History of Science in South Asia

A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia

Ganitagannadi: A Karana Text of 1604 ce on Siddhäntic Astronomy in Kannaḍa

B. S. Shylaja and Seetharam Javagal
Jawaharlal Nehru Planetarium, Bengaluru and Sainikpuri, Secundarabad

[^0]
HISTORY OF SCIENCE IN SOUTH ASIA

A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia, published online at http://hssa-journal.org

ISSN 2369-775X

Editorial Board:

- Dominik Wujastyk, University of Alberta, Edmonton, Canada
- Kim Plofker, Union College, Schenectady, United States
- Dhruv Raina, Jawaharlal Nehru University, New Delhi, India
- Clemency Montelle, University of Canterbury, Christchurch, New Zealand
- Fabrizio Speziale, School of Advanced Studies in the Social Sciences (EHSS), Paris, France
- Michio Yano, Kyoto Sangyo University, Kyoto, Japan

Publisher:
History of Science in South Asia
Principal Contact:
Dominik Wujastyk, Editor, University of Alberta
Email: 〈wujastyk@ualberta.ca〉
Mailing Address:
History of Science in South Asia,
Department of History and Classics, 2-81 HM Tory Building,
University of Alberta,
Edmonton, AB, T6G 2H4
Canada
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Copyrights of all the articles rest with the respective authors and published under the provisions of Creative Commons Attribution-ShareAlike 4.0 License.

The electronic versions were generated from sources marked up in LATEX in a computer running Gnu/LINUX operating system. pdF was typeset using $\mathrm{X}_{\mathrm{G}} \mathrm{T}_{\mathrm{E}} \mathrm{f}$ from $\mathrm{T}_{\mathrm{E}} \mathrm{XLive}$. The base font used for Latin script and oldstyle numerals was $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Gyre Pagella developed by gust, the Polish $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Users Group.

Gaṇitagannaḍi: A Karaṇa Text of 1604 Ce on Siddhāntic Astronomy in Kannaḍa

B. S. Shylaja and Seetharam Javagal
Jawaharlal Nehru Planetarium, Bengaluru and Sainikpuri, Secundarabad

INTRODUCTION

Abstract

Awealth of siddhāntic astronomy texts has been brought to light in recent decades. While the texts from Kerala constitute a very large share of texts in languages other than Sanskrit, texts in many other languages have also been unearthed (Sarma 2002; Srinivas 2019). Telugu texts such as Ganakānanda (Padmaja et al. 2019) and the Tyāgarti tables in Kannaḍa have been brought to light (Rupa et al. 2014). They were in use during the fifteenth to seventeenth centuries in South India. Many more texts are yet to be discovered. The present study concerns another text, hitherto unknown, with a unique technique for obtaining planetary positions starting with the number of days lapsed since epoch (Sanskrit ahargana). ${ }^{1}$ The original karaṇa text called Värṣikatantrasañgraha was written by a scholar named Viddaṇācārya and has not been published. ${ }^{2}$ However, fortunately, two commentaries on this, written by Śaṅkaranārāyaṇa Jōisaru in the first decade of seventeenth century are available. Here we discuss the unique technique he employed for calculations.

1 ABOUT THE AUTHORS

THERE ARE TWO PERSONALITIES involved in the manuscript.

1. Viddanāāārya (or Dakṣinācārya),

1 The epoch for these texts is the beginning of the current Kaliyuga, i.e., 6 a.m. at Lañkā on 18 February 3101 bсе.
2 NCC: v. 29, 105 cites four manuscripts. Pingree (1981:48-9) briefly characterizes
the Vārṣikatantra and its genre and mentions two surviving manuscripts of the work, one at Harvard (fragmentary) and one at Bikaner (probably Anup Sanskrit Library no. 4411).

Figure 1: Cover page of the manuscript; at the left top corner the name Ganitagannadi is written; the number 74-1 corresponds to the folio number. Photograph © the author.

2. Śañkaranārāyaṇa Jōisaru (son of Demaṇa Jōisaru). ${ }^{3}$

The manuscripts were obtained from the collection of Kulapati Sañkaranārāyaṇa Jōisaru (1903-1998) who was the head of the Sadvidyā Sañjīvinī Pāthaśālā, or School for Enlivening True Learning, at Śrngerī in South India. Kulapati Śañkaranārāyaṇa Jōisaru was a descendant of the second author mentioned above and the maternal grandfather of one of the authors of this paper, Seetharam Javagal. The lineage produced well known scholars in the astral sciences (jyotiṣa). In particular, a father-son duo of Demaṇa Jōisaru and Śañkaranārāyaṇa Jōisaru, who flourished in the latter half of sixteenth century CE, were eminent scholars and wrote commentaries on some of the jyotiṣa treatises (granthas) available at that time. The commentaries are in Sanskrit and Kannaḍa and are transmitted on palm-leaf manuscripts in the Nandināgari script (see Fig. 1). These palm-leaf manuscripts have been preserved in the family over a period of four hundred years. They are presently, in the keeping of Shri Joshi Shivadatta, son of Kulapati Śañkaranārāyaṇa Jōisaru, in Bangalore.

One of the bundles in the collection of palm-leaf manuscripts contains texts on Siddhānta jyotiṣa treatises. They are:

1. Grahaṇamukura A treatise on eclipses by Demaṇa Jōyisaru son of Devaru Jōyisaru. ${ }^{4}$
2. Tantradarpaṇa A commentary on Viddaṇācārya's Vārṣikatantra in Sanskrit. Composed in 1601 by Śaṅkaranārāyaṇa Jōisaru, son of Demaṇa Jōyisaru. ${ }^{5}$
3. Karaṇābharaṇa A commentary on the Karaṇaprakā́śa by Brahmadeva (fl. 1092), ${ }^{6}$ in Sanskrit. Composed in 1603 by Śañkaranārāyaṇa Jōisaru. ${ }^{7}$
4. Gaṇitagannaḍi A commentary on Viddañacārya's Vārṣikatantra in Kannaḍa. Composed in 1604 by Śaṅkaranārāyaṇa Jōisaru. ${ }^{8}$
5. Grahaṇaratna Composed by Śañkaranārāyaṇa Jōisaru. Date not known. ${ }^{9}$
[^1][^2]

Figure 2: The inscription stating the award of grants to the astronomers Demaṇa and Śańkaranārāyana Jōisaru. Photograph © the author.

