

History of Science in South Asia

A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia

Sanskrit Recension of Persian Astronomy: The Computation of True Declination in
 Nityānanda's Sarvasiddhāntarāja

Anuj Misra
University of Copenhagen

[^0]
HISTORY OF SCIENCE IN SOUTH ASIA

A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia, published online at http://hssa-journal.org

ISSN 2369-775X

Editorial Board:

- Dominik Wujastyk, University of Alberta, Edmonton, Canada
- Kim Plofker, Union College, Schenectady, United States
- Clemency Montelle, University of Canterbury, Christchurch, New Zealand
- Fabrizio Speziale, School of Advanced Studies in the Social Sciences (EHSS), Paris, France
- Michio Yano, Kyoto Sangyo University, Kyoto, Japan
- Gudrun Bühnemann, University of Wisconsin-Madison, USA
- Anuj Misra, University of Copenhagen, Denmark
- Aditya Kolachana, Indian Institute of Technology, Madras, India
- Dagmar Wujastyk, University of Alberta, Edmonton, Canada

Publisher:
History of Science in South Asia
Principal Contact:
Dominik Wujastyk, Editor, University of Alberta
Email: 〈wujastyk@ualberta.ca〉
Mailing Address:
History of Science in South Asia,
Department of History, Classics and Religion,
2-81 HM Tory Building,
University of Alberta,
Edmonton, AB, T6G 2H4
Canada
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Copyrights of all the articles rest with the respective authors and published under the provisions of Creative Commons Attribution-ShareAlike 4.0 License.

The electronic versions were generated from sources marked up in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in a computer running GNU/LINUX operating system. pdF was typeset using $X_{H} T_{E} X$ from $T_{E} X L i v e$. The base font used for Latin script and oldstyle numerals was $\mathrm{T}_{\mathrm{E}} X$ Gyre Pagella developed by gust, the Polish $\mathrm{T}_{\mathrm{E}} X$ Users Group.

Sanskrit Recension of Persian Astronomy: The Computation of True Declination in Nityānanda's Sarvasiddhāntarāja

Anuj Misra
University of Copenhagen

CONTENTS

1 Introduction 71
1.1 From the Siddhāntasindhu to the Sarvasiddhāntarāja 73
1.1.1 Choice of Sanskrit meters 73
1.1.2 Variations in the reading of the text 75
1.2 The episteme of the Sarvasiddhāntarāja 78
1.2.1 Nityānanda's Romakasiddhānta 81
1.2.2 From the gross to the subtle 82
1.3 Overview of the spaștakrāntyādhikāra 83
1.4 Beyond the Sarvasiddhāntarāja 85
1.5 Structure of this paper 87
2 Sources and structure of the critical edition 89
2.1 Description of the manuscripts 89
2.2 Format of the edition 91
2.3 Format of the glossary 92
3 Sarvasiddhāntarāja, I.spa $k r a \bar{a}$: text and translation 94
4 Sarvasiddhāntarāja, I.spa $\cdot k r \bar{a}$: technical analysis 100
4.1 Geometry on the celestial sphere 100
4.1.1 List of triquadrantal spherical triangles 103
4.1.2 List of complementary arcs 103
4.1.3 Computing the true declination of a celestial object, the modern method 104
4.2 Preliminary definitions of constituent arcs 105
4.2.1 Curve of true declination 105
4.2.2 Day-Sine of the longitude 110
4.2.3 Arcs of maximum true declination and maximum latitude 111
4.2.4 Congruent arc and its complementary 115
4.3 Preliminary computations of constituent arcs 116
4.3.1 Computing the congruent arc and the congruent comple- mentary arc 116
4.3.2 Computing the maximum latitude and the maximum true declination 119
4.4 The first method of true declination 124
4.4.1 Derivation of the first method 126
4.4.2 Historical testimonies of the first method 128
4.5 The second method of true declination 129
4.5.1 Derivation of the second method 130
4.5.2 Historical testimonies of the second method 131
4.6 The third method of true declination 133
4.6.1 Derivation of the third method 134
4.6.2 Historical testimonies of the third method 135
4.6.3 Special case of celestial objects stationed at the ecliptic pole 136
References 140
Appendices
A On computing the true declination in medieval Sanskrit texts 145
A. 1 On the use of polar coordinates 146
A. 2 On the use of ecliptic coordinates 147
B On deriving the second declination from the first in Nityānanda's Sarvasiddhāntarāja I.4.49-50ab 151
C On the equivalence of the first and second methods of declination in Nityānanda's Sarvasiddhāntarāja I.spa•krā.2-3 155
D On finding the true declination in Munīśvara's Siddhāntasārva- bhauma I.4.41-42 157
E On finding the true declination in Kamalākara's Siddhāntatattvavi- veka VIII.21-25 160
E. 1 Calculating the second declination (anya-krānti) and corrected second declination (spaṣta-anya-krānti) in verses 21-23ab 160
E. 2 Calculating the true declination (sphuta-krānti) in verses 23cd-25 162
Glossary 165
LIST OF TABLES
1 Comparison of the text in Nityānanda's Siddhāntasindhu Part II. 6 and the Sarvasiddhāntarāja I.spa.krā. 74
2 List of metrical verses in Nityānanda's Sarvasiddhāntarāja I.spa•krā with the names of their corresponding meters. 75
3 List of sigla of the manuscripts of Nityānanda's Sarvasiddhāntarāja. 89

1 INTRODUCTION

In a recent publication, I discussed how Nityānanda Miśra, a seventeenthcentury Sanskrit astronomer at the court of the Mughal emperor Shāh Jahān (1592-1666), translated Mullā Farīd al-Dīn Dihlavī's Indo-Persian Zī̀-i Shāh Jahān̄̄ (c. 1629/30) into a Sanskrit table-text ${ }^{1}$ (Misra 2021). Nityānanda's Siddhāntasindhu 'Ocean of siddhāntas' (c. early 1630) is an example of how a Persian $z \bar{i} j$ (a handbook of astronomical tables) is rendered into Sanskrit through a complex translation project that bridges the domains of sociocultural history and scientific innovation. My paper focused on the linguistic (syntactic, semantic, and communicative) aspects in Nityānanda's Sanskrit translation of Mullā Farīd's Persian text; in particular, on the computation of the true declination of a celestial object commonly discussed in the sixth chapter of the second discourse (maqāla-i duvum) of the $Z \bar{i} j-i$ Shāh Jahān $\bar{\imath}$ and the second part (dvitīya-kāṇda) of the Siddhāntasindhu.

Historically, the Siddhāntasindhu is Nityānanda's first attempt at presenting Islamicate astronomy to his fellow Sanskrit astronomers. ${ }^{2}$ The Siddhāntasindhu retains the structure of the $Z \bar{\imath} \bar{j}-i$ Shāh Jah $\bar{a} n \bar{\imath}$ in presenting the translated contents; however, in several instances, it groups topics under traditional Sanskrit categories. For example, at the end of his Siddhāntasindhu Part II, Nityānanda subsumes the topics discussed in its twenty chapters as those that are tripraśna-pracura-ukti-yukti-sahita 'accompanied by many statements and rationales on the tripraśna' (Misra 2021:84). The tripraśna (lit. three questions) is often a separate topic (adhikāra) in a Sanskrit siddhānta that discusses mathematical methods to determine the direction, place, and time; ${ }^{3}$ it is not, however, a separate comprehensive category in Islamicate $z \bar{i} \bar{j}$ es like the $Z \bar{\eta} j-i$ Sh $\bar{a} h$ Jah $\bar{a} n \bar{\imath}$. By invoking this familiar siddhāntic topic of tripraśna, Nityānanda attempts to situate, explicate, and appropriate foreign astronomical methods in his Sanskrit text more naturally.

The Sarvasiddhāntarāja 'The King of all siddhāntas' (1638) is Nityānanda's second attempt to adapt Islamicate ideas to the paradigms of Sanskrit astro-

[^1]ally proposed, "Islamicate' would refer not directly to the religion, Islam, itself, but to the social and cultural complex historically associated with Islam and the Muslims, both among Muslims themselves and even when found among non-Muslims" (Hodgson 1974:59).
3 In Sanskrit astral sciences (jyotihịs̄āstra), a siddhānta is a comprehensive canonical treatise that includes, inter alia, discussions on planetary computations, astronomical parameters, and spherical geometry.
nomy. ${ }^{4}$ Unlike the Siddhāntasindhu, the Sarvasiddhāntarāja follows the material and the metrical standards of a traditional Sanskrit siddhānta. In it, Nityānanda demonstrates his originality, innovation, and proficiency in integrating GrecoIslamicate ideas (yavana-mata) with traditional Sanskrit canonical (saiddhāntika) and mythohistorical (paurānika) thought. ${ }^{5}$

The contents of the Sarvasiddhāntarāja are arranged in two main parts (adhyāyas): the gaṇitādhyāya 'chapter on computations' and the golādhyāya 'chapter on spheres'. The ganitādhyāya discusses various topics (adhikāras) like philosophical rationales ($\bar{\imath} \bar{m} m \bar{a} m s s \bar{a}$); mean and true positions of planets (madhyamagraha and sphutagraha); three questions (tripraśna) of direction, place and time; solar and lunar eclipses (sūryagrahaṇa and candragrahana); elevation of the lunar cusps (śrṅgonnati); planetary and stellar conjunctions (bhagrahayuti); and planetary and stellar altitudes (bhagrahān̄ām unnatāṃśa). And the golādhyāya includes discussions on the topics of cosmography (bhuvanakośa), the armillary sphere (golabandha), and astronomical instruments (yantra). ${ }^{6}$ Together these two parts describe the astronomical parameters, mathematical procedures, and the underlying geometry that helps calculate the movement of celestial objects (planets, stars, etc.) in the sky.

