI, RAPPAPORT, & PFAHL

Table A1

Selected Properties of Binary Sequences

P i (d) Xi
c Mi

c/M ti (yr) Mf
2 (M⊙) Mf

1 (M⊙) P f (d) ∆t (yr) Type < Ṁ >a Ṁmax
a ∆tṀ (yr) H flash?

gap (hr) Mmin
2 (M⊙) Pmin (min) Xmin

s fover tatm (kyr) trad (kyr) Mdyn
2 (M⊙) Mdyn

1 (M⊙) Pdyn (d)

Mi
2 = 0.6 M⊙:

0.18 0.685 0.000 0.00E+00 0.048 1.676 0.060 4.87E+09 short 1.2E-10 4.1E-09 4.8E+09 n
2.86 – 3.04 0.066 82.4 0.68

Mi
2 = 0.8 M⊙:

0.24 0.685 0.000 3.00E+06 0.047 1.776 0.059 4.86E+09 short 1.6E-10 5.2E-09 4.6E+09 n
2.76 – 3.03 0.067 80.3 0.68

0.26 0.436 0.000 7.99E+09 0.048 1.776 0.057 3.62E+09 short 2.1E-10 4.2E-09 3.6E+09 n
2.07 – 2.23 0.077 77.6 0.64

Mi
2 = 1.0 M⊙:

0.30 0.685 0.000 0.00E+00 0.049 1.875 0.060 4.65E+09 short 2.1E-10 6.0E-09 4.6E+09 n
2.80 – 3.07 0.066 83.2 0.68

0.35 0.323 0.000 4.69E+09 0.048 1.876 0.058 3.75E+09 short 2.6E-10 5.1E-09 3.7E+09 n
2.26 – 2.41 0.062 79.8 0.62

0.52 0.000 0.000 9.53E+09 0.034 1.883 0.041 3.01E+09 short 3.2E-10 4.3E-09 3.0E+09 n
none 0.055 48.2 0.34

0.74 0.000 0.055 1.11E+10 0.194 1.803 1.662 1.60E+10 He 3.8E-10 3.9E-09 2.1E+09 y

1.07 0.000 0.125 1.16E+10 0.246 1.777 8.863 9.31E+08 He 9.4E-10 6.2E-09 8.1E+08 y

4.59 0.000 0.202 1.20E+10 0.307 1.744 52.311 1.44E+08 He 5.4E-09 2.7E-08 1.3E+08 y

24.69 0.000 0.277 1.22E+10 0.360 1.660 208.733 3.27E+07 He 4.1E-08 9.7E-07 1.6E+07 y

102.70 0.000 0.341 1.23E+10 0.430 1.476 617.434 5.00E+08 He 1.3E-07 2.2E-06 4.5E+06 n

Mi
2 = 1.2 M⊙:

0.39 0.671 0.000 1.79E+08 0.049 1.976 0.060 4.66E+09 short 2.5E-10 5.8E-09 4.6E+09 n
2.54 – 2.77 0.066 83.0 0.67

0.54 0.385 0.000 3.45E+09 0.040 1.980 0.056 3.40E+09 short 3.4E-10 4.4E-09 3.4E+09 n
none 0.055 77.8 0.53

0.72 0.099 0.000 5.34E+09 0.025 1.987 0.035 3.04E+09 short 4.0E-10 6.2E-09 3.0E+09 n
none 0.071 39.0 0.12

1.00 0.000 0.049 5.77E+09 0.248 1.876 10.037 8.14E+08 He 1.3E-09 6.5E-09 7.4E+08 y

1.42 0.000 0.128 5.91E+09 0.268 1.866 19.391 5.27E+08 He 2.0E-09 1.8E-08 4.6E+08 y

2.01 0.000 0.147 6.34E+09 0.282 1.859 28.880 3.76E+08 He 2.8E-09 3.8E-08 3.4E+08 y