In the above manuscripts 2,3 and 4 , the name of the author is given as Sañkaranārāyaṇa Jōisaru, and his place, his father's name and the year of copying the manuscript are recorded in the colophons. ${ }^{10}$

Demaṇa Jōyisaru prepared a copy of the Jātakālañkāra, authored by Sūryadeva Yajvan (b. 1191) of Cōladeśa, with the concluding verse written partly in Sanskrit and partly in Kannaḍa as follows: ${ }^{11}$

```
इति श्रीसूर्यदेवससोमसुद्विरचितश्रीपतिपद्धतिव्याख्याने जातकालंकारे प्रकीर्णकाध्यायोऽष्तमः।
इति सम्पूर्णः जातकालंकारः। स्वस्तिश्रीजयाभ्युदय शालिवाहनइके
```


This concluding statement in Kannaḍa states that the book Jätakālañkara was written by Demaṇa, son of Devaru Jōyisaru of Śrngeri, the date of completion being Śālivāhana śaka 1529, Plavañga saṃvatsara, Māgha śuddha prathama śukravāra, i.e., Friday 18 January, 1608 ce.

There is another independent document which throws light on the dates and appreciation of the scholarship of this father-son duo. Epigraphia Carnatica mentions a stone inscription at Śrngerī. ${ }^{12}$ Sri Abhinava Nṛsiṃha Bhārati, the twenty-fourth pontiff (pịthādhipati) of Sṛngerī, established a land grant (agrahāra) called Nṛsiṃhapura, near Sṛngeri, and had granted the land revenues to the learned scholar (mahājanās) of various family lineages (gōtras and sūtras). The

[^3]land grant is dated śālivahana śaka 1525 (1603 ce), soōbhakrt, Bhādrapada, śuddha daśam̄ (Sunday). This stone inscription is preserved in one of the adhiṣthānams in the Śṛngerī monastery premises (see Figure 2). This inscription mentions Śañkaranārāyaṇa Jyotiṣa, son of Demaṇa Jyotiṣa, in the list of the awardees.

Ganithagannadi mentions the name of the author at the end of every chapter. The last chapter mentions two additional titles which were probably awarded during the course of writing. The script, as mentioned earlier, is Nandināgarī. ${ }^{13}$

2 DESCRIPTION OF THE TEXT

ACOMMENTARY ON THE VĀRṢIKATANTRA is documented by Dikshit (1981). He obtained the a manuscript of the text in Sholapur, Maharashtra, with no indication of the name of the commentator. He noted that the calculations were for 1634 and the longitudinal and latitudinal corrections (deśāntara and palabhā) corresponded to a place thirteen yojanas ($150-180 \mathrm{~km}$) west of a hill called Kārtika Parvata (its identity cannot be established). He deduced that the commentator belonged to Dharwad and the text was very popular in Karnataka. The citation of Grahalāghava (dated 1520 Ce, Balachandra Rao and Uma (2006), Pingree (CESS: A2, 94)) leads one to conclude that Vārṣikatantra was written in the sixteenth century at the latest. ${ }^{14}$

The text Tantradarpaṇa is a commentary in Sanskrit on Vārṣikatantra, while the Ganitagannadi (1604 Ce) has a Kannada commentary along with the Sanskrit verses. Although the total number of verses in the two texts differs in some chapters, the original text can be partly reconstructed. (See Appendix for an attempt)

The first chapter of the text Ganitagannadi, called Dhruvāahikāra, has 19 verses. But some extra lines are introduced in the Tantradarpana, offering still more detailed explanation. Both the texts give a long introduction and the family history of the great teacher Viddaṇācārya whose father Mallaṇācārya also was a great scholar. ${ }^{15}$ The text was called Vārṣikatantra, "Annual System," by Viddaṇācārya since it was applicable for one whole year and fresh calculations needed to be done for the beginning of every year.

The procedure for deriving the accumulated days (ahargana) starting from the Kali-epoch year (Kalivarṣa) count is the content of the first chapter. The
bundle that states that Linga Jōisaru, the son of the author, paid money (12 gadyana) to the grandson of another person (probably the scribe) in the year 1652 ce. Cf. the family tree, p. 32 below.
11 Pingree 1981:89 noted that Sūryadeva composed his work in Gangāpura in ca. 1250.

12 Rice et al. 1903: v. 11, 348.
13 One of the present authors (SJ) learnt the script (Visalakshy 2003) and transliterated the manuscript text into Unicode.
14 Pingree (1981:48-49) dates the work to a period before 1370 .
15 NCC: v. 29, 105 calls the father Mallapa.
same chapter has another section called Grahamadhyādhikāra, which provides the method for getting the mean positions for planets.

The second chapter has 23 and 19 verses and the extra lines in Tantradarpaña add to the explanation. This is called Grahasphuțādhikāra and provides the method for deriving the true positions of all planets, perigees and the nodes.

The third chapter is called Cāyadhyāya has 19 and 17 verses and describes basically the procedures of the three-question section (tripraśnādhikāra) from the Sūrya Siddhānta.

The fourth chapter, called Sōmasūryagrahana, is devoted to eclipses, the first section on lunar (20 verses) followed by solar eclipse calculations (6 verses).

The fifth chapter called Parilekhana (10 verses) describes the graphical method for obtaining the timings, magnitude and points of ingress.

The subsequent chapter is named Pathādhyāya (10 verses) and the ones following it have not been given a title. The seventh chapter discusses the helical rising and setting of planets and has 11 verses. This is followed by the conjunction of planets and stars and the conjunction of planets (10 verses).

The eighth and last chapter on Sringonnati, the elevation of the cusps of the moon has 7 verses.

3 UNIQUENESS OF THE TEXT

THE CONTENTS FOLLOW THE GENERAL GUIDELINES OF SIDDHĀNTIC TEXTS. The author declares that he is making a humble attempt to reduce the number of steps in the calculation. He explains the procedure in very crisp sentences in Kannaḍa.

We now describe the method of getting the aharganas and dhruvas for a given epoch. It may be recalled that all texts, including the Siddhāntaśirōmaṇi, give the rationale based on the Sūryasiddhānta. In the other texts like the Karaṇakutūhala and the Grahalāghava that were more commonly used by later authors, aharganas are calculated from the epoch of Bhāskara's Siddhāntaśirōmaṇi and the dhruvas provided therein are used for extrapolating the positions of the planets. The number of years from the epoch are calculated and converted to solar months. Subsequently they are converted to lunar months by adding the requisite number of intercalary months (adhikamāsas) and subtracting the number of lost lunar days to be deducted (kṣayatithis) as specified in earlier texts. We will see now the uniqueness in this step as explained by the author himself.