Beyond a standard register of topics, the ganitādhyāya of the Sarvasiddhāntarāja also discusses the computation of 'true declination' (spaṣta-krānti) of a celestial object as a separate topic in the chapter, viz. the spaṣtakrāntyādhikāra'topic on true declination'. As § 2.1 describes, all seven extant (and complete) manuscripts of the Sarvasiddhāntarāja include the spaṣtakrāntyādhikāra as a separate section in the gaṇitādhyāya. 7 In most Sanskrit siddhāntas, the mathematics of computing the true declination of a celestial object is embedded in the general discussions on related topics (e.g., in the tripraśna, śrngonnati, bhagrahayuti, etc.); see, for example, Appendix A. The Sarvasiddhāntarāja is different from other siddhāntic texts in treat-

4 See Misra (2016: §§ 1.1 and 1.2 on pp. 120) for a discussion on Sanskrit astronomy in early-modern India, in particular, the contribution of Nityānanda and his Sarvasiddhāntarāja.
5 See Pingree (2003), Montelle, Ramasubramanian, and Dhammaloka (2016), Montelle and Ramasubramanian (2018), and Misra (2016) for recent studies on Nityānanda's Sarvasiddhāntarāja, and is connection with Islamicate astronomy.
6 Misra (2016:18-32) describes the structure and content of Nityānanda's Sarvasiddhāntarāja in detail. The chapter on astronomical instruments (yantrādhyāya) is sometimes considered as a separate (third) chapter along with the chapters on com-

[^2]ing the computation of true declination as a separate adhikāra in the ganitādhyāya. The metrical verses in the spaștakrāntyādhikāra of Nityānanda's Sarvasiddhāntarāja are taken from his Siddhāntasindhu, which itself is a Sanskrit translation of Mullā Farīd's Indo-Persian $Z \bar{i} \bar{j}-i$ Shāh Jahān̄ $\bar{\imath}$ (more on this in $\S 1.1$). The attribution of Islamicate astronomy in the Siddhāntasindhu is conspicuous-the Siddhāntasindhu is self-admittedly a Sanskritised version of the $Z \bar{i} \bar{j}-i$ Shāh Jahān $\bar{\imath}$. In contrast, the origins of topics in the Sarvasiddhāntarāja remain veiled behind a complex narrative that syncretises Islamicate and Sanskrit astronomical ideas prevalent in seventeenth century Mughal India.

In the present study, I edit, translate, and analyse the contents of the spasṭakrāntyādhikāra in the gaṇitādhyāya of Nityānanda's Sarvasiddhāntarāja (henceforth identified as Sarvasiddhāntarāja I.spa•krā). My edition of the text is based on seven complete manuscripts of the Sarvasiddhāntarāja that were available to me. § 2 describes the manuscripts and my editorial conventions. The aim of this study is to understand the mathematics of the three methods of computing the true declination described in the text. In my technical analyses of these methods (in §4), I include brief discussions on the history of these methods in other Islamicate and Sanskrit works, as well as the linguistic and mathematical peculiarities in Nityānanda's recension of these methods in the Sarvasiddhāntarāja I.spa•krā.

1.1 FROM THE SIDDHA$N T A S I N D H U$ TO THE SARVASIDDH $\bar{A} N T A R \bar{A} J A$

Nityānanda's Siddhāntasindhu Part II.6 (dvitīya-kāṇḍa, ṣaṣthādhyāya) includes twelve metrical verses and four prose passages describing three methods to compute the true declination. These verses and passages are Sanskrit translations of corresponding Persian passages from Mullā Farīd's Zīj-i Shāh Jahān̄̄ Discourse II. 6 (maqāla-i duvum, bāb sheshom); see Misra (2021: pp. 85-98). In the Sarvasiddhāntarāja I.spa•krā, Nityānanda excludes the prose passages but includes the twelve metrical verses, repeated almost verbatim, from the Siddhāntasindhu Part II.6. In addition, he adds two final verses (a penultimate verse and a terminal colophon) that are not found in the Siddhāntasindhu Part II.6. Table 1 lists the metrical verses and prose passages in Nityānanda's Siddhāntasindhu Part II. 6 vis-à-vis the metrical verses in his Sarvasiddhāntarāja I.spa•krā.

1.1.1 Choice of Sanskrit meters

The fourteen verses in Nityānanda's Sarvasiddhāntarāja I.spa•krā are composed in an assortment of meters. Table 2 lists the verses and the names of their respective meters. All verses taken from the Siddhāntasindhu Part II. 6 (see Table 1) are repeated in the same meter, even as there are minor grammatical changes in the text (more on this in § 1.1.2).

Passage	Siddhāntasindhu Part II. 6 (c. early 1630)	Sarvasiddhāntarāja I.spa•krā (1638)
खगस्य०...०स्वदिक् ॥	[1] verse	verse 1
स्फुटाप०...०भवेत् ॥	[2] verse	verse 2
परम०...०ज्यका ॥	[3] verse	verse 3
किंवा०...०स्यात् ॥	[4] prose	-
अथ०...०कुर्यात् ॥	[5] prose	-
अथ०...०दिग्भवेत् ॥	[6] prose	-
यदि०...०र्भवति ॥	$[7]$ prose	-
अथ प्रकारान्तरेण ॥ कद्ब्ब०...०द्रोलवित् ॥	$[\alpha]_{\text {verse }}$	verse 4
विषव०...०संप्रति ॥	$[\beta]_{\text {verse }}$	verse $5^{\text {a }}$
भवन०...०कल्पिते ॥	$[\gamma]_{\text {verse }}$	verse 6
विषव०...०दृक्कोटिः ॥	[$\delta]_{\text {verse }}$	verse $7^{\text {b }}$
खगस्य०... सिक्जिनी ॥	[8] verse	verse 8
तद्धनु०...०दोर्ज्यया ॥		
तद्धनुः०...०दिक्तया ॥	$[9]_{\text {verse }}-[10]_{\text {verse }}$	verse 9-verse 11
स ग्रहस्य०...०रोधितः ॥		
परस्फुट०...०दिक्समा ॥	$[11]_{\text {verse }}$	verse 12
अन्यैर्यो० ... संवीक्ष्यताम् ॥	-	verse 13
इत्येत०...०पूर्तिम् ॥	-	colophon verse (on p. 98)

${ }^{a}$ verse 5 has the variant reading विषुव०...०तत्क्षणे.
${ }^{b}$ verse 7 has the variant reading विषुव०...०दृकोटिः.
Table 1: Comparison of the text in Nityānanda's Siddhāntasindhu Part II. 6 and the Sarvasiddhāntarāja I.spa $k r \bar{a}$. The text of the Siddhāntasindhu Part II. 6 is edited from MS 4962 of the Khasmohor collection held at the City Palace Library in Jaipur, ff. 20r: 16 to 20v: 12. See Misra (2021: pp. 91-98) for the numbering of the metrical verses and prose passages in the Siddhāntasindhu Part II.6, and §3 (pp. 94-98) for the numbering of the metrical verses in the Sarvasiddhāntarāja I.spa•krā.

Number	Verse	Name of the meter
1	खगस्य०...०स्वदिक् ॥	vaṃśasthavila (12 syllables/pāda)
2	स्फुटाप०...०भवेत् ॥	pramānikā (8 syllables/pāda)
3	परम०...०ज्यका ॥	anuștubh (8 syllables/pāda)
4	कदम्ब०...०द्गोल्लवित् ॥	$p r$ thvī (17 syllables/pāda)
5	विषुव०...०तत्क्षणे ॥	drutavilambita (12 syllables/pāda)
6	भवन०...०कल्पिते ॥	drutavilambita (12 syllables/pāda)
7	विषुव०...०टृकोटिः ॥	$\bar{a} r y \bar{a}$ (moraic meter)
8	खगस्य०...०सिश्जिनी ॥	pramānikā (8 syllables/pāda)
9	तद्धनु०...०दोर्ज्यया ॥	rathoddhatā (11 syllables/pāda)
10	तद्धनुः०...०दिक्तय	rathoddhatā (11 syllables/pāda)
11	स ग्रहस्य०...०इोधितः ॥	rathoddhatā (11 syllables/pāda)
12	परस्फुट०...०दिक्समा ॥	vaṃśasthavila (12 syllables/pāda)
13	अन्यैर्यो०... संवीक्ष्यताम् ॥	sārdūlavikrīdita (19 syllables/pāda)
col.	इत्येत०...०पूर्तिम् ॥ (colophon on p. 98)	śālin̄̄ (11 syllables/pāda)

Table 2: List of metrical verses in Nityānanda's Sarvasiddhāntarāja I.spa•krā with the names of their corresponding meters.

1.1.2 Variations in the reading of the text

There are occasional variations in the reading of the text in Nityānanda's Siddhāntasindhu Part II. 6 and Sarvasiddhāntarāja I.spa•krā. Most of these variations are minor grammatical changes; however, some variations suggest a conscious attempt to reform the language of the translated text in the Siddhāntasindhu to a simpler (and more standardised) version in the Sarvasiddhāntarāja. I discuss below some of the main variations between the language of the verses in these two texts. As indicated before (in Table 1), the numbering of the verses of the Siddhāntasindhu Part II. 6 follows the edition in Misra (2021: pp. 91-98), while the numbering of the verses of the Sarvasiddhāntarāja I.spa $k r \bar{a}$ is described in $\S 3$ (pp. 94-98).