3.41 0.000 0.164 7.07E+09 0.304 1.840 49.271 2.02E+08 He 5.3E-09 3.7E-08 1.7E+08 y

5.82 0.000 0.182 7.84E+09 0.323 1.817 79.175 1.09E+08 He 1.0E-08 3.6E-08 8.4E+07 y

Mi
2 = 1.4 M⊙:

0.47 0.674 0.000 7.17E+07 0.075 2.062 0.009 1.01E+10 short 1.3E-10 2.2E-08 1.0E+10 n
none 0.106 10.8 0.01

0.70 0.347 0.000 2.20E+09 0.050 2.075 0.013 4.65E+09 short 2.9E-10 1.5E-08 4.6E+09 n
none 0.099 12.0 0.02

0.96 0.102 0.000 3.16E+09 0.211 1.994 2.677 0.00E+00 He 1.1E-09 6.6E-09 1.1E+09 y

1.91 0.000 0.114 3.49E+09 0.296 1.895 37.896 2.04E+08 He 9.6E-09 9.9E-08 1.1E+08 y

3.76 0.000 0.138 3.52E+09 0.315 1.857 64.060 1.52E+08 He 1.1E-08 2.9E-07 9.9E+07 y

6.42 0.000 0.169 3.57E+09 0.335 1.822 98.308 7.18E+07 He 2.0E-08 4.6E-07 5.5E+07 y

Mi
2 = 1.6 M⊙:

0.49 0.673 0.000 7.02E+07 0.027 2.186 0.035 6.29E+09 short 2.6E-10 3.2E-09 6.3E+09 n
none 0.061 35.2 0.31

0.83 0.355 0.000 1.48E+09 0.264 2.068 17.644 1.59E+09 He 9.5E-10 4.1E-09 1.4E+09 y

1.30 0.100 0.000 2.13E+09 0.287 2.056 31.520 3.17E+08 He 5.1E-09 1.8E-08 2.6E+08 y
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Table A1—Continued

P i (d) Xi
c Mi

c/M ti (yr) Mf
2 (M⊙) Mf

1 (M⊙) P f (d) ∆t (yr) Type < Ṁ >a Ṁmax
a ∆tṀ (yr) H flash?

gap (hr) Mmin
2 (M⊙) Pmin (min) Xmin

s fover tatm (kyr) trad (kyr) Mdyn
2 (M⊙) Mdyn

1 (M⊙) Pdyn (d)

1.86 0.000 0.046 2.30E+09 0.306 1.885 40.234 9.45E+07 He 2.4E-08 9.9E-08 5.3E+07 y

2.73 0.000 0.112 2.32E+09 0.318 1.765 55.029 7.05E+07 He 3.4E-08 5.0E-07 3.8E+07 y

4.63 0.000 0.128 2.32E+09 0.335 1.738 82.336 5.87E+07 He 4.0E-08 2.0E-06 3.1E+07 y

9.07 0.000 0.146 2.34E+09 0.359 1.696 136.644 1.24E+09 He 6.1E-08 6.9E-06 2.2E+07 y

16.62 0.000 0.162 2.34E+09 0.383 1.636 218.570 2.94E+07 He 7.8E-08 1.9E-05 1.6E+07 y

Mi
2 = 1.8 M⊙:

0.50 0.662 0.000 9.58E+07 0.050 2.275 0.019 6.35E+09 short 2.8E-10 2.5E-08 6.4E+09 n
none 0.061 25.3 0.13

0.97 0.330 0.000 1.11E+09 0.277 2.152 25.739 1.15E+09 He 1.5E-09 5.2E-08 1.0E+09 y

1.66 0.099 0.000 1.49E+09 0.298 2.099 44.217 1.90E+08 He 9.0E-09 5.7E-08 1.8E+08 y

3.29 0.000 0.104 1.62E+09 0.320 1.660 71.218 3.05E+07 He 9.2E-08 7.9E-05 1.7E+07 y