Gaṇeśa Daivajña, in his Grahalāghava, ${ }^{16}$ simplifies the procedure by adopting a cycle of 4016 years which results in no reminder or integral multiple of the number of revolutions. The Ganakānanda, a fifteenth-century text in Telugu modifies the procedure slightly to count tropical days instead of aharganas. ${ }^{17}$ Another text
by Chikkanṇa (early twentieth-century text in Kannaḍa) uses a cycle of 19 years similar to the metonic cycle.

In our text, Ganitagannadi, the author converts the number of Kali years into the longitude corrected for precession (Sãvanadhruva) directly by multiplying by 1007 and dividing by 800 .

```
शाको नवाद्रीन्दु गुणैः समेतः रौलाम्बर व्योम निशाकरम्नः।
खराष्ट भक्तो भृगुवारपूर्वः कल्यादितः सावनको ध्रुवः स्यात् ॥५ ॥
```


The śaka year, added with 3179, (nava adri indu guna) multiplied by 1007 (śailambara vyōma nis̄ākara) and divided by 8oo (kha kha așṭa), becomes the Kali year number for the desired year. It is the Savana count for Dhruvaka beginning from a Friday (Bhrguvāra).

The rationale is given as follows:

 60 రకం గుణిసి 800 రం భాగిసి బందపు ఘూళిగి | నింద చెఱజబం 60 రం గుణిసి 800 రి భాగిసి బంద లబ్దిలిల విఘ゙ళిగి | ఆ ఎొందలల బంద దారేన్థాసముం 7 రిం

The śaka means the year of interest for calculation. śakānayana means the count starting from Prabhava in the 60 year cycle of samvatsarās. Multiply 60 by 25 and subtract 11; Now add the serial number of the desired śaka which now should be added to 3179 to get the Kali year
count. This should be multiplied by 1007 and divided by 800 . The quotient is the vära count. The reminder should be multiplied by 60 and divided by 800 to get ghalige; the remainder of this should be multiplied by 60 and divided by 800 to get vighalige. The vāra count earlier obtained should be divided by 7 ; the quotient is not relevant, the reminder is $\bar{a} s a r a ~ a n d ~ i t s ~ f r a c t i o n . ~ T h u s ~ w e ~ g o t ~ t h e ~ v a ̄ s a r a / g h a t i k ~ \bar{a} /$ vighatikā. This is the sāvana dhruva starting from the Kali epoch.

 భస్షణందంం భాగిసెలు బందద ఎలరాది 365 | 15 | 31 | 31 | 24 ఇల్లియు

 ఈ శ్ఠేగణ జృతియిం 60 రందిత్తలు బంద లబ్ధ 320 అల్లి లెలఱషెల్ల ఇదం మిలలణ山్లుయియిళు చేడులు 25120 ఇజ్ష్ము || ఇదం 60 రిందిక్తలు లబ్ధ 418 అల్లినింద ซึఁజ్ 40 ఆ లబ్ధదం మిలలి చృండలు 25218 ఇజ్ట్టు ఇదం 60 రిం భాగిసి బంద లబ్ధ

ఇదం 60 రిందిత్తలు బంద లబ్ధ 207 లిలషలిల్ల | ఈ లబ్ధబం మిలలణ 山్లు 800 ఇळ-

 గుణిసిదరరాద రాలి 46278 శిళాగి 102840 ఇదం 60 రిం భాగిసి బంద లబ్ధ 1714
 మొయోద దొలందు ఘుళిగి బంతు |
అదు శారణ ఈగగ తాను చల్ట్సిస్ద గణిత న్యాయుదింద ధుుఎపం తరలాగి యింటు నొల-

 దను | ఇ ఇంతు సిద్ధాంత జ్ఞానదింద ఃిరియుర లుహెదొల్ బలదిందలృ తేన్న బుద్ధియు

Now the rationale of the procedure is being explained.
The explanation of this mathematical procedure is: The number of revolutions of the sun as stated in Śrī Sūryasiddhānta is forty three
lakhs twenty thousand $(43,20,000)$. The number of civil days in a yuga is one hundred fifty seven crores, seventy nine lakhs, seventeen thousand, eight hundred twenty eight (157,79,17, 828). When this is divided by the revolution number stated earlier, we obtain in daycount (vārādi),

$$
365|15| 31|31| 24
$$

In this also, upon division by 7 , the remainder is day 1 , ghalige 15vighalige 31, pare 31, tatpare 24. To make them remainder less (nirayava) days, when it is multiplied by the desired-imagined number 800, then, this much in order: day 800, ghalige 12000, vighalige 24800 , pare 24800 , tatpare 19200. When the lowest [number] in the series is divided by 60 , the quotient is 320 , there is no remainder. When this (the quotient) is added to the number above, then this much: 25120. When this is divided by 60 , the quotient is 418 and from that, the remainder, 40 . When the quotient is added to the number above, this much : 25218. When this is divided by 60 , the quotient is 420 , and the remainder is 18 . When the quotient is added above, this much: 12420. When this is divided by 60 , the quotient is 207, no remainder. When this quotient is added to the number above, [namely] 800, this much: 1007. This is the number [expressed as] "śailāmbaravyomaniśākara". ${ }^{18}$ It has already been stated that 800 (khakhāṣta) is the desired or imagined number of years. Here, the rule-of-three computation: if 1007 days correspond to 800 years, how many [days] for the desired year[-count]. There, when we multiply by 800 and move to the upper place, there is a remainder of 18 at the place of vighalige, and a remainder of 40 at the place of pare. When these are multiplied by the desired-imagined number of years, 2571, then we obtain 46278 [at the place of vighalige]. Below [at the place of pare]; 102840. When this is divided by 60, the quotient is 1714. When this is added to the [number at the] place above, 47992. When this divided by 800 we obtain 1 ghalige less by one-hundredth part of itself.
The reason is as follows. As eighteen vighalige and forty pare were remaining from the mathematical procedure devised by him for finding the dhruva, which implies that one ghalige has to be added for [every] two thousand five hundred and seventy one [2571] years in the dhruva, [the author] devised a correction (bīja saṃskāra) [expressed as] "rūpādri tattvaih" . Thus, the mathematical explanations

[^4]$$
\text { vyoma }=\text { space } / \text { sky }(\mathrm{o}) \text { niśākara }=\operatorname{moon}(1)
$$
should be understood from the knowledge of the siddhāntas, from the power of the discourse of the elders, and the imaginative power of [one's own] intellect.