Renaming technical terms In the Sarvasiddhāntarāja I.spa•krā, verse 1 (first pāda), Nityānanda calls the second declination of a celestial object anyatamaapama, whereas, in the Siddhāntasindhu Part II.6, [1] verse (first pāda), he uses the expression anyatara-apama. The words anyatara and anyatama
can be understood as a choice between 'either one of two' or 'any one among many' respectively. However, the mathematical context of this verse strongly suggests that these words refer to the second declination (and not the first). Therefore, the words anyatara and anyatama may be thought of as the comparative and superlative degrees of the pronomial adjective anya 'other' respectively. In both texts, the 'more other' or 'most other' declination is simply a reference to the second or other declination (dvitīyā-krānti or anya-apama) of the celestial object.
Also, in the Sarvasiddhāntarāja I.spa•krā, verse 1 (third pāda), Nityānanda calls the arc/curve of a great circle as anjka, a word ordinarily used to indicate a number, measure, or mark. This word appears in the context of a quantity called the 'curve of true declination' (discussed in §4.2.1). In the Siddhāntasindhu Part II.6, [1] verse (third pāda), the word añka appears as aṃśa 'share', closely following the Persian word ḥiṣ̣at 'share' in Mullā Farīd's Zīj-i Shāh Jahān̄̄ Discourse II.6, passage [1]. (See notes 1 and 2 on p. 107 of § 4.2.1.)

Clarifying mathematical statements Nityānanda revises the name of an arithmetic operation, rendered in the Siddhāntasindhu as a literal Sanskrit translation of a Persian expression, to a simpler (and more familiar) mathematical statement in the Sarvasiddhāntarāja. In Persian mathematics, the expression munhatt kardan 'to make low' refers to the arithmetic operation of dividing a sexagesimal number by sixty. ${ }^{8}$ In the Siddhāntasindhu Part II.6, [2] verse and [8] verse (third pādas), Nityānanda translates this operation as adharī-krtt̄̄ 'having been lowered' using the past passive form of the verb adharī- $\sqrt{ } k r$ 'to make low'. However, in the Sarvasiddhāntarāja I.spa•krā, verses 2 and 8 (third pādas), he uses the compound tribhajyakoddhrtā 'having been divided by the Radius (i.e., the sinus totus)'. Here, the past passive form of the verb $u t-\sqrt{ } h r$ 'to divide' takes the word tribhajyaka (lit. the sinus totus) as its instrument, suggesting that a sexagesimal quantity is to be divided by the Radius or sinus totus. This expression offers a clearer mathematical statement than the literal (and obscure) translation in the Siddhāntasindhu.
In two other instance, viz. verse 9 (fourth pāda) and verse 12 (second pāda) of the Sarvasiddhāntarāja I.spa•krā, Nityānanda retains the use of the word adhara (or equivalently, its verbal form adharī- $\sqrt{k r}$) to refer to the 'lowering' of a sexagesimal quantity. MS Bn.II parses this word, mid-verse, to explain the meaning of lowering a number. (See note 1 on p. 120 in $\S 4.3 .2$ and the remark on p. 134 in § 4.6.)

8 Sixty is the value of the Radius or sinus totus in most Islamicate texts. Nityānanda's Siddhāntasindhu and Sarvasiddhāntarāja ad-
opt this value following Mullā Farīd's $Z \bar{i} j-i$ Shāh Jahānī.

Occasionally, Nityānanda replaces a word by a (near-)synonymous construction that is metrically indistinguishable. For example, the word samprati 'at the present moment' at the end of fourth pāda in the Siddhāntasindhu Part II.6, $[\beta]_{\text {verse }}$ is replaced by the word tatksane 'at that very moment' at the end of the fourth $\overline{\operatorname{a}} \bar{d} a$ of Sarvasiddhāntarāja I.spa-krā, verse 5 . Such alterations, although grammatically trivial, convey the mathematics perspicuously.
Rewording complex expressions In going from the Siddhāntasindhu to the Sarvasiddhāntarāja, Nityānanda rewords certain expressions for better clarity while preserving the meter of the verses. For example, in speaking about the 'circle that reaches (upaiti) the pair of ecliptic poles and the pair of celestial poles'; in other words, the solstitial colure, Nityānanda uses the expression kadamba-viṣava-dhruva-dvayam upaiti in the first pāda of [4] verse in the Siddhāntasindhu Part II.6. However, in the corresponding first pāda of verse 4 in the Sarvasiddhāntarāja I.spa-krā, he changes the expression to kadamba-yugala-dhruva-dvayam upaiti. The compound (samāsa) formed by the words kadamba-yugala 'pair of ecliptic poles' and dhruva-dvaya 'pair of celestial poles' in the Sarvasiddhāntarāja is clearer in eliciting the meaning of the expression than the one formed by joining the words kadamba 'ecliptic pole', viṣ[u]va-dhruva 'pole of the equinox', and dvaya 'both' in the Siddhāntasindhu. ${ }^{9}$
Adopting standardised spellings In some instances, Nityānanda rewords certain expressions by choosing a more conventional spelling. For example, the construction jñeyah sadrgbhujo 'sau 'that [arc] should be known as the congruent arc (sadrś-bhuja)' in the Siddhāntasindhu Part II.6, $[\delta]$ verse (third pāda) is changed to jñeyah sadrgbhujäkhyo '[that arc] should be known as the congruent arc (sadṛ́s-bhujā) by name' in the Sarvasiddhāntarāja I.spa-krā, verse 7 (third pāda). In Sanskrit astronomy, the words bhuja and bhujā both refer to the arm/side of a planar figure or an arc of a circle. However, when invoked in relation to its geometrical complement koti, bhujā is the more conventionally acknowledged technical term.
Using synonyms In the Siddhāntasindhu and the Sarvasiddhāntarāja, Nityānanda uses grammatical expressions derived from a common verbal root, or alternatively, those from synonymous verbal roots to express the same mathematical operation. For example, multiplication is indicated by the word nihanyate 'is multiplied' (present passive form of the verb ni-Vhan) in the Siddhāntasindhu Part II.6, [2] verse (third pāda) and hata 'having been multiplied' (past passive participle form of the verb $\sqrt{ }$ han) in the Sarvasiddhāntarāja I.spa-krā, verse 2 (third pāda). A little further into the

[^3]text, the same operation is called hata 'having been multiplied' in the Siddhāntasindhu Part II.6, [11] verse (first pāda) and guṇa 'multiplied' (a historically attested but grammatically anomalous derivative of the verb $\sqrt{ } g u n ̣$ 'to multiply') in the Sarvasiddhāntarāja I.spa•krā, verse 12 (first pāda).

1.2 THE EPISTEME OF THE SARVASIDDH $\bar{A} N T A R \bar{A} J A$

By repeating the three Islamicate methods to calculate the true declination of a celestial object in his Sarvasiddhāntarāja, having first translated them into Sanskrit in his table-text the Siddhāntasindhu, Nityānanda demonstrates what he considers worthy of inclusion in a siddhānta in Sanskrit jyotihśāstra. In his preliminary reflections ($m \bar{i} m \bar{a} m ̣ s \bar{a}$) at the beginning of the ganitādhyāya of the Sarvasiddhāntarāja (I.1.21), Nityānanda brings the full force of his literary and poetic skills to extol the eminence of a siddhānta with a verse in the siārdūlavikrị̄ita meter flaunting the figurative device vinokti, lit. speech with the word vinā 'without':

> किं भावेन विना रसो रसकथालापं विना किं वचः
> किं वाक्येन विना सुकेलिकुतुकं केलिं विना किं रतम् ॥
> किं सौख्यं रतवर्जितं तनुभृतां सौख्यं विना किं जग-
> त्तद्वज्योतिषरास्त्रमेतदखिलं सिद्धान्तहीनं च किम् ॥ २? ॥
> kiṃ bhāvena vinā raso rasakathālāpaṃ vinā kiṃ vacaḥ
> kiṃ vākyena vinā sukelikutukaṃ keliṃ vinā kiṃ ratam \|I
> kiṃ saukhyaṃ ratavarjitaṃ tanubhrtāṃ saukhyaṃ vinā kiṃ jagattadvaj jyotiṣaśāstram etad akhilaṃ siddhāntahīnaṃ ca kim || 21 ||

What is sentiment without emotion? What are words without a discourse of sentiment? What is a desire for sweet dalliance without sentences? What is pleasure without dalliance? What is happiness without pleasure for human beings? What is a world without happiness? And likewise, what is this entire science of the stars without siddhāntas? $\mathbf{2 1}{ }^{10}$

Beyond such rhetorical language, Nityānanda also provides a more practical epistemic standard by which a siddhānta is to be judged. For example, in the Sarvasiddhāntarāja I.1.10, he says

10 Nityānanda uses a series of technical words from Sanskrit aesthetics and dramaturgy in this verse: for example, rasa (flavour or sentiment in a work), bhāva (passion or emotion), keli (amorous sport or dal-
liance), rata (coital enjoyment or pleasure), etc. The use of these words in climactic ascension accentuates the rhetorical power of his statement.

```
सिद्धान्त इत्यनुगतार्थपदप्रयोगाद्यद्वस्तुसूक्ष्मतरमस्ति तदेवसिद्धम् ॥ नान्यच्च गोलगणितद्वययुक्तिहीनं किंवोपल्डब्चिरहितं सुधियेति चिन्त्यम् ॥ १० ॥
siddhānta ity anugatārthapadaprayogād
yad vastu sūkṣmataram asti tadeva siddham \|
nānyac ca golagaṇitadvayayuktihīnaṃ
kiṃoopalabdhirahitaṃ sudhiyeti cintyam || 10 ||
```

Because of the use of the word siddhānta, the [etymological] meaning of which is pertinent, it should be understood by a learned man that only that subject matter which is most precise is established, not anything else which is devoid of the rationales of both spherics and computations or deprived of perception. 10

There are various pieces of information in this verse:

