Neuroanatomical Effects of Tactile Stimulation in the Rat

A Review of the Literature

Authors

  • Erika Vossebelt Department of Psychology, University of Lethbridge
  • Erin Cantwell Department of Neuroscience, University of Lethbridge
  • Robbin Gibb Department of Neuroscience, University of Lethbridge

DOI:

https://doi.org/10.29173/eureka28813

Keywords:

tactile stimulation, neurosceince, neuroanatomy, pre-conception experience, epigenetics, brain morphology

Abstract

Tactile stimulation is an enriching manipulation that is increasingly being utilized in scientific studies, including within the field of neuroscience. Though some research has already demonstrated various neuroanatomical effects of tactile stimulation, there remains a research gap. This review examines the existing research on the neuroanatomical effects of tactile stimulation, identifies key research gaps and opportunities for further studies, and makes the case for why learning more about the effects of tactile stimulation is a worthwhile scientific endeavor that can benefit human health and wellbeing.

Downloads

Download data is not yet available.

References

Abel T, Poplawski S. (2014). Epigenetic advances in clinical neuroscience. Dialogues Clin Neurosci. (3):273-5. doi: 10.31887/DCNS.2014.16.3/tabel. PMID: 25364279; PMCID: PMC4214171.

Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning and Memory, 16(4), 248–266. https://doi.org/10.1101/lm.918309

Andrews, K. and Fitzgerald, M. (1997). Biological barriers to paediatric pain management. Clin. J. Pain 13, 138–143. https://doi.org/10.1097/00002508-199706000-00007

Ballesteros-Yáñez, I., Benavides-Piccione, R., Elston, G. N., Yuste, R., & DeFelipe, J. (2006). Density and morphology of dendritic spines in mouse neocortex. Neuroscience, 138(2), 403–409 https://doi.org/10.1016/j.neuroscience.2005.11.038

Bayer, S. A., Altman, J., Russo, R. J., and Zhang, X. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 14, 83–144.

Beul, S. F., & Hilgetag, C. C. (2019). Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. NeuroImage, 189, 777–792. https://doi.org/10.1016/j.neuroimage.2019.01.010

Bhattacharyya, K. B. (2012). Eminent neuroscientists: their lives and works. Academic Publishers, 154-156

Boufleur, N., Antoniazzi, C. T., Pase, C. S., Benvegnu, D. M., Dias, V. T., Segat, H. J., ... & Bürger, M. E. (2013). Neonatal handling prevents anxiety-like symptoms in rats exposed to chronic mild stress: behavioral and oxidative parameters. Stress, 16(3), 321-330.

Bryda E. C. (2013). The Mighty Mouse: the impact of rodents on advances in biomedical research. Missouri Medicine, 110(3), 207–211

Center on the Developing Child (2007). The Science of Early Childhood Development (InBrief). Retrieved from www.developingchild.harvard.edu.

Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron, 43(5), 609-617.

Clancy, B., Kersh, B., Hyde, J. et al. (2007). Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinform 5, 79–94 (2007). https://doi.org/10.1385/NI:5:1:79

Day, M., Gibb, R., & Kolb, B. (2023). Tactile stimulation facilitates functional recovery and dendritic change following neonatal hemidecortication in rats. Behavioural Brain Research, 452. https://doi.org/10.1016/j.bbr.2023.114582

Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89–96. https://doi.org/10.1038/nn.3594

Dietz, D. M., LaPlant, Q., Watts, E. L., Hodes, G. E., Russo, S. J., Feng, J., ... & Nestler, E. J. (2011). Paternal transmission of stress-induced pathologies. Biological psychiatry, 70(5), 408-414.

Dombrowski, S. M. (2001). Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey. Cerebral Cortex, 11(10), 975–988. https://doi.org/10.1093/cercor/11.10.975

Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L., & Mainen, Z. F. (2006). Representation of Spatial Goals in Rat Orbitofrontal Cortex. Neuron, 51(4), 495–507. https://doi.org/10.1016/j.neuron.2006.06.032

Gabbott, P.L.A., Warner, T.A., Jays, P.R.L., Salway, P. and Busby, S.J. (2005). Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol., 492: 145-177. https://doi.org/10.1002/cne.20738

Gomes MDM. Franz Nissl (1860-1919), noted neuropsychiatrist and neuropathologist, staining the neuron, but not limiting it. Dement Neuropsychol. 2019 Jul-Sep;13(3):352-355. doi: 10.1590/1980-57642018dn13-030014. PMID: 31555410; PMCID: PMC6753910.

Guzzetta, A., Baldini, S., Bancale, A., Baroncelli, L., Ciucci, F., Ghirri, P., Putignano, E., Sale, A., Viegi, A., Berardi, N., Boldrini, A., Cioni, G., & Maffei, L. (2009). Massage Accelerates Brain Development and the Maturation of Visual Function. Journal of Neuroscience, 29(18), 6042–6051. https://doi.org/10.1523/jneurosci.5548-08.2009

Harker, A., Carroll, C., Raza, S., Kolb, B., & Gibb, R. (2018). Preconception Paternal Stress in Rats Alters Brain and Behavior in Offspring. Neuroscience, 388, 474–485. https://doi.org/10.1016/j.neuroscience.2018.06.034

Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. In Neuroscience and Biobehavioral Reviews (Vol. 27, Issue 6, pp. 555–579). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2003.09.003

Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., ... & Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive physiology, 6(2), 603.

Huber, P. (1966). A procedure for the quick description of Nissl’s substance in the ganglionic cells of the central nervous system. Mikroskopie, 20(11), 336–340. https://europepmc.org/article/med/4165233

Jenkins, S., Harker, A., & Gibb, R. (2018). Maternal Preconception Stress Alters Prefrontal Cortex Development in Long-Evans Rat Pups without Changing Maternal Care. Neuroscience, 394, 98–108.