Note that the word vā used here means vāsara "a civil day;" vāra is also the word for the seven day week. For this reason we explicitly specify the word as vāsara.

The conversion is done as follows:
19200 tatpare means 320 pare (obtained by dividing by 60)
This is added to pare count $24800+320=25120$
This is converted to vighalige, after dividing by 60 as 418 (reminder 40 is not used)

418 is added to ghalige, to get $24800+418=25218$ ghaliges in all.
The quotient is 420 (reminder 18 is not used) is added to ghalige, count 12000 to get 12420 ghaliges.

This is divided by 60 to get vāsaras as 207 (no reminder)
Thus total number of ghalighes is $800+207=1007$.
This means for 800 years 1007 vāsaras (days) need to be added.
We may now understand the rationale in today's terminology:
The duration of the year gets converted 365.258745 days
There are 52 weeks in a year; taking this out we have reminder as 1.258745 days.

This is to be added every year.
If the number of years is n from the epoch, $n \times 1.25875$ should be added.
We can clearly see that 1.258745 is equal to $1007 / 800$; therefore, we need to add $n \times 1007 / 800$.

Therefore one can see that this entire procedure is to calculate the correction with integers.

The duration of the year is taken to be $364+(1007 / 800)$ days, in the first instance.

There are 52 weeks in a year; taking $52 \times 7=364$ out, we have the remainder as (1007/800) days.

This is to be added every year. If the number of years is n from the epoch, $n \times(1007 / 800)$ should be added. Therefore, one can see that this entire procedure is to calculate the correction with integers.

Now the duation of the year is actually

$$
365 d|15| 31|31| 24
$$

according to the Sūryasiddhānta followed by the author. The author has explained how one gets $364+(1007 / 800)$ as an approximation to this. In that process, there are remainders at two steps, namely, the remainder 40 while converting from pare to vighalige, and the remainder 18 while converting from vighalige to ghalige,
which were ignored while finding the approximate value. These have to be included. We will now show that when these numbers are multiplied by 2571, the net correction can be rounded off to one ghalige, without any remainder.
$2571 \times 18=46278$ at the place of vighalige $2571 \times 40=102840$ at the place of pare. When this is divided by 60, it gives 1714 vighalige. Hence, the total number of vighalige is $46278+1714=47992$. This divided by 800 yields 59.99 vighalige, which is very close to one ghalige.
This means that for every 2571 years one extra ghalige has to be added.
This is the other small correction mentioned by the author. The last line refers to the declaration by the author that he devised this idea on his own deduction.

A similar procedure is derived with integers for multiplication and division to get the dhruvas for all the planets as explained below. The phrases in the original text are written Devanāgarī script and the corresponding commentary is written in Kannaḍa.

Abstract

भौमो नावेनद्वाग्नि हतात् ख खांगैः। రిదా ముळలయుగైం భాగిं బంద లబ్ధ 375 . ఇదిలగ బిలజ సेంస్స్రెరె మూడిద கుంభూద్, రాట్ృిః యింబ ழిలద | |

4 THE PROCEDURE FOR MARS (KUJA)

Now the calculation of number of revolutions for Mars (Kuja). Multiply the number of kali years by 319 (nava indu agni) and divide by 600 (kha khängaih). The quotient gives the number of bhaganas (revolutions). The reminder is multiplied by 12 and divided by 600 to get rāśi. The reminder of this is multiplied by 30 and divided by 600 to get $b h \bar{a} g a$. The reminder of this is multiplied by 60 and divided by 600 to get $l i p t i$ and then reminder of this multiplied by 60 and divided 600 gives vilipti.

The rationale for the procedure is as follows :

The number of revolutions in a mahāyauga is 2296832. There are 4320000 years in a mahāyuga. Both these numbers are divided by 600 (subsequently also). This means in 7200×600 years, Kuja completes 319×600 revolutions with a reminder of 32 . This means its position will be decided by the reminder 32 which when multiplied by 12 (dvādaśa) gives rāśis. 384 rāśis correspond to 11520 degrees by multiplying by 30. The mahāyuga is divided by this number to get 375 (pancädri rāma). This leaves no reminder when divided by 360 . Thus all calculations are involving complete cycles. This means for every year the fraction $319 / 600$ of the revolution should be added.
Therefore for n number of years it is $n \times 319 / 600$.
The number of revolutions in a mahāyuga is 2296832.

$$
\begin{align*}
\frac{2296832}{4320000} & =\frac{319 \times 7200+32}{600 \times 7200} \tag{1}\\
& =\frac{319}{600}+\frac{32}{4320000} \tag{2}
\end{align*}
$$

Now,

$$
\begin{align*}
32 / 4320000 \text { revolutions } & =[(32 \times 360) / 4320000]^{\circ} \tag{3}\\
& =[(1) / 375]^{\circ} \tag{4}
\end{align*}
$$

Hence, for Mars (kuja), the increase in longitude per year is $319 / 600$ revolution, and a $b \bar{j} a$ of $[(1) / 375]^{\circ}$ per year.