1. the word (pada) siddhānta, lit. established end, conveys a meaning (artha) that is etymologically pertinent (anugata);
2. using the word siddhānta in (the title of) a work in Sanskrit jyotiḥ́sastra brings this meaning to bear upon the content of the work;
3. the implication of this is that the subject-matter (vastu) of a siddhāntic text can include only those topics are the most precise (sūkṣmatara) and hence considered true or established (siddha); and
4. the standards of inclusion require that the topics (a) adhere to the rationales (yukti) of computations (ganita) and spherical geometry (gola) and (b) agree with perception (upalabdhi). ${ }^{11}$

Further along in the Sarvasiddhāntarāja I.1.13-15, Nityānanda tells us about the nature of the contents (vastu) he includes in his siddhānta, as well as the sources from where this material derives:

ततोऽल्पया प्रक्रियया महत्या किंवा यथार्थं वितनोमि वस्तु ॥
सूक्ष्मप्रकारं बहुयुक्तियुक्तं दृष्टिप्रतीतं खलु वासनाढ्यम् ॥ १३ ॥

[^4]procedure to compute the latitude of interior planets' (see Chaturvedi 1981:402). However, the term upalabdhi can also be variously understood as perception, apprehension, observation, or cognition. In its polysemous use, upalabdhi can refer to what is self-evident or cognisant inasmuch as it could refer to actual observations (confirming predictions).

```
दृष्ट्वा रोमकसिद्धान्तं सौरं च ब्राह्मगुप्तकं ॥
पृथक्स्पष्टान्ग्रहाज्ञ्ञात्वा सिद्धान्तं निर्ममे स्फुटम् ॥ १४॥
रोमकोदितखचारचातुरी दृक्तुलां व्रजति सर्वथा सदा ॥
सौरतन्त्रमिह वेदविद्विदुर्जिष्णुजोक्तमपि युक्तयुक्तियुक ॥ ?५ ॥
tato'lpayā prakriyayā mahatyā kiṃvā yathārthaṃ vitanomi vastu \|.
sūkṣmaprakāraṃ bahuyuktiyuktaṃ dṛṣ!ipratītaṃ khalu vāsanāḍhyam || 13 ||
dṛṣtvā romakasiddhāntaṃ sauraṃ ca brāhmaguptakaṃ \|
prthak spaṣṭān grahā̃̃ jñātvā siddhāntaṃ nirmame sphuṭam || 14 ||
romakoditakhacāracāturī drktulāṃ vrajati sarvathā sadā \|l
sauratantram iha vedavid vidur jiṣ̣̣ujoktam api yuktayuktiyuk || 15 ||
```

Therefore, with few or many methods, I suitably put forth the contents [that include] the subtlest procedures, accompanied by several rationales, indeed recognised by doctrines, [and] enriched with demonstrations. 13
Having consulted the Romakasiddhānta, the Sūryasiddhānta, and [the siddhānta of] Brahmagupta individually, ${ }^{12}$ [and] having known the true [positions of the] planets, I composed the true siddhānta. 14

By his own admission, Nityānanda consulted the treatises of Sūrya, Brahmagupta, and Romaka to compose his own siddhānta. He validates the choice of his corpus by prescribing epistemic merits to each of these texts: ${ }^{13}$

- The Sūryasiddhānta is like the Vedas and hence it carries the probative force of verbal authority (śabda), making it a valid source of knowledge (pramāna).
- The Brāhmasphuṭasiddhānta contains several apposite rationales (yukti) of computation which, when logically applied, produce valid knowledge (prama) by means of inference ($а п и т \bar{n} п$). This makes the Brāhmasphuṭasiddhānta a highly established (bahu-yuktiyukta) text.

12 The continuative form $d r s t \cdot v \bar{a}$ (of the verb $\sqrt{ } d r(s)$ refers to seeing or consulting something to acquire knowledge about an object. In other words, $d r$ rst $t v \bar{a}$ may also be translated as 'having regarded' or 'having understood'. Compare the word upalabdhi in footnote 11 on p. 79.

13 See Narasimha (2007) for a discussion on the epistemology and language in Indian mathematical astronomy, particularly, in the works of Nīlakaṇṭha Somayāji (c. 1444c. 1544) from the Kerala (Nila) school of astronomy and mathematics. Also see Narasimha (2012) for the role of pramāna, proof, and yukti in Indian sciences.

- The Romakasiddhānta contains methods that agree with perception; in other words, methods that are readily apprehended and result in computations that agree with observations. In Sanskrit epistemology, direct perception (pratyakṣa) is one of the fundamental means of valid knowledge, and accordingly, the Romakasiddhānta naturally acquires the alethic status of doctrine.

1.2.1 Nityānanda's Romakasiddhānta

By the early seventeenth century, the Brāhmasphuṭasiddhānta (628) of Brahmagupta and the 'modern' Sūryasiddhānta (c. 8oo) of anonymous authorship were well-known (and highly influential) treatises in northern India. ${ }^{14}$

However, the Romakasiddhānta appears in the annals of Sanskrit siddhāntic literature at different times through different agencies. For example,

- Lāṭadeva's recension of a Romakasiddhānta in Varāhamihira's Pañcasiddh$\bar{a} n t i k \bar{a}$ (c. sixth century) and Bhāskara I's Āryabhațīyabhāṣya (629);
- Śrīṣeṇa's Romakasiddhānta criticised by Brahmagupta in his Brāhmasphuṭasiddhānta (628);
- a Romakasiddhānta (sixteenth century?) of Śrīṣavāyana set as a dialogue between Romakācārya and Dhūmraputra; and even
- a Romaśasiddhānta (unknown date, possibly c. sixteen century) that records the conversation between the celestial sage Nārada (or Lord Nārāyaṇa) and Vasiṣṭha Romaśamuni; see Dikshit (1890) and Pingree (1970-94: pp. 517a519a in Volume A5).

In each of these instances, the nature and content of the text varies according to what the compiler, the critic, or the interlocutor needs it to be.

The identity of Romaka (or Romasa), the eponymous author of Romakasiddhānta (or Romaśasiddhānta), is just as transitory as the work itself. Romaka (or Romaśa) has been variously and vaguely identified as Roman (romaka), Greek (yavana), Muslim (mausula), a foreigner (mleccha), a Vedic seer (muni or $r \stackrel{s}{i}$), and even a spiritual preceptor ($\bar{a} c \bar{a} r y a$).

According to Nityānanda, Romaka is both a seer (in the line of Indian seers or $r s ̣ i s ~ t o ~ w h o m ~ t h e ~ g o d s ~ r e v e a l ~ t h e ~ s a c r e d ~ s c i e n c e s) ~ a n d ~ a l s o ~ t h e ~ s u n ~ g o d ~ S u ̄ r y a ~ h i m-~$ self. ${ }^{15}$ The divine personages of Romaka render a revelatory (śruti) and doctrinal

14 The Brāhmasphuṭasiddhānta and the modern Sūryasiddhānta are identified as the foundational treatises of the Brāhmapakṣa and Saurapaksa respectively; see Plofker (2009:70-72) for a review of the different 'schools' (pakṣas) in Sanskrit mathematical astronomy.

15 In his Sarvasiddhāntarāja I.1.2, Nityānanda identifies Romaka as a patriarchal sage ($r s i$) in the lineage of Vasisṭha, Pulastya, Garga etc. A similar genealogy of Romaka also appears in Jñ̄narāja's Siddhāntasundara (1503, bhuvanakośādhikāra
(drsți) authority to the Romakasiddhānta. At the same time, the lack of a fixed identity enables other content to be subsumed under the authorship of Romaka allonymously. This allows Nityānanda to first translate the computational methods from Mullā Farīd's $Z \bar{l} \bar{j}-i$ Shāh Jahān̄ $\bar{\imath}$ (a near-verbatim repetition of Ulugh Beg's Zīj-i Ulugh Beg) in his Siddhāntasindhu, and from there, include these methods in his Sarvasiddhāntarāja via the indiscriminate writings of Romaka. Nityānanda's Romakasiddhānta (a Roman $z \bar{j} \bar{j}$) contains the precise (sūkṣmatara) methods supported by computations (gaṇita-yukta), geometry (gola-yukta) and perception (upalabdhi) that then makes it verily canonical.

1.2.2 From the gross to the subtle

The methods to compute the true declination of a celestial object in the Sarvasiddhāntarāja are subject to the same epistemic criterion of precision or exactitude ($s \bar{u} k s ̣ m a t \bar{a}$) as is applied to various other types of computations described in the text. In fact, in the Sarvasiddhāntarāja I.spa•krā, verse 13, Nityānanda denounces all previous methods (stated by other authors in many different ways in their own siddhāntas) as being imprecise or inexact. The movement from the imprecise to the precise-from the sthūla 'gross' to the sukșma 'subtle'—is the validation (pramāna) that establishes the truth (yathārtha-siddhi) of any new procedure.

Nityānanda's contemporary Munīśvara, in his auto-commentary to his Siddhāntasārvabhauma (1646), the Āśayaprakāsín̄̄ or Siddhāntatattvārtha, introduces verses 41-42 from the section on the conjunction of planets and stars (bhagrahayuti) with the statement

पुर्वोक्तकान्त्यानयनस्यासंगतत्वात्पकारान्तरेण संगतं स्पष्टक्रान्त्यानयनं श्लोकाभ्यामाह--purvoktakrāntyānayanasyāsaṃgatatvāt prakārāntareṇa samgataṃ spaṣtakrāntyānayanaṃ ślokābhyām āha-

On account of the inappropriate nature of the previously-stated [rules of] calculating the declination, [the author] declared an apposite [rule for] calculating the true declination by another method in [the following] two verses-

For Munissvara, the movement from the inexact to the exact-from the asamgata 'disunited' to the samgata 'united'-is the motivation to propose a different method of computing the true declination.
of the golādhyāya, verse 4ab). A little further in the Sarvasiddhāntarāja (I.1.16-18), Nityānanda invokes an older restoration myth to identify Romaka as the sun god Sūrya. Sūrya, afflicted by Brahmā's curse, was born among foreigners in the city of

Romaka and was called Romaka. Eventually, when the curse was lifted, Sūrya was reinstated as the sun god whereupon he wrote the Romakasiddhānta (see Pingree 1996: 477-478).