6.60 0.000 0.127 1.62E+09 0.359 1.614 109.041 2.80E+07 He 8.1E-08 8.7E-06 1.6E+07 y

Mi
2 = 2.1 M⊙:

0.50 0.683 0.000 2.00E+06 0.037 2.341 0.045 6.14E+09 short 3.4E-10 1.1E-07 6.0E+09 n
none 0.049 62.7 0.32

0.71 0.489 0.000 4.40E+08 0.231 2.198 6.333 2.65E+09 He 7.6E-10 1.4E-07 2.5E+09 y

1.10 0.300 0.000 7.26E+08 0.254 2.135 19.660 9.35E+08 He 2.2E-09 2.3E-07 8.8E+08 y

2.01 0.096 0.000 9.29E+08 0.322 2.167 39.047 1.63E+08 HeCO 1.1E-08 1.7E-07 1.6E+08 y

2.87 0.000 0.039 9.99E+08 0.360 1.614 50.885 1.41E+08 HeCO 1.4E-07 5.8E-07 1.3E+07 y

4.42 0.000 0.101 1.00E+09 0.367 1.529 71.877 1.33E+08 HeCO 1.8E-07 1.0E-04 7.8E+06 y

28.95 0.000 0.150 1.01E+09 0.562 1.434 173.217 1.66E+08 HeCO? 4.8E-07 1.0E-04 1.8E+06 y
1.09 85.2 1.872 1.4005 28.68

Mi
2 = 2.4 M⊙:

0.51 0.676 0.000 1.74E+07 0.031 2.270 0.027 6.35E+09 short 3.7E-10 3.7E-07 6.3E+09 n
none 0.058 29.0 0.18

1.06 0.327 0.000 4.80E+08 0.225 2.077 8.464 1.27E+09 He 1.8E-09 6.7E-07 1.2E+09 y

2.08 0.097 0.000 6.39E+08 0.340 2.021 21.018 1.98E+08 HeCO 1.1E-08 7.9E-07 1.9E+08 y

4.22 0.000 0.065 6.86E+08 0.421 1.495 47.379 1.29E+08 HeCO 3.7E-07 2.5E-06 5.3E+06 y

8.56 0.000 0.116 6.88E+08 0.429 1.460 89.865 1.20E+08 HeCO? 3.4E-07 1.0E-04 3.4E+06 y
1.12 24.8 2.352 1.4002 8.43

Mi
2 = 2.7 M⊙:

0.52 0.679 0.000 8.43E+06 0.031 2.197 0.045 6.40E+09 short 4.2E-10 9.7E-07 6.4E+09 n
none 0.059 55.7 0.41

1.09 0.328 0.000 3.46E+08 0.231 1.995 10.106 1.42E+09 He 1.8E-09 1.6E-06 1.4E+09 y

2.14 0.100 0.000 4.59E+08 0.358 1.856 18.993 6.88E+08 HeCO 1.4E-08 2.1E-06 1.6E+08 n

4.27 0.000 0.067 4.93E+08 0.483 1.454 29.826 1.08E+08 HeCO 7.1E-07 4.6E-06 3.1E+06 y

8.52 0.000 0.112 4.94E+08 0.490 1.437 57.094 1.06E+08 HeCO? 5.5E-07 1.0E-04 2.1E+06 y
1.13 10.3 2.506 1.4001 7.76

Mi
2 = 3.0 M⊙:

0.54 0.669 0.000 1.66E+07 0.025 2.140 0.036 9.45E+09 short 3.2E-10 2.0E-06 9.4E+09 n
none 0.065 33.9 0.19

1.10 0.340 0.000 2.51E+08 0.259 1.909 23.583 1.05E+09 He 2.7E-09 3.3E-06 1.0E+09 y

2.23 0.098 0.000 3.41E+08 0.387 1.716 15.191 5.75E+08 HeCO 2.1E-08 4.3E-06 1.2E+08 n
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Table A1—Continued