बुधोद्नन्यगघ्ना द्वियदप्टवेदेः ।| 6 ।|
 ద్ృిః యింబ 480 రిం భాగిసి బందేపు మొంనినంతి భగణణదది బుధ ధుృద్ ఎడుదు | ఇల్లి బుळాయుగైం భగగణఙం 9000 దిం భాగిసి జింండు ముత్తం భగగణ భిలదదింద అధిచపాాద శృరణ భిలదదిం భాగిసి జింండాను | అల్లి బుధధ భగగణ శిఱష 60 ఇపర రాలి 720 . ఇదేశ భాగి 21600 . ఇదరం ముळాయుగైం భాగిసి బందె లబ్ధ 200 ఇదిలగ బిలజాధాణవాద 2 నహృృః యింబ ழిలద్ | |

THE PROCEDURE FOR DERIVING THE DHRUVA OF MERCURY (BUDHA)

The number of years are multiplied by 73 (agni yaga - the compound word is agnyaga; the meaning of yaga for the number 7 is not clear) and divided by 480 (viyadaśta veda). This is gives the total number of revolutions. The reminder is converted to degrees minutes and seconds as explained earlier. Here the total number of bhaganas in
a mahāyuga is divided by 9000 ．The reminder is 60 corresponds to 720 rāsi i which is equal to 21600 degrees．When the number of years is divided by 21600 the quotient is 200 without any reminder．This explains the multiplication by（ $73 / 480$ ）．

The number of revolutions in a mahāyuga is 17937060 ．

$$
\begin{align*}
\frac{17937060}{4320000} & =\frac{4+657060}{600 \times 7200} \tag{5}\\
& =\frac{4+(9000 \times 73)}{9000 \times 480}+\frac{60}{4320000} \tag{6}\\
& =4+\frac{73}{480}+\frac{60}{4320000} \tag{7}
\end{align*}
$$

Now，

$$
\begin{align*}
60 / 4320000 \text { revolutions } & =[(60 \times 360) / 4320000]^{\circ} \tag{8}\\
& =[(1) / 200]^{\circ} \tag{9}
\end{align*}
$$

Hence，for Mercury（Budha），the increase in longitude per year is $73 / 480$ revolu－ tion，and a $b \vec{i} j a$ of $[(1) / 200]^{\circ}$ per year．Here，the integral number of revolutions （4）is ignored．

वियन्नखा खैर्मुनिखांग निघ्नादुनुरुस्तिषड्बाणहतात् ख खांकेः। सितः शानि रौल ख वैद निघ्ना－ द्योमा त्रयार्कें⿹勹巳ृवका भवन्ति ।। 7 ।।
టిలశా｜గురు ధుرఎముం తळరి｜శల్బబ్దమం ఋునిమాంగ యింబ 607 రం గుణిసి

 240 భ้อกగ
7200 ఇదరిందా యుగాబ్దెం భాగిస బంద బిలజాథః భిలద 3600 ఎఖాంగ్ృిః యింబుదిగగ｜｜

THE PROCEDURE FOR THE DHRUVA OF JUPITER（GURU）
The number of years are multiplied by 607 （muni kha añga）and di－ vided by 7200 （viyannakhāśva）．Here the multiplying number is 600 ． Both yuga and bhagana are divided by 6oo．The reminder 20 corres－ ponds to 240 rāsis or 7200 degrees．There is no remainder．

The number of revolutions in a mahāyuga is 364220 .

$$
\begin{align*}
\frac{364220}{4320000} & =\frac{(607 \times 600)+20}{7200 \times 600} \tag{10}\\
& =\frac{607}{7200}+\frac{20}{4320000} \tag{11}
\end{align*}
$$

Now,

$$
\frac{20}{4320000}=\frac{20 \times 360}{4320000}
$$

i. e

$$
\begin{align*}
20 / 4320000 \text { revolutions } & =[(20 \times 360) / 4320000]^{\circ} \tag{12}\\
& =[(1) / 600]^{\circ} \tag{13}
\end{align*}
$$

Hence, for Jupiter (Guru), the increase in longitude per year is $607 / 7200$ revolution, and a $b \bar{j} \bar{j} a$ of $[(1) / 600]^{\circ}$ per year.

 గి దిలందంత 12 ఇదం 5 రం గుణిసెలాగి అరు山త్తు లిష్తి | అదిల వింందు భాగి |

THE PROCEDURE FOR VENUS (ŚUKRA)

The dhruva is obtained by multiplying the number of years by 563 (tri ṣad bāna) and dividing by 900 (kha kha añka). This gives the revolutions. The reminder is 108 lipti. The fraction $1 / 9$ of this is 12 . Multiply this by 5 you get 6 ol lipti. That is 1 bhäga (degree) and the divisor used for Venus is 900 . The fraction $1 / 9$ of this is 100 . Multiply this by 5. Therefore every 500 (kha kha eṣu) years 1 degree should be added. This is the rationale for the formulae.

> The dhruva for Venus (Śukra)

The number of revolutions in a mahāyuga is 7022376.

$$
\begin{align*}
\frac{7022376}{4320000} & =1+\frac{2702376}{900 \times 4800} \tag{14}\\
& =1+\frac{563 \times 4800}{900 \times 4800}-\frac{24}{4320000} \tag{15}
\end{align*}
$$

Now,

$$
\begin{align*}
24 / 4320000 \text { revolutions } & =[(24 \times 360) / 4320000]^{\circ} \tag{16}\\
& =[(1) / 500]^{\circ} \tag{17}
\end{align*}
$$

Hence, for Venus (Sukra), the increase in longitude per year is 563/900 revolution, and a $b \bar{i} j a$ of $[-(1) / 500]^{\circ}$ per year, that is, $[(1) / 500]^{\circ}$ must be subtracted. Here, the integral number of revolutions (1) is ignored.

 జింంఠడను | उని భగణణ లిలష 48 ఇదం రాలియ ఱోడులు 576 ఇదం భాగియు టూడాలు 17280 ఇదేరిందా యుగెఎం భాగిస்లాగి బందుదు 250 . ఇదిలగ

THE PROCEDURE FOR SATURN (ŚANI

Multiply the number of Kali years by 407 (śaila kha veda) and 12000 (vyōma traya arka). This is gives the number of revolutions. The reminder is 48 which means 576 rāśis and also means 17280 degrees. The yuga is divided by this number to get 250 as an integer. Hence the correction (the notation is kha artha yama - the meaning is not clear). This is the rule.

That completes the procedure for all the planets.

> The dhruva for Saturn (Śani)

The number of revolutions in a mahāyuga is 146568.

$$
\begin{align*}
\frac{146568}{4320000} & =\frac{(407 \times 360)+48}{12000 \times 360} \tag{18}\\
& =\frac{407}{12000}+\frac{48}{4320000} \tag{19}
\end{align*}
$$

Now,

$$
\begin{align*}
\frac{48}{4320000} \text { revolutions } & =\left[\frac{48 \times 360}{4320000}\right]^{\circ} \tag{20}\\
& =[(1) / 250]^{\circ} \tag{21}
\end{align*}
$$

Hence, for Saturn (Śani), the increase in longitude per year is 407/12000 revolution, and a bija of $[(1) / 250]^{\circ}$ per year.