Both authors use the adjectives spaṣta 'clear' or sphuṭa 'distinct' to qualify the declination of a celestial object as being 'true' or 'correct'. This stands in natural opposition to the implied antonyms aspasṭa 'unclear' or asphuṭa 'indistinct'. Hence, an improvement of clarity or distinction makes a procedure better suited to qualify as being both precise and proper.

Interestingly, in verse 13, Nityānanda uses the expression sphuṭa-apakrama to refer to the true declination of a celestial object. While the word apakrama is attested as a technical synonym of declination in Sanskrit astronomy (along with the more common terms apama or krānti), in its ordinary use, it carries the meaning of 'deviating from the regular order'. Thus, Nityānanda's statement, in verse 13 ab , can be read as

अन्यैर्यो बहुभिः प्रकारनिचयैः प्रोक्तः स्फुटापकमः सत्स्थूलो... ($\left.? ₹^{\text {प,द्दि }}\right)$
anyair yo bahubhiḥ prakāranicayaih proktah sphuṭāpakramah. satsthūlo... (13ab)

What is declared by many others, with multitudes of methods, [as the] true declination, [that] is actually imprecise. ... (13ab) or
What is declared by many others, with multitudes of methods [and] evidently deviating [from the truth], [that] is just imprecise. ... (13ab)

With the latter interpretation, it is obvious that Nityānanda's method is then meant to restore faithfully the regular order that takes the procedure from its gross statement to its subtle expression.

1.3 OVERVIEW OF THE SPASTTAKR $\bar{A} N T Y \bar{A} D H I K \bar{A} R A$

In the spaṣṭakrāntyādhikāra, Nityānanda regards a celestial object as a planet (graha, khaga, etc.) or a star ($u d u, b h a$, etc.) that has a non-zero latitude (bāna or vikṣepa). In other words, the declination of this celestial object is different from the declination of the Sun that moves on the ecliptic (and hence, possesses no latitude). The method to compute the true declination (spasṭa-krānti or sphuṭaapama) of such an object from its (known) latitude is essentially a question of coordinate conversion-the ecliptic coordinate of latitude β is converted to the equatorial coordinate of declination δ.

In most Sanskrit siddhāntas, the typical prescription to convert the latitude β of a celestial object to its declination δ (corresponding to its longitude λ) involves

1. calculating the declination of the object assuming it has no latitude, i.e., simply calculating $\delta(\lambda)$, and then
2. adding or subtracting a corrected form of the latitude, say $\beta_{\text {corr }}$, to or from this declination; in other words, $\delta(\lambda) \pm \beta_{\text {corr }}$.

The corrected latitude $\beta_{\text {corr }}$ is a form of polar deviation (measured with respect to the celestial pole) derived from its ecliptic latitude β (measured with respect to the ecliptic pole). See Appendix A for a review of the different methods to compute the true declination of a planet or star in medieval Sanskrit texts.

Nityānanda's first two methods (in verses 2 and 3) are simple computational rules without any explanation or derivation. However, these rules do not transform the latitude to any other coordinate system. Instead, they compute the true declination using the 'first declination' (simply called krānti) and the 'second declination' (dvitīyā-krānti or anya-apama) of the celestial object. These quantities, along with other geometrical objects on the sphere, are defined and explained in $\S 4.1$. Also, $\S \S 4.2 .1$ and 4.2.2 describe, in detail, two important geometrical arcs that are used in the first two methods. The derivations and historical testimonies of the first two methods can be seen in $\S \S 4.4$ and 4.5 respectively. Lastly, Appendix B discusses the relation between the first and second declinations, while Appendix C describes the mathematical equivalence between the first two methods of true declination.

For the third method, Nityānanda systematically explains the various quantities that constitute the final expression (through verses 4-13). The structure of his exposition is as follows.

1. Name and define the different geometrical arcs in relation to the position of a celestial object on the sphere, namely,

- the circle congruent to the ecliptic in verse 4, see footnote 25 in § 4.1;
- the maximum true declination and the maximum latitude in verses 56, see § 4.2.3; and
- the congruent arc and the congruent complementary arc in verse 7 , see § 4.2.4.

2. Describe the rules for computing the congruent arc, the congruent complementary arc, the greatest declination (i.e., the obliquity of the ecliptic), and the maximum true declination-along with the correct way to interpret the arc of maximum true declination for values greater than ninety degreesin verses $8-11$, see $\S \S 4.3 .1$ and 4.3.2.
3. Express the third method of true declination in terms of the arc of the maximum true declination and the congruent arc in verse 12, and discuss the special case when the celestial object (understood as a star) is stationed at the ecliptic pole in verse 13 , see § 4.6.

Remark

The Tantrasañgraha (1501) of Nīlakaṇṭha Somayāji (c. 1444-c. 1545) offers an exception to the typical prescription seen in most Sanskrit siddhāntas. Nīlakaṇṭha proposes two rules to compute the true declination of the Moon (see Ramasubra-
manian and Sriram 2011: §§ 6.3 and 6.4 on pp. 359-369). As Plofker (2002: 8791) elaborates, both these rules determine the true lunar declination from its ecliptic coordinates in two completely innovative ways. While the first rule may resemble Ibn Yūnis's first method of declination from his al-Zīj al-Kabīr al-Hā̄kimī (see King 1972: 39.1(a) on pp. 290-293), there is currently no substantive evidence to suggest a transmission of ideas between the Islamicate texts in circulation in northern India and the Sanskrit works of the southern Kerala school. ${ }^{16}$ It is very likely that Nīlakaṇṭha's accomplishments were the product of his own ingenuity, which would be in keeping with the exemplary achievements of the students of Mādhava of Saṅgamagrāma. Indeed, Nīlakaṇṭha's second rule adds credit to this hypothesis by being an original among the writings of the Kerala school. ${ }^{17}$ Later procedural texts, for example, the Karanapaddhati (c. 1600) of Putumana Somayāji that follow the vākya-system of Mādhava of Sañgamagrāma to encode astronomical parameters as alphasyllabic strings or lexical phrases, repeat Nīlakaṇṭha's second rule to compute the true declination (see Pai et al. 2018).

1.4 BEYOND THE SARVASIDDH $\bar{A} N T A R \bar{A} J A$

Among the earliest testimonies of Sanskrit authors engaging with Islamicate astronomy, we find a Sanskrit work on astrolabes, the Yantrarāja "The King of instruments', composed by the Jain astronomer Mahendra Sūri at the court of Sulṭān Fīrūz Shāh Țughlāq of Delhi in 1370. The Yantrarāja is a summary of the theoretical and practical knowledge on constructing astrolabes, composed in metrical Sanskrit verses. As Mahendra Sūri states, it is sudhāvat tatsārabhūtam 'the nectarlike purified summary' of bahuvidhā yantrāgamā yavanaih 'several treatises on instruments composed by the foreigners' (see Raikva 1936: Yantrarāja I.3). Malayendu Sūri, a student of Mahendra Sūri, wrote an extended commentary on the Yantrarāja in c. 1382. ${ }^{18}$

[^5]tural boundaries, with no obvious social channel of communication between Arab merchant society in the cosmopolitan port cities and the rural illams of the scholarpriests" (Plofker 2009:252) remains the most judicious statement on this question of transmission.
17 See K. V. V. Sarma (1973) and Sriram (2008) for an overview of the contributions of the Kerala (Nila) School to Indian mathematics and astral sciences.
18 See S. R. Sarma (1999), Plofker (2000), and S. R. Sarma (2000; 2019: Appendix D1

Plofker examines Mahendra Sūri's calculation of the equatorial coordinates of a star, in particular, the computation of its true declination δ from its ecliptic coordinates (β, λ). Mahendra Sūri proposed two methods to compute the true declination in his Yantrarāja. His student-commentator Malayendu Sūri commented upon these methods and provided elaborate worked-examples (see Plofker 2000: 41-44). Mahendra Sūri's methods are Sanskritised presentations of earlier Islamicate methods, but as Plofker (2000:38) notes, "the resulting procedures reveal a curious blend of misinterpretation and re-interpretation according to approximate methods". The final expression in both his methods differs from the exact Islamicate expression, possibly due to a combination of transmission errors, incorrect interpretations, and a general unfamiliarity with Islamicate astronomy.

The two methods of true-declination computation in Mahendra Sūri's Yantrarāja also appear (as the second and third method) in the spaștakrāntyādhikāra of Nityānanda's Sarvasiddhāntarāja. However, Nityānanda's statements are identical to the exact Islamicate expression of these methods. In Misra (2021), I discussed how polyglot savants in seventeenth-century Mughal India acted as intermediaries between the Indian and Islamicate domains of knowledge. It is then reasonable to think that Nityānanda also benefited from the linguistic and technical expertise of the cosmopolitan Mughal court as he translated Persian astronomy into Sanskrit. ${ }^{19}$

Away from the Mughal capital of Shāhjahānābād, in the city of Kāsī̀, two of Nityānanda's contemporaries, Munīśvara Viśvarūpa (b. 1603) and Kamalākara (b. 1610), also discussed Islamicate astronomy in their siddhāntas. While their opinions on various Islamicate astronomical ideas differed, they both agreed on the utility of the trigonometry of the foreigners (yavanas). ${ }^{20}$ The (Islamicate)

[^6][^7]methods of true-declination computation in Munīśvara's Siddhāntasārvabhauma (1646) and Kamalākara's Siddhāntatattvaviveka (1658) are discussed in Appendices D and E respectively. They reveal a common method of calculation shared between the two texts: a method seen earlier in the Sarvasiddhāntarāja of Nityānanda.