P i (d) Xi
c Mi

c/M ti (yr) Mf
2 (M⊙) Mf

1 (M⊙) P f (d) ∆t (yr) Type < Ṁ >a Ṁmax
a ∆tṀ (yr) H flash?

gap (hr) Mmin
2 (M⊙) Pmin (min) Xmin

s fover tatm (kyr) trad (kyr) Mdyn
2 (M⊙) Mdyn

1 (M⊙) Pdyn (d)

4.46 0.000 0.068 3.66E+08 0.546 1.440 19.257 3.87E+08 HeCO 1.2E-06 7.4E-06 2.1E+06 n

8.95 0.000 0.091 3.66E+08 0.555 1.433 37.376 9.65E+08 HeCO 1.4E-06 2.0E-05 1.8E+06 n

17.52 0.000 0.122 3.66E+08 0.561 1.421 71.054 2.70E+08 HeCO? 5.5E-07 1.0E-04 1.1E+06 n
1.41 13.6 2.963 1.4001 17.12

Mi
2 = 3.5 M⊙:

0.55 0.684 0.000 6.20E+05 0.049 1.903 0.060 4.46E+09 short? 4.9E-10 1.0E-04 4.3E+09 n
1.11 2030.8 334.7 2.350 1.4077 0.26

1.14 0.337 0.000 1.62E+08 0.235 1.831 11.030 1.36E+09 He 2.5E-09 8.6E-06 1.3E+09 y

2.28 0.103 0.000 2.17E+08 0.433 1.624 9.070 2.45E+09 HeCO 4.0E-08 1.2E-05 7.5E+07 n

4.78 0.000 0.078 2.33E+08 0.658 1.423 9.133 4.20E+08 HeCO 3.6E-06 2.1E-05 7.7E+05 n

11.03 0.000 0.101 2.33E+08 0.672 1.418 20.118 3.69E+09 HeCO 3.1E-06 5.8E-05 9.2E+05 n

22.37 0.000 0.125 2.34E+08 2.719 1.400 12.665 1.01E+06 Dyn 4.5E-06 1.0E-04 4.8E+03 n
1.50 4.8 3.468 1.4000 21.91

Mi
2 = 4.0 M⊙:

0.57 0.676 0.000 4.47E+06 2.118 1.404 0.161 2.04E+06 Del Dyn 7.3E-07 1.0E-04 9.6E+05 n
1.50 848.1 114.8 3.220 1.4033 0.28

1.17 0.338 0.000 1.19E+08 0.237 1.757 12.122 1.35E+09 He? 5.1E-09 1.0E-04 4.0E+08 y
1.20 410.3 84.2 2.921 1.4026 0.47

2.32 0.102 0.000 1.59E+08 0.466 1.573 5.776 6.29E+07 HeCO 1.3E-07 1.7E-04 2.1E+07 n

4.81 0.000 0.078 1.70E+08 0.772 1.414 4.070 4.18E+08 HeCO 4.3E-06 7.4E-05 7.4E+05 n

9.85 0.000 0.102 1.70E+08 0.790 1.411 7.972 3.48E+08 HeCO 5.4E-06 1.0E-04 5.9E+05 n

19.35 0.000 0.112 1.70E+08 0.803 1.410 15.121 2.41E+09 HeCO? 2.8E-06 1.0E-04 5.0E+05 n
1.28 34.9 3.165 1.4007 9.13

Mi
2 = 4.5 M⊙:

0.57 0.682 0.000 1.26E+06 3.145 1.403 0.155 2.44E+06 Del Dyn 3.5E-07 1.0E-04 1.3E+06 n
1.50 1235.6 89.9 4.001 1.4025 0.33

1.20 0.342 0.000 8.45E+07 2.686 1.402 0.241 1.77E+06 Del Dyn 9.0E-07 1.0E-04 7.9E+05 n
1.50 731.3 42.6 4.427 1.4017 1.11