गुणाब्धि निघ्नाद्दुजगः ख खे भैर्विश्वेन्दु निघ्नात् ख ख दिग्भिरुचः ।
विनिक्षिपेद्भत्रयमिन्दु मन्दे विशोधयेचकदलास्तु राहुम् ।। 8 ।।
రృळు ధ్రుఎ山ం తळరి ||
ేల్యబ్దదం గుణాబ్ధి యింబ 43 రిం గుణిసి ఎఖిభభ్ృిః యింబ 800 రం భాగిసి బందే-

 రిం గుణిసి అబ్ద ర్తద్ట్టయిలన యింబ 200 రం భాగిసి బంద లిష్తిగళం రాఙు ధ్రు,ె-

THE PROCEDURE FOR THE ASCENDING NODE OF THE MOON ($R \bar{A} H U$)
Multiply the number of Kali years by 43 (guna abdhi) and divide by 800 (kha kha ibha). The reminder is converted to degrees and its fractions as explained. Here the number of revolutions and the yuga years are both divided by 5400. the reminder bhagana is 38 . For the number of years corresponding to mahayuga 38 (vasu agni) revolutions are the reminder. Then for 360000 years 38 rāśis will remain. Similarly for 12000 years 38 degrees will remain. For 200 years 38 lipti will be the reminder. Therefore I applied the correction as multiplying by 38 and dividing by 200 . This should be added to Rähu.

The dhruva of Rāhu

The number of revolutions in a mahāyuga is 232238.

$$
\begin{align*}
\frac{232238}{4320000} & =\frac{(43 \times 5400)+38}{800 \times 5400} \tag{22}\\
& =\frac{43}{800}+\frac{38}{4320000} \tag{23}
\end{align*}
$$

Now,

$$
\begin{align*}
\frac{38}{4320000} & =\left[\frac{38 \times 360 \times 360}{4320000}\right] \tag{24}\\
& =\frac{38}{200} \text { arcminutes } \tag{25}
\end{align*}
$$

Hence, for Moon's node (Rähu), the increase in longitude (in a retrograde manner) per year is 407/12000 revolution, and a $b \bar{j} a$ of $[(38) / 200]^{\prime}$ per year. Apart from the dhruva at the beginning of the solar year as calculated above, 6 rāsis = [180] ${ }^{\circ}$ have to be added, as that is the longitude of Moon's node at the beginning of kaliyuga. Also, the value computed thus, has to be subtracted from $[360]^{\circ}$, as the motion of the node is retrograde. These are pointed out later.

ేల్యబ్దబం విల్టిలందు యింబ 113 రిం గుణిసి ఎఎదిగ్భిః యింబ 1000 నావిరదిం

 మొూరు రాలియిం జూడుుదు |

THE PROCEDURE FOR DERIVING THE MOON'S APOGEE (CANDRŌCCA)
Multiply the number of Kali years by 113 (viśva indu) and divide by 1000 (kha kha dik). This gives the number of revolutions of candrōcca. The years of mahāyuga and candrōcca were divided by 4320 . The reminder 43 was converted for 200 years as was done for Rāhu. You have to add three rāsis for candrōcca.

> The dhruva of the Moon's apogee (mandocca)

The number of revolutions in a mahāyuga is 488203 .

$$
\begin{align*}
\frac{488203}{4320000} & =\frac{(113 \times 4320)+43}{1000 \times 4320} \tag{26}\\
& =\frac{113}{1000}+\frac{43}{4320000} \tag{27}
\end{align*}
$$

Now,

$$
\begin{align*}
\frac{43}{4320000} & =\left[\frac{43 \times 360 \times 60}{4320000}\right]^{\prime} \tag{28}\\
& =\frac{43}{200} \text { arcminutes } \tag{29}
\end{align*}
$$

Hence, for Moon's node (mandocca), the increase in longitude per year is 113/1000 revolution, and a bija of $[(43) / 200]^{\prime}$ per year. Apart from the dhruva at the begin-
ning of the solar year as calculated above, 3 rāśis $=[90]^{\circ}$ have to be added, as that is the longitude of Moon's mandocca at the beginning of kaliyuga.

Abstract

 | అల్లి ఆరు రారి మిగది భగణฝిల షృతిఁయూగి ळరిదు ఙొలలగిద్దపం అల్లిందిత్త రారియుం ఆరు రాలియుం మిశ్రైు యింబుద అరిఎ లుఱాయిబింతిందరర | భగణంగెహు 488203000 ळాగి రాఙు భగగణం గెహు 232238000 ఇळరిం గుణిసి | చల్టాబ్దంగిలాద 4320000000 ఇదరిం భాగిసెలాగి అరియబబుుదు | |

The reason for this is as follows: For the end of Dwāpara (beginning of Kaliyuga) all the planets had completed their revolutions exactly. But candrōcca and Rāhu did not. Candrōcca still had to cover three rāsisis. Rähu moves in retrograde direction still for completing the zodiac needed 3 more rāsis left. We can get this from the facts the number of years till the end of dwāpara 1955880000, The number of revolutions of candrōcca 488203000 . That of 232238000 . Dividing this by the number of years 4320000000 we get the difference.

रूपादरि तत्वैर्विद्बरार्थैः पश्चाद्रिरामैः ख नखैः खखांगैः।
ख खंषुभिः खार्थयमैः धृवाणमंशादि बीजस्फुटमब्दरारोः।।

 యిలళు ழిలదగళిం భాగిసి బంద భాగాదియిం సాఎన ధులు పుజ బుధ్ గురు రనని
 ळొళ్ఱియాను | |

This is summarising the entire procedure.
The total number of years have to be divided by numbers represented by rūpādri tattva, viyadambarārtha, pañcādri rāma, khakhānga, khakhaiṣu, ghärtha yama - in that order and the result expressed in degrees minutes and seconds should be added to the sāvana dhruva of Kuja, Budha, Guru, Śani; for moon and Śukra it should be subtracted.

THE PROCEDURE FOR ASCENDING NODE OF THE MOON (R $\bar{A} H U)$ वस्वग्नयो वह्नि युगानि लिपता राहों विधुचेब्द शतद्वयेना।
संयोजयेत्बीज फलं धृवृषु वियोजयेद्भार्गाव शीतररिमयोः । |10|।

The number of Kali years should be multiplied by 38 and divided by 200 and added to Dhruva for Rāhu; should be multiplied by 43 and divided by 200 and added to Dhruva for candrō̄ca. For the moon and Śsukra the correction should be subtracted. For Rāhu, the bīja correction should be added and recalculated successively.