Nityānanda's efforts, and those of his contemporaries, are situated in a time when Islamicate theories of astral sciences were actively debated by Sanskrit scholars of Mughal India. ${ }^{21}$ In their writings, we find a diverse range of opinions and positions extending from traditionalism to pragmatism, from scepticism to certitude, and from reconciliation to polemics. By including Islamicate ideas in his Sarvasiddhāntarāja, Nityānanda reveals his proclivity for cogent ideas regardless of their origins. His ability to adapt and assimilate foreign knowledge to the linguistic, structural, and epistemic demands of a Sanskrit siddhānta is a remarkable feat of his scholarship. As ongoing and future studies bring other aspects of his works to light, we can build a better picture of the man and the milieu that helped shape his thoughts.

1.5 STRUCTURE OF THIS PAPER

The enumerated list below provides an overview of the contents of the different sections, appendices, and the technical glossary included in this paper.
§ 2 includes a description of the manuscripts, the orthographic standards, and the typographic conventions adopted in preparing the edition of Nityānanda's Sarvasiddhāntarāja I.spa•krā, as well as a description of the general format of the glossary.
§ 3 includes the edited text and corresponding English translation of the metrical verses in the Sarvasiddhāntarāja I.spa•krā.
§ 4 includes the technical analysis of the three methods of true declination described in the Sarvasiddhāntarāja I.spa $k r \bar{a}$. The section begins by defining various geometrical objects on the celestial sphere (in §4.1), along with preliminary definitions and computations of the constituent arcs (in §§ 4.2

21 For example, Nṛsiṃha Daivajña, in his Vasanāvarttika (c. 1621), a commentary on Bhāskara II's Siddhāntaśiromaṇi, discusses and disparages the opinions of the foreigners (yavana-mata) in several places (e.g., in his commentary to Siddhāntaśiromaṇi, bhagaṇadhyāya, verses 1-6). Also, Ranganātha (fl. c. $1630 / 50$), the brother of Kamalākara, writes his Lohagolakhaṇ̣ana
'Critique of the sphere of iron' accepting the claims of the Persians (pārasīkas) that the blue sky is, in fact, a crystalline sphere and not of a sphere of iron (loha-gola) as the orthodox opinion suggests. In response, Gadādhara (fl. c. 1650), Munīśvara's cousin, counters Rañganātha's position in his Lohagolasamarthana 'Vindication of the sphere of iron'.
and 4.3 respectively). This is then followed by the derivations and historical testimonies of the three methods of true declination (discussed separately in $\S \S 4.4,4.5$, and 4.6).
The Appendices included in this paper describe

- the computation of true declination in medieval Sanskrit texts (Appendix A);
- Nityānanda's derivation of the second declination from the first, in the topic on three questions (tripraśnādhikāra) of his Sarvasiddhāntarāja (Appendix B);
- the equivalence between the first and second methods of declination in the Sarvasiddhāntarāja I.spa•krā.2-3 (Appendix C);
- Munīśvara's method of computing the true declination in his Siddhāntasārvabhauma (Appendix D); and
- Kamalākara's method of computing the true declination in his Siddhāntatattvaviveka (Appendix E).
A glossary of technical Sanskrit terms in Nityānanda's Sarvasiddhānta$r a \overline{j a}$ I.spa•krā, accompanied by their corresponding English equivalents, is appended at the end the paper, beginning on p .165.

2 SOURCES AND STRUCTURE OF THE CRITICAL EDITION

2.1 DESCRIPTION OF THE MANUSCRIPTS

Ihave edited the verses in Nityānanda's Sarvasiddhāntarāja I.spa•krā using seven manuscripts. ${ }^{22}$ Printed or digital copies of the manuscripts were made available to me by the following institutions: (i) the Saraswati Bhawan Library of Sampurnanand Sanskrit Vishwavidyalaya in Varanasi (Benaras), (ii) the Bhandarkar Oriental Research Institute in Pune, (iii) the National Archives of Nepal in Kathmandu in conjunction with the Nepalese-German Manuscript Cataloguing Project maintained by Asia-Africa Institute of University of Hamburg, (iv) the Fergusson College Library in Pune, (v) the Rajasthan Oriental Research Institute in Jaipur, and (vi) the Scindia Oriental Institute at Vikram University in Ujjain.

Table 3 lists the sigla I have used to identify the seven manuscripts of Nityānanda's Sarvasiddhāntarāja in this study.

Siglum Manuscript

Bn.I Benares (1963) 35741 from Saraswati Bhawan Library, Varanasi.
Bn.II Benares (1963) 37079 from Saraswati Bhawan Library, Varanasi.
Br BORI 206 of A 1883/84 from Bhandarkar Oriental Research Institute, Pune.
Np NAK 5.7255 from National Archives of Nepal, Kathmandu identical to NGMCP Microfilm Reel № B 354/15 from Nepalese-German Manuscript Cataloguing Project, Asia-Africa Institute of University of Hamburg.
Pm Poona Mandlik Jyotisha 15/BL 368 from Fergusson College Library, Pune.
Rr RORI (Alwar) 2619 from Rajasthan Oriental Research Institute, Alwar.
Sc SOI 9409 from Scindia Oriental Institute, Ujjain.
Table 3: List of sigla of the manuscripts of Nityānanda's Sarvasiddhāntarāja.
The list below provides a brief description of the seven manuscripts identified in Table 3. A more comprehensive description of MSS Bn.I, Bn.II, Br, Np, and Rr can be found in Misra (2016: pp. 47-72 and pp. 77-86).

22 A complete list of the sixteen known extant manuscripts (including incomplete copies) of Nityānanda's Sarvasiddhāntarāja
can be found in Pingree (1970-94: pp. 173174 in Volume A3, p. 141 in Volume A4, and p. 184 in Volume A_{5}).

MS Bn.I Saraswati Bhawan Library, Benares (1963) 35741
Copied in Sampat 1804 ($=1747 \mathrm{CE}$), 84 folia of size $10.5 \times 4.7 \mathrm{~cm}$, 12 lines per page (approximate), written in the Nāgarī script. The spaṣtakrāntyādhikära appears on ff. 62r-62v, beginning with khagasya bāno... on line 2 of f. 62r. The verses are numbered from 58 to 70 in a regular order, with the concluding verse of the chapter numbered 71 on line 9 of $f .62 \mathrm{v}$.
MS Bn.II Saraswati Bhawan Library, Benares (1963) 37079
Copied in Saṃvat 1895 ($=1838$ CE) and Saṃvat 1936 ($=1879$ CE), 85 folia of size $10.3 \times 6.8 \mathrm{~cm}, 13$ lines per page (approximate), written in the Nāgarī script. The spaṣtakrāntyādhikāra appears on ff. 62v-63v, beginning with khagasya bāno... on line 12 of f. 62 v . The verses are numbered from 1 to 13 with the verse anyairye...sampīksyatām (verse 13 in the edition) omitted. Half-verses 4 ab and 4 cd in the edition appear as verse 4 and 5 in MS Bn.II respectively. The concluding verse of the chapter is numbered 14 on line 4 of f. 63 v .
MS Br Bhandarakar Oriental Research Institute 206 of A, 1883-1884
Copied in Sampat 1941 ($=1884$ CE), 47 folia, 14 lines per page, written in the Nāgarī script. The spaṣtakrāntyädhikāra appears on ff. $34 \mathrm{r}-34 \mathrm{v}$, beginning with khagasya bāno... on line 14 of f. 34r. Like MS Bn.II, the verses are numbered from 1 to 13 with the verse anyairye...samiviksyatām (verse 13 in the edition) omitted. Also, the half-verses 4 ab and 4 cd in the edition appear as verse 4 and 5 in MS Br respectively, and the concluding verse of the chapter is numbered 14 on line 11 of f. 34 v .
MS Np National Archives Nepal, NAK 5.7255 (NGMCP Microfilm Reel № B 354/15)
Date of copying unknown, microfilmed on 9 October 1972 CE, 96 folia, 9 lines per page, written in the Nāgarī script. The spaṣtakrāntyādhikāra appears on ff. $71 \mathrm{v}-72 \mathrm{v}$, beginning with khagasya bāno... on line 6 of f. 71 v . The verses are numbered from 1 to 13 in a regular order, with the concluding verse of the chapter numbered 9 on line 2 of f. 72 v .
MS Pm Poona Mandlik Jyotisha 15/BL 368
Copied from a Jayapura manuscript, allegedly written in Sampat $1696=$ 1639 CE (the date of composition), 54 folia of size $27.9 \times 19.1 \mathrm{~cm}, 18$ lines per page in two text blocks of nine lines each, written in the Nāgarī script. The spastakrā̄tyädhikāra appears on ff. 4or-40v, beginning with khagasya bāno... on line 16 of f. 4 or. Like MSS Bn.II and Br , the verses are numbered from 1 to 13 with the verse anyairye...samviksyatām (verse 13 in the edition) omitted. Moreover, the half-verses 4 ab and 4 cd in the edition also appear as verse 4 and 5 in MS Pm respectively, and the concluding verse of the chapter is numbered 14 on line 12 of f. 40 v .
MS Rr Rajasthan Oriental Research Institute (Alwar) 2619

Copied on Thursday 10 śuklapakṣa of Kārttika in Saṃvat 1903 ($=29$ October 1846 ce), 60 folia, 14 lines per page, written in the Nāgarī script. The spastakrāntyādhikāra appears on ff. $45 \mathrm{r}-45 \mathrm{v}$, beginning with khagasya bāṇo... on line 13 of f. 45 r. Like MSS Bn.II, Br, and Pm the verses are numbered from 1 to 13 with the verse anyairye...samviksyatām (verse 13 in the edition) omitted. Like the other three manuscripts, the half-verses 4 ab and 4 cd in the edition appear as verse 4 and 5 in MS Rr respectively. The concluding verse of the chapter is numbered 14 on line 11 of f .45 v .