2.38 0.103 0.000 1.14E+08 0.471 1.507 3.432 3.73E+08 HeCO? 9.5E-08 1.0E-04 1.9E+07 y
1.47 319.1 100.1 4.453 1.4015 2.26

4.98 0.000 0.084 1.22E+08 0.889 1.409 1.856 2.99E+09 HeCO? 1.6E-05 1.0E-04 6.9E+04 y
1.41 9.4 4.494 1.4001 4.95

14.08 0.000 0.113 1.22E+08 2.675 1.400 2.816 1.02E+06 Dyn 5.3E-05 1.0E-04 1.3E+04 n
1.50 8.6 4.159 1.4001 9.79

38.60 0.000 0.134 1.22E+08 4.005 1.400 22.625 1.01E+06 Dyn 9.1E-06 1.0E-04 1.9E+03 n
1.50 1.9 4.490 1.4000 38.25

Mi
2 = 5.0 M⊙:

0.59 0.677 0.000 2.20E+06 3.609 1.401 0.131 1.56E+06 Del Dyn 8.3E-07 1.0E-04 5.3E+05 n
1.50 500.9 24.5 4.519 1.4012 0.34

1.22 0.338 0.000 6.82E+07 3.544 1.401 0.254 1.34E+06 Del Dyn 1.9E-06 1.0E-04 3.1E+05 n
1.50 291.7 17.6 4.360 1.4011 0.58

2.42 0.101 0.000 9.10E+07 3.377 1.401 0.436 1.21E+06 Del Dyn 3.1E-06 1.0E-04 1.9E+05 n
1.50 164.8 20.9 4.604 1.4008 1.51

4.61 0.000 0.081 9.72E+07 3.553 1.400 0.965 1.02E+06 Dyn 2.3E-05 1.0E-04 8.7E+03 n
1.50 8.7 4.763 1.4001 3.46

9.50 0.000 0.114 9.73E+07 4.035 1.400 3.174 1.01E+06 Dyn 2.7E-05 1.0E-04 5.3E+03 n
1.43 5.3 4.805 1.4001 7.51

19.30 0.000 0.124 9.73E+07 4.006 1.400 6.246 1.01E+06 Dyn 3.2E-05 1.0E-04 4.0E+03 n
1.50 4.0 4.864 1.4001 16.32

37.90 0.000 0.133 9.73E+07 4.160 1.400 14.408 1.02E+06 Dyn 2.2E-05 1.0E-04 9.5E+03 n
1.50 9.5 4.781 1.4002 29.08

Mi
2 = 6.0 M⊙:

0.62 0.666 0.000 3.51E+06 5.004 1.401 0.170 1.29E+06 Del Dyn 7.5E-07 1.0E-04 2.7E+05 n
1.50 262.5 8.3 5.773 1.4006 0.46

1.25 0.338 0.000 4.42E+07 5.035 1.401 0.355 1.20E+06 Del Dyn 8.2E-07 1.0E-04 1.8E+05 n
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Table A1—Continued

P i (d) Xi
c Mi

c/M ti (yr) Mf
2 (M⊙) Mf

1 (M⊙) P f (d) ∆t (yr) Type < Ṁ >a Ṁmax
a ∆tṀ (yr) H flash?

gap (hr) Mmin
2 (M⊙) Pmin (min) Xmin

s fover tatm (kyr) trad (kyr) Mdyn
2 (M⊙) Mdyn

1 (M⊙) Pdyn (d)

1.50 174.3 6.7 5.841 1.4006 1.01
2.46 0.104 0.000 5.90E+07 5.226 1.401 0.886 1.15E+06 Del Dyn 1.5E-06 1.0E-04 1.3E+05 n

1.50 124.6 8.5 5.853 1.4005 2.02
4.97 0.000 0.094 6.31E+07 5.362 1.400 2.131 1.01E+06 Dyn 2.2E-05 1.0E-04 3.7E+03 n