5 DISCUSSION

Thus all the calculations for $b \vec{i} j a$ correction, positive and negative corrections are explained. They appear mysterious but I have explained here completely as per the original texts of the Siddhānta.

It is to be noted that the summarising verse includes another phrase for correc-
tion called viyadambarārtha, which was pointed out by the referee as applicable to the moon. However, both the texts do not contain corresponding verses for the position of the moon. (The Appendix has the compiled text.) In the following chapter on eclipses, the details of the derivation of the position of the moon are described. ${ }^{19}$

It may be seen that the procedures given here are different from those given in other similar texts. Gaṇeśa Daivajña, in his Grahalāghava, simplifies the procedure by adopting a cycle of 4016 years which results in no reminder or integral multiple of the number of revolutions. ${ }^{20}$ The rationales for deriving the dhruvas of all planets are not explained in detail. Chikkaṇṇa, in his Dṛksiddhāntadarpaṇa

[^5]20 Balachandra Rao and Uma 2006.
(another twentieth-century text in Kannaḍa), uses a cycle of 19 years similar to the metonic cycle following the procedure given. ${ }^{21}$

It has been possible to correct the minor errors either typographical or grammatical, since there are two manuscripts available. Tantradarpaña contains all these verses with commentary in Sanskrit. There are some small differences since the two are written with a time difference of about a year or so. The author has used the same technique in the subsequent texts too.

There is another text by Śañkaranārāyaṇa, a commentary on Brahmadeva's eleventh-century Karanāāharana. ${ }^{22}$ It is similarly written in the Nandināgari script and in Sanskrit.

Demaṇa wrote another text called Grahanamukura ("The Mirror of Eclipses") wherein the same procedures were adopted. ${ }^{23}$ However the explanation or rationale was very brief.

The present text further continues to other chapters on deriving the mean positions, true positions and other calculations on eclipses, heliacal rising and planetary conjunctions. These chapters also have very innovative procedures and will be discussed in forthcoming papers. We also plan to list the word-numbers (bhūtasañkhyās) used extensively in the text.

ACKNOWLEDGEMENTS:

One of the authors (SJ) acknowledges the help by INTACH, Bengaluru and Dr Keladi Gunda Jois for great help with the manuscripts, and Srī Śañkara Advaita Śodha Kendra, Śṛngerī (श्री शांकर अद्वैत शोध केन्द्र, श्टङ्गेरी), for providing scans of the manuscripts. We also gratefully acknowledge discussions with Prof. M. D. Srinivas, Dr Venketeswara Pai, Dr Uma S. K., Ms Shubha B. S. and Prof. Balachandra Rao. We are grateful to the anonymous referee whose comments have greatly enhanced the content.

[^6]mentary on Tantradarpana.
23 NCC: v. 6, 249b.

FAMILY TREE OF ŚAN゙KARANĀRĀYANA JŌISARU'S ANCESTORS The following family tree of male ancestors was provided by Seetharam Javagal.

Śañkaranārāyaṇa Jōisaru (jyotiṣa author)

Linga Jōisaru

Yallaṇṇa Jōisaru

Mahādeva Jōisaru

Yallappa Jōisaru

Śañkaranārāyaṇa Jōisaru

Mahādeva Jōisaru

Śañkaranārāyaṇa Jōisaru

Mahādeva Jōisaru

Rāmacandra Gaṇeśa Jōisaru

Kulapati Śaṅkaranārāyaṇa Jōisaru (1903-1998)

APPENDIX: VERSES FROM VĀRȘIKATANTRA AS FOUND IN THE GANITAGANNAḌI

As reconstructed from Gaṇitagannaḍi (MS 1) and Tantradarpaṇa (MS 2). MS variants appear in the footnotes.

FIRST CHAPTER
आवह्मकल्पाद्विचरन भचके नक्षत्रचन्द्रग्रहतारकाणि।
विभासयत्यात्ममहः प्रभावात्सोह्नां पतिः पातु सदा जगन्ति ॥? ॥
अस्ति स्म कौडिन्य मुनिर्मुनीनामग्रेसरो विप्रकुलग्रदीपः । त्र्यीं 24 निधातुं प्रथमं विधाता यमेकपात्रं प्रथितं चकार ॥२ ॥ तस्याभिजातः पृथुकीर्तिरग्यः प्रभूतविद्यः प्रचुरव्रताढ्यः। ज्योतिर्विदां भानुरिवाग्रगणयो विभासमानो भुवि मह्धणोऽभूत् ॥३ ॥
तस्याभवद्विद्दणनामधेयः सूनुः सुधारोचिरिव द्वितीयः। सुवृत्तवानुदृत पित्र्यलोकस्तन्निर्मितं वार्षिकतन्त्रमेतत् ॥४ ॥ शाको नवाद्रीन्दुगुणैः समेतः शौलाम्बरव्योम निशाकरम्नः। खखाष्ट भक्तो भृगुवारपूर्वः कल्यादितः सावनको ध्रुवः स्यात् ॥५॥ विश्वाकृतिघ्नः खखशून्यतर्कैर्घृवः सुधांशोर्भगणादिकः स्यात् । भौमो नवेन्द्धाग्नि हतात् खखांगैः । बुधोग्यगघाद्वियदप्टवेदेः ॥६॥ वियन्नखाखेर्मुनिखांगनिघ्नादुरुस्त्रिषड्वाणहतात् खखांकेः। सितः शानिः रौलखववेदनिघघाद्योमत्रयार्केंर्धृवका भवन्ति ॥७॥ गुणाब्हिनिघाद्दुजगः खखेभैर्विश्वेन्दु निघात् खखदिग्भिरुचः। विनिक्षिपेद्भत्र्यमिन्दुमन्दे विशोधयेच्चक्रलात्तु राहुम ॥८॥ रूपाद्रितत्वैर्वियद्बरार्थेः पश्चाद्रिरामैः खनखैः खखांगैः। खखेषुभिः खार्थ यमैर्धृवाणामंशाद् बीजस्फुटमब्दराइोः ॥९॥ वस्वग्नयो वह्नियुगानि लिप्ता राहौ विधूच्चेऽब्द रातद्वयेन। संयोजयेत्बीजफलं धृवेषु वियोजयेद्भार्गवशीतरइम्योः ॥ १०॥

ABBREVIATIONS

CESS Pingree, D. E. (1970-94), A Census of the Exact Sciences in Sanskrit, 5 vols. (Philadelphia: American Philosophical Society), https://archive.org/ details/PingreeCESS, (on 9 Mar. 2018).
NCC Raghavan, V., Kunjunni Raja, K., Sundaram, C. S., Veezhinathan, N., Gangadharan, N., Rama Bai, E. R., Dash, S., et al. (1949-), New Catalogus Catalogorum, an Alphabetical Register of Sanskrit and Allied Works and Authors (Madras University Sanskrit Series; Madras: University of Madras); v.1: revised edition, 1968.