Keifer, J., & Summers, C. H. (2016). Putting the “biology” back into “neurobiology”: The strength of diversity in animal model systems for neuroscience research. Frontiers in Systems Neuroscience, 10(AUG). https://doi.org/10.3389/fnsys.2016.00069

Kirik, O. V., Grigoriev, I. P., Sukhorukova, E. G., Pavlova, N. V., & Korzhevskii, D. E. (2013). Use of Immunocytochemical Methods to Identify the Boundaries between the Subventricular Zone of the Telencephalon and the Striatum. Neuroscience and Behavioral Physiology, 43(2), 157–159. https://doi.org/10.1007/s11055-013-9708-1

Kolb, B., & Gibb, R. (2010). Tactile stimulation after frontal or parietal cortical injury in infant rats facilitates functional recovery and produces synaptic changes in adjacent cortex. Behavioural brain research, 214(1), 115-120.

Korzhevskii, D. E., Gilerovich, E. G., Zin’kova, N. N., Grigor’ev, I. P., & Otellin, V. A. (2006). Immunocytochemical detection of brain neurons using the selective marker NeuN. Neuroscience and Behavioral Physiology, 36(8), 857–859. https://doi.org/10.1007/s11055-006-0098-5

Manger, P. R., Cort, J., Ebrahim, N., Goodman, A., Henning, J., Karolia, M., et al. (2008). Is 21st century neuroscience too focused on the rat/mouse model of brain function and dysfunction? Front. Neuroanat. 2:5. doi: 10.3389/neuro.05.005.2008

Meaney, M. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience. 24, 1161-1192.

Montagu, M. F. (1953). The sensory influences of the skin. Texas Reports on Biology and Medicine, 11(2), 291–301. https://pubmed.ncbi.nlm.nih.gov/13077397/

Muhammad, A. , Hossain, S. , Pellis, S. M. & Kolb, B. (2011). Tactile Stimulation During Development Attenuates Amphetamine Sensitization and Structurally Reorganizes Prefrontal Cortex and Striatum in a Sex Dependent Manner. Behavioral Neuroscience, 125 (2), 161-174. doi: 10.1037/a0022628

Mychasiuk, R., Gibb, R., & Kolb, B. (2013). Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining. Journal of Visualized Experiments, 79. https://doi.org/10.3791/50694

U.S. Department of Health and Human Services. (2023). Brain basics: The life and death of a neuron. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-life-and-death-neuron

Preuss, T.M. (2000). Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55, 287-299. doi: 10.1159/000006664

Raza, S., Gibb, R., Kolb, B., Richards, S., & Harker, A. (2015). Tactile stimulation improves neuroanatomical pathology but not behavior in rats prenatally exposed to valproic acid. Science Direct. https://www.sciencedirect.com.uleth.idm.oclc.org/science/article/pii/S0166432814008584

Richards, S., Mychasiuk, R., Kolb, B., & Gibb, R. (2012). Tactile stimulation during development alters behaviour and neuroanatomical organization of normal rats. Science Direct. https://www.sciencedirect.com.uleth.idm.oclc.org/science/article/pii/S0166432812001726

Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., & Bale, T. L. (2013). Paternal stress exposure alters sperm MicroRNA content and reprograms offspring HPA stress axis regulation. Journal of Neuroscience, 33(21), 9003–9012. https://doi.org/10.1523/JNEUROSCI.0914-13.2013

Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29. https://doi.org/10.1016/S0278-2626(03)00277-X

Schanberg, S. M., & Field, T. M. (1987). Sensory deprivation stress and supplemental stimulation in the rat pup and preterm human neonate. Child Development, 58(6), 1431–1447. https://pubmed.ncbi.nlm.nih.gov/3691193/

Shorter E. A Historical Dictionary of Psychiatry. New York: Oxford University Press; 2005.Shorter E. A Historical Dictionary of Psychiatry. New York: Oxford University Press; 2005.

Staff, I. of Medicine., Pecura, C. M., & Martin, J. B. (1991). Mapping the Brain and Its Functions : Integrating Enabling Technologies into Neuroscience Research. National Academies Press.

Todd, M. M. (2004) Anesthetic neurotoxicity: the collision between laboratory neuroscience and clinical medicine. Anesthesiology 101, 272–273.

U.S. Department of Health and Human Services. (n.d.). The Teen Brain: 7 things to know. National Institute of Mental Health. https://www.nimh.nih.gov/health/publications/the-teen-brain-7-things-to-know.

Windhorst, U., & Johansson, H. (Eds.). (2012). Modern techniques in neuroscience research. Springer Science & Business Media. doi:10.1007/978-3-642-58552-41

van Pelt, J., & van Ooyen, A. (2013). Estimating neuronal connectivity from axonal and dendritic density fields. Frontiers in computational neuroscience, 7, 160. https://doi.org/10.3389/fncom.2013.00160

Wu, Jingpeng, et al. (2014). "3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution." Neuroimage 87. 199-208. https://doi.org/10.1016/j.neuroimage.2013.10.036

Zilles, K. (2018). Brodmann: a pioneer of human brain mapping—his impact on concepts of cortical organization. Brain, 141(11), 3262–3278. https://doi.org/10.1093/brain/awy273

Downloads

Published

2024-05-30

How to Cite

Vossebelt, E., Cantwell, E., & Gibb, R. (2024). Neuroanatomical Effects of Tactile Stimulation in the Rat: A Review of the Literature . Eureka, 9(1). https://doi.org/10.29173/eureka28813

Issue

Section

Reviews