1.50 3.7 5.911 1.4001 4.40
9.94 0.000 0.123 6.32E+07 5.448 1.400 4.749 1.01E+06 Dyn 2.8E-05 1.0E-04 2.4E+03 n

1.50 2.4 5.928 1.4000 9.01
21.21 0.000 0.140 6.32E+07 5.542 1.400 11.471 1.01E+06 Dyn 3.3E-05 1.0E-04 1.8E+03 n

1.50 1.8 5.934 1.4000 19.39
41.27 0.000 0.145 6.32E+07 5.570 1.400 23.152 1.01E+06 Dyn 3.5E-05 1.0E-04 1.4E+03 n

1.50 1.4 5.943 1.4000 38.07

Mi
2 = 7.0 M⊙:

0.64 0.668 0.000 2.30E+06 6.322 1.401 0.241 1.22E+06 Del Dyn 4.2E-07 1.0E-04 2.0E+05 n
1.50 193.6 6.8 6.945 1.4004 0.60

1.25 0.349 0.000 3.10E+07 6.395 1.401 0.522 1.15E+06 Del Dyn 2.9E-07 1.0E-04 1.4E+05 n
1.50 138.8 2.8 6.933 1.4004 1.15

2.56 0.102 0.000 4.23E+07 6.421 1.400 1.106 1.10E+06 Del Dyn 5.0E-07 1.0E-04 9.2E+04 n
1.50 90.3 2.2 6.933 1.4004 2.32

5.27 0.000 0.108 4.52E+07 6.528 1.400 2.646 1.01E+06 Dyn 2.5E-05 1.0E-04 1.7E+03 n
1.50 1.7 6.952 1.4000 4.90

10.88 0.000 0.131 4.52E+07 6.585 1.400 5.937 1.01E+06 Dyn 2.8E-05 1.0E-04 1.3E+03 n
1.50 1.3 6.958 1.4000 10.22

21.46 0.000 0.147 4.52E+07 6.654 1.400 12.960 1.00E+06 Dyn 3.2E-05 1.0E-04 1.0E+03 n
1.50 1.0 6.963 1.4000 20.30

42.23 0.000 0.152 4.52E+07 6.714 1.400 27.771 1.00E+06 Dyn 3.3E-05 1.0E-04 8.2E+02 n
1.50 0.8 6.968 1.4000 40.23

Note. — First row: P i : initial orbital period (d); Xi
c: initial central hydrogen mass fraction; Mi

c/M : initial fractional mass of

the H-exhausted core; ti : age at beginning of mass transfer (yr); Mf
2 , Mf

1 : final masses of the secondary and primary (M⊙); P f :
final orbital period (d); ∆t : total time since beginning of mass transfer (yr); Type: type of evolution: ‘short’: compact system; ‘He’:
He white dwarf secondary; ‘HeCO’: HeCO white dwarf secondary; ‘del dyn’: delayed dynamical instability; ‘dyn’: dynamical mass

transfer; ‘?’ indicates that the system may be dynamically unstable; < Ṁ >: average mass-transfer rate (M⊙ yr−1); Ṁmax: maximum

mass-transfer rate (M⊙ yr−1); ∆tṀ : duration of mass-transfer phase (yr); H flash?: occurrence of H shell flashes

Second row: period gap (hr); Mmin
2 : secondary mass at period minimum (M⊙); Pmin : minimum period (min); Xmin

s : surface H
abundance at period minimum; fover: maximum overflow factor; tatm: duration of atmospheric Roche-lobe overflow phase (kyr); trad:

duration of radiative Roche-lobe overflow phase (kyr); Mdyn
2 , Mdyn

1 , Pdyn: secondary and primary mass (M⊙), orbital period (d) at

Ṁ = 10−4 M⊙ yr−1.
a: M⊙ yr−1