REFERENCES

Balachandra Rao, S. and Uma, S. K. (2006), Grahalāghavam of Ganeśa Daivajnya, English Exposition with Maths and Notes (Bengaluru: Bhavan's Gandhi Centre of Science and Human Values).
Chikkaṇṇa, C. (1914), Dr̦iksiddhānta Darpaṇa (Mysore: Mysore Crown Printers).
Dikshit, S. B. (1981), Bhāratiya Jyotiśa Shāstra, trans. R. Vaidya (Kolkata: India Meterological Department, India Meterological Department).
Hayashi, T. (2017), 'The Units of Time in Ancient and Medieval India', History of Science in South Asia, 5/1: 1-116. Dor: https://doi.org/10.18732/H2HT0H.
Ketkar, S. (2001), Ketakigrahagaṇitam (Mumbai: Bharatiya Vidya Bhavan).
Mahesh, K. (2019), 'Editing Karaṇābharaṇa: A commentary on Karaṇaprakāśa by Śañkaranārāyaṇa Joyisa', Indian Journal of History of Science, 54/1: 116-18. DoI: 10.16943/ijhs/2019/v54i1/49605.

Padmaja, V., Uma, S. K., Rupa, K., and Balalchandra Rao, S. (2019), ‘Gaṇakānanda - A Study of Mathematical Tables: Paper Presented at the Annual Conference on History and Development of Mathematics at Kanchipuram', Kanchipuram, Nov.
Pingree, D. E. (1981), Jyotiḩ́s̄āstra: Astral and Mathematical Literature (A History of Indian Literature, 6.4; Wiesbaden: Harrassowitz), http ://n2t . net/ark:/ 13960/t9h49pm8x, (on 7 Feb. 2020).
Rice, B. L. et al. (1886-1955) (eds.), Epigraphia Carnatica, 16 vols. (Mysore Archaeological Series; Bangalore: Mysore Government Central Press), http: // idb.ub.uni-tuebingen. de/opendigi/EC, (on 7 Feb. 2020); Revised edition published by the University of Mysore. Kuvempu Institute of Kannada Studies from 1972.
'Inscriptions in the Chitaldroog District' (1903), in B. L. Rice et al. (eds.), xi, http://n2t.net/ark:/ 13960 / txxxxxxxx, (on 7 Feb. 2020), Epigraphia Carnatica (Mysore Archaeological Series; Bangalore: Mysore Government Central Press, 1886-1955).

Rupa, K., Padmaja, V., and Balachandra Rao, S. (2014), 'Makaranda Sāriṇı and Allied Saurapakṣa Tables - A Study', Indian Journal of History of Science, 49/ 2: 186-208, https://insa.nic.in/writereaddata/UpLoadedFiles/IJHS/ Vol49_2_9_KRupa.pdf, (on 31 Oct. 2019).
Sarma, K. V. (2002), Science Texts in Sanskrit in the Manuscripts Repositories of Kerala and Tamilnadu (Samskṛtavarṣasmṛtigranthamālā; New Delhi: Rashtriya Sanskrit Sanshtan), ISBN: 81-86111-04-2.

Somayaji, D. A. (1971), A Critical Study of the Ancient Hindu Astronomy in the Light and Language of the Modern (Dharwar: Karnatak University), http :// hdl.handle.net/10603/93107, (on 31 Oct. 2019).
Srinivas, M. D. (2019), 'The Untapped Wealth of Manuscripts in Indian Astronomy \& Mathematics', eSamskriti: Culture Spirituality Travel (22 Apr.), http://n2t.net/ark:/13960/t8gf98t47, (on 7 Feb. 2020); First published at https://tinyurl.com/esamskriti-srinivas.

Uma, S. K. and Balachandra Rao, S. (2008), Karan̦akutuhalam of Bhāskarācārya II - An English Translation with Mathematical Explanation, Derivations, Examples, Tables and Diagrams (New Delhi: Indian National Science Academy); Reprinted from IJHS, 42.1-2 (2007); 43.1 \& 3 (2008).
Visalakshy, P. (2003), Nandināgari Script (Publication (Dravidian Linguistics Association), 83; Tiruvananthapuram: Dravidian Linguistics Association).

Please write to 〈wujastyk@ualberta.ca〉 to file bugs/problem reports, feature requests and to get involved. The History of Science in South Asia • Department of History and Classics, 2-81 HM Tory Building, University of Alberta, Edmonton, AB, T6G 2H4, Canada.

[^0]: mLA style citation form: B. S. Shylaja and Seetharam Javagal. "Ganitagannadi: A Karana Text of 1604 ce on Siddhäntic Astronomy in Kannaḍa." History of Science in South Asia, 8 (2020): 13-35. Dor: 10.18732/hssa.v8io.46.
 Online version available at: http://hssa-journal.org

[^1]: 3 "Jōisaru" is the Kannaḍa version of Sanskrit Jyotișī, "astronomer." See the family tree, p. 32 below.
 4 NCC:v.6,249b.
 5 Cf. NCC: v. 8, 89a, v. 28, 168 a.

[^2]: 6 CESS: A4, 257-8, A5, 240.
 7 NCC:v.8,89a.
 8 Cf. NCC: v. 8, 89a, v. 28, 168a.
 9 Cf. NCC:v.6, 249b.

[^3]: 10 There is one palm-leaf in the same

[^4]: 18 śaila $=$ mountain (7), ambara $=\operatorname{sky}(0)$,

[^5]: 19 We plan to bring that out in a future publication.

[^6]: 21 Ketkar 2001.
 22 Mahesh 2019. Cf. NCC: v. 8, 89a and. 32, 244 b for a MS of Śañkaranārāyaṇa's com-