MS Sc Scindia Oriental Institute 9409

Date of copying unknown, 190 folia of size $10.5 \times 4.5 \mathrm{~cm}, 7$ lines per page, written in the Nāgarī script. MS Sc includes several interlinear vocalic corrections and in-line erasures. The spasṭakrāntyādhikāra appears on ff. 142v144 v , beginning in the middle of verse 1 at yaṃ caika diśi... on line 5 of f .142 v . The verses are numbered from 1 to 13 in a regular order, with the concluding verse of the chapter unnumbered on line 1 of $f .144 \mathrm{v}$.

2.2 FORMAT OF THE EDITION

The orthographic standards and typographic conventions followed in preparing the edition of Nityānanda's Sarvasiddhāntarāja I.spa•krā are listed below. These conventions are described in Misra (2016: pp. 92-99) in greater detail.

1. In the edited text, folio breaks (corresponding to the beginning of a folio) are indicated by \lceil with apposite folio numbers and manuscript sigla in the adjacent margin.
2. The bhūtasaṃkhyā numbers (word-numerals) and their corresponding digits are retained in the edition as they jointly appear in a few manuscripts.
3. Editorial additions to the text are indicated with words enclosed in angle brackets $<>$.
4. In the critical apparatus, the edited text (lemma) is separated from its corresponding variants by a right square-bracket].
5. The sigla of different manuscripts containing the same variant reading are separated by commas, whereas different variants (from different manuscripts) corresponding to the same lemma are separated by semicolons.
6. Fragments of Sanskrit words or compounds in Nāgarī are indicated with a small circle \circ at their break-point. Extended string of words in the lemma are internally abbreviated with $\circ \ldots \circ$ between the letters.
7. Scribal corrections and erasures are shown with a diagonal line through the letter(s), e.g., र्रि; vocalic corrections are shown with a horizontal line, e.g., णों indicating णो is corrected to णे by a scribe.
8. Interlinear insertion marks (kākapada) / or, seen in the manuscripts are identically reproduced in the variants of the critical apparatus.
9. Common scribal variations of Nāgarī orthography are emended silently without noting them in the critical apparatus, except where the grammatical meaning of the original reading may be ambiguous. These include: anusvāra for conjoined nasal consonants; omitted visargas, virāmas, and avagrahas; misplaced daṇ̂das; ill-formed NāgarīSanskrit letters (e.g., ग़ for य) and ill-formed vocalic marks (e.g., दिी); irregular use of doubled consonant after a vowel-suppressed r-consonant (e.g., द्ध in अर्द्ध) or across line ($p \bar{a} d a$) breaks in a stanza; reversed conjunct consonants (e.g., धब for ख्य); and commonly confused consonant pairs (e.g., ब and व, प and य, त and न, ष and ख, etc.) and consonant graphemes (e.g., प्ट for $\mathbb{8}$, etc.)
10. A few abbreviated Latin expressions are used to describe the variants in the critical apparatus. These include:

- corr. for correctio 'correction',
- ins. for inseruit 'inserted',
- om. for omisit 'omitted',
- in ras. for in rasura 'on top of an erasure',
- in marg. sins. for in margine sinsitro 'in the left margin', and
- in marg. dext. for in margine dextro 'in the right margin'.

2.3 FORMAT OF THE GLOSSARY

All Sanskrit words in the glossary are written with Nāgarī letters and are accompanied by corresponding Roman transliterations enclosed in parentheses. The technical expressions listed in the glossary are derived from $\S 3$ where they appear as highlighted entries in the English translations.

- Equivalent Sanskrit terms are grouped together under their common technical translation in English, separated from each other by a semicolon. For example,
maximum latitude पर-इषु (para-iṣu) 6, 10; पर-रार (para-śara) 10.
- At the end of each entry, I provide the appropriate verse-number to identify its location (in the English translation) of the text. For instance, in the example above, पर-इषु (para-iṣu) appears in verses 6 and 10 of § 3 (English translations on pp. 97 and 99), while पर-शार (para-śara) appears in verse 10 of §3 (English translation on p. 99).
- References to multiple verse numbers are separated by commas. For example,
sum संयुति (saṃyuti) 1, 10
indicates that संयुति (sampyuti) appears in verses 1 and 10 in § 3 (English translations on pp. 95 and 99).
- Mutually related technical translations in English are grouped together based on their linguistic or mathematical similarity. For instance, the head-
ing ecliptic poles- (on p. 166) includes the expressions \hookrightarrow ecliptic pole and \hookrightarrow pair of ecliptic poles.
- The glossary entries are arranged following the English alphabetical order.
$3 S A R V A S I D D H \bar{A} N T A R \bar{A} J A, I . S P A \cdot K R \bar{A}$ ：
TEXT AND TRANSLATION

तदा द्वयो：संयुतिरन्यथान्तरं स्फुโटापमाङ्काख्य इहोच्यते स्वदिक् ॥ १॥

स्फुटापमाङ्किज्जिनी समत्रयद्युजीवया ॥
 हता त्रिभज्यकोद्धृโता स्फुटापमज्यका भवेत् ॥ २ ॥

परम「कान्तिकोटिज्या स्फुटकान्त्यङ्कीवया ॥
「हतान्यकान्तिकोटिज्यापा स्यात्प्पष्टापमज्यका ॥ ३ ॥

अथ प्रकारान्तरेण ॥

कदम्बयुगलध्रुवद्वयमुपैति वृत्तं तु यГत्तदायनमुदीरितं ध्रुवचतुष्कयातं तथा ॥
${ }^{\mathrm{a}}$ f．62r Bn．I f．62v Bn．II f． 34 r Br f．71v Np f．4or Pm f． 45 r Rr

```
1 खगस्य०...०यदा द्व] om. Sc
1 दिशि०] दितिशि० SC
2 ०माङ्शव्य] ०मारब्यौकाख्य corr. Pm
इहोच्यते] र्रहोच्यते corr. in ras. Pm
स्वदिक्] बुधैः Bn.I
१] ५८ Bn.I
सभत्र्य०] सभवत्र्य० Bn.I
स्फुटापम०] यम० Bn.II; स्फुटोपम० corr. Pm
२] ५९ Bn.I
०कान्त्यङ्%० ०कांक० Bn.I
6 \text { ०क्कान्तिकोटि०] ०कोटिक्रांति० Np, Sc}
6 \text { स्यात्प्प०] वास्प० Bn.II, Br, Pm, Rr}
} ६` Bn.I
```

8 द्वयमुपैति॰．．．०रितं धुव］om．Sc
8 तदायन०］त्तदापयन० Pm
8 ०चतुष्क० ०चतुक० Br
8 तथा ॥］तथा \＆Bn．II， $\mathrm{Br}, \mathrm{Pm}, \mathrm{Rr}$ ；तया Sc
9 ०विषुवद्व०］०विषुप्रवद्व० corr．Bn．II；
०विषुवम्द्व० Br ；०विषुवद्व० Np, Sc
9 पतत्सुवृत्तं］गतन्तुवृत्तं Np ；यातस्तुवृत्तं Sc
9 च］तु Sc
9 ०सदृशा०］०मदृशा० Br
9 तदिति］तदित Bn．II，Pm， Rr
9 कल्पयेद्नोल्लवित् कल्पयेगोलवित् ins．Sc
9 8］६？Bn．I；ч Bn．II，Br，Pm，Rr
[Given] the latitude of a celestial object (khagasya bāna), [and] again, the other declination (anyatama-apama) [i.e., the second declination]: if indeed both should be situated in one direction (eka-diś), then [we take] the sum (samyuti) of the two of them; otherwise, [we take their] difference (antara). [The result] is known as the curve of true declination (sphuta-apama-ankka). Here, [it is] said to be [in] its own direction (sva-diś). 1

The Sine of the curve of true declination (sphuta-apama-añka-siñjinī), having been multiplied (hatā) by the day-Sine [of the longitude] increased by three zodiacal signs (sa-bha-traya-dyujī̄ā) [i.e., by the Cosine of the first declination of the 'longitude increased by 90°] [and] having been divided (uddhrtā) by the Radius (tribhajyak \bar{a}) [i.e., by the sinus totus] should be the Sine of the true declination (sphuta-apama-jyakā). 2

The Cosine of the greatest declination (parama-krānti-kotijyā) [i.e., the Cosine of the ecliptic obliquity], having been multiplied (hat \bar{a}) by the Sine of the curve of true declination (sphuta-krānti-añka-jīvā) [and] having been divided ($\bar{a} p t \bar{a})$ by the Cosine of the other declination (anya-krānti-kotijyā) [i.e., by the Cosine of the second declination], should be the Sine of the true declination (spasṭa-apamajyakā̄). 3

Now, with another method.

Now what circle (vrtta) reaches the pair of ecliptic poles (kadamba-yugala) and the pair of celestial poles (dhruva-dvaya), that has been stated to be the solstitial [colure] ($\bar{a} y a n a[-v r t t a]$) and also [as] the [circle] passing through the four poles (dhruva-catuska-yāta[-vrtta]). And passing over a celestial object (nabhoga) and the pair of equinoctial points (visuvat-dvaya), what [circle] is well rounded (su-vrtta), that the knower of spheres (gola-vid) should consider as the [circle] congruent to the ecliptic (bhacakra-sadrćsa[-vrtta]) by name. 4

विषुववृत्तभवृत्तसदृक्षयोर्विवरगं धनुरायनवृत्तजम् ॥
 भवति यत्कथितः स परस्फुटापम इति द्युचरस्य च तत्क्षणे ॥ ५॥

भवनचक्रभचकसदृक्षयोर्विवरगं धनुरायनवृत्तगम् ॥
भवति यत्स परेषुरिहोदितो विषुवपातयुगे सति कГल्पिते ॥ ६ ॥

खगस्य कोटिसिझ्जिनी स्वबाणकोटिजीवया ॥ हता त्रिभज्यकोद्युता सद्वक्षकोटिसिज्ञिनी ॥ ८॥

तद्धनुर्नवति ९० तश्चुतुं यदा Гजायते सदृराबाहुसंज्ञकम् ॥

1 ०रायन०] ०रायम० Br
2 यत्कथितः यत्कथिः Bn.I
2 सपरस्फु०] परमस्फु० Sc
2 तत्क्षणे तत्क्षणो corr. Pm
2 4] ६२ Bn.I; ६ Bn.II, Br, Pm, Rr
3 ०भचक्रसदृक्षयोर्वि० ०सदृक्षयोवि० Pm
3 ०वृत्तगम] ०वृत्तयं Bn.I; ०वृत्तजं Bn.II, Br,
Pm, Rr
4 यत्स परे०] त्सपरे० Br
4 ०युगे] ०यु।गे Bn.II
4 कल्पिते] कल्पिते ins. Sc
4 ६] ६३ Bn.I; ७ Bn.II, Br, Pm, Rr
5 ०नभोगमध्ये] ०नभोंगमध्ये Bn.II, Pm, Rr
5 यत्कोदण्डं] यत्कों, डं -दं- ins. in marg.
dext. Br
5 भवृत्तस०] भवृत्तस्यस० Np ; वृत्तस० Rr
6 सद्वग्भुजाख्यो] सदृग्भुज्याख्यो Bn.I;
सद्वग्भुजाख्यौ Bn.II; सदाभुजाख्यो Np, Sc

6 भायन०] ग्रहादिबिंबंयन० Bn.II
6 सद्कोटिः] सदृत्कोटि: Bn.II, Pm, Rr
6 ७] ६४ Bn.I; ८ Bn.II, Br, Pm, Rr
7 स्वबाण०] स्वणबा० Bn.I
8 ०कोद्धृता ०कोध्रता Bn.I
8 ०कोटि०] ०के-T-टि ins. in marg. dext. Bn.II
8 c] ६५ Bn.I; ९ Bn.II, Br, Pm, Rr
9 ९०] ओम. Bn.I, Br, Pm, Rr, Sc
9 तश्च्युतं] तश्चुतं Pm
9 यदा] द्यदा Pm
9 जायते] यायते Bn.I
10 नभोग०] मभोग० Bn.II
10 ०विशिखस्य] ०विशिाशिषस्य Bn.I;
०विशि ५ खस्य Bn.II, Pm, Rr
10 भाजिता ऽधरसदृक्षदोर्ज्यया] भाजिताधरसषष्टिभक्त-
भाजकभजनमत्राधारभजनसंज्ञमच्यतेदोर्ज्याया Bn.II
10 ०दोर्ज्यया] ०दोर्ज्यका Bn.I
10 ९] ६६ Bn.I; १० Bn.II, Br, Pm, Rr

What arc (dhanus) produced on the solstitial colure ($\bar{a} y a n a-v r t t a$) becomes situated in the difference (vivara) between the celestial equator (viṣua-vrtta) and the [circle] congruent to the ecliptic (bhavrtta-sadrkṣa[-vrtta]), that is the stated [arc of] maximum true declination (para-sphuṭa-apama) of the celestial object (dyucara) just at that very moment. 5

What arc (dhanus) belonging to the solstitial colure (āyana-vrtta) becomes situated in the difference (vivara) between the ecliptic (bhavana-cakra) and the [circle] congruent to the ecliptic (bhacakra-sadrkssa[-vrtta]), in this case, that is the declared [arc of] maximum latitude (para-iṣu) when the conjunction of the equinoctial point and the node of the orbit [of the celestial object] (viṣuva-pāta-yuga) has been supposed. 6

What arc (kodanda) of the [circle] congruent to the ecliptic (bhavrtta-sadrśsa[vrtta]) is between the equinoctial point (viṣuvat) and the celestial object (nabhoga), [that arc] should be known as the congruent arc (sadrí-bhujā) by name; [and what is] between the celestial object (bha) and the solstitial colure (āyana[-vrtta]), [that should be known as] the congruent complementary arc (sadṛś-kotti) [i.e., the complement of sadrś-bhujā]. 7

The Sine of the complement of the arc of longitude of a celestial object (khagasya koṭi-siñjin̄̄), having been multiplied (hatā) by the Cosine of its latitude (sva-bāna$k o t i j i \bar{\imath} v \bar{a})$ [and] having been divided ($u d d h r t \bar{a})$ by the Radius (tribhajyak \bar{a}) [i.e., by the sinus totus] (tribhajyak \bar{a}), [should be] the Sine of the congruent complementary $\operatorname{arc}(s a d r k s ̣ a-k o t ̣ i-s i n ̃ j i n \bar{\imath})$ [i.e., the Sine of the complement of the sadŕs-bhujā]. 8

When [the measure of] its arc (dhanus), having been reduced from ninety [degrees] (navatitaś-cyuta), is determined, [it] has the name congruent arc (sadṛ́sa$b \bar{a} h u)$. Or, what is the Sine of the latitude of a celestial object (nabhoga-viśikhasya $\sin j i n \bar{\imath})$, having been divided (bhājitā) by the lowered Sine of the congruent arc (adhara-sadrkṣa-dor-jȳ̄), 9

तद्वनुः परशाराह्ययो भवेद्वा परेषुपरमापमाख्ययोः ॥ संयुतिर्वियुतिरस्ति च कमादोलबाणसमभिन्नदिक्तया ॥ १०॥

स ग्रहस्य परमस्फुटापमो जायते युतिवियोगदिक्स्थितः ॥

एवमभ्रनव ९०त्तो ऽधिको यदा खाष्टभू १८० परिमितेर्विशोधितः ॥ ११॥
「f.63v Bn.II

परस्फुटकान्तिभवज्यका गुणा सदृक्षबाहुज्यकया ऽधरीकृता ॥ तदीयचापं भवति स्फुटापमो दिगस्य संयोगवियोगदिक्समा ॥ १२ ॥

अन्यैर्यो बहुमिः प्रकारनिचयैः प्रोक्तः स्फुटापक्रमः
सत्स्थूलो यदुडु क्किद्भवलये तिष्ठत्कदंबाश्रितम ॥
तद्वाणो नवतिः ९० सदेव परमकान्त्युत्थको द्यु[न्मिता
स्पष्टक्कान्तिरिहास्ति गोल्डविदुषो गोलेऽपि संवीक्ष्यताम् ॥१३॥
इत्येतस्यामिन्द्रपुर्यां वसन्सन्नित्यानन्दो देवदत्तस्य पुत्रः। सारोद्धारे सर्वसिद्धान्तराजे स्पष्टकान्तिं प्रापयत्तत्र [पूर्तिम् ॥

7-10 अन्यैर्ये०...०संवीक्ष्यताम् ॥ १३ ॥]
om. Bn.II, Br, Pm, Rr
7 अन्यैर्यो] अन्यैर्ये Np, Sc
7 प्रोक्तः स्फु॰] प्रोक्तस्फु० Np ;
प्रोक्तमःस्फु० corr. Sc
8 सत्थ्थूलो] सस्थूलो Bn.I, Sc
9 ०कान्त्युत्थको] ॰कान्तुस्यको Bn.I
9 घ्युन्मिता] द्युम्मिता Np
10 संवीक्ष्यताम] सावीक्ष्यतां Bn.I
10 १३] ७० Bn.I
11 इत्येतस्या०] इत्येंतस्या० Bn.II
11 ०सन्नित्यानन्दो] ०सन्निनंदो -त्या- ins. in marg.
dext. Pm; ०सनानित्याद्नो -नन- ins. in marg.
sins. Sc
12 प्रापयत्तत्र] प्रापयतत्र Bn.II
12 पूर्तिम् ॥] पूर्त्तिं ॥ ७? ॥ Bn.I; पूर्ति १४ Bn.II, Pm ; पूर्तिं १४ Br, Rr; पूर्त्तिम् ॥९॥ Np
its arc (dhanus) should be [called] the maximum latitude (para-śara) by name. There is the sum (samyuti) or the difference (viyuti) of the two [quantities] known as the maximum latitude (para-iṣu) and the greatest declination (paramaapama) [i.e., the obliquity of the ecliptic] with the latitude (bāna) and the celestial hemisphere (gola) [i.e., the declination of the celestial object] in the same or different directions (sama-bhinna-diś) respectively. 10

That [result], being situated in the direction of the conjunction or the disjunction (yuti-viyoga-diś), becomes the maximum true declination of a celestial object (grahasya parama-sphuṭa-apama). Thus, when [its measure is] greater (adhika) than ninety [degrees] (abhra-nava), [it is] made to be subtracted (viśodhita) from a measure of one hundred and eighty [degrees] (kha-asṭa-bhū). 11

The Sine of the maximum true declination (para-sphuṭa-krānti-bhava-jyakā) multiplied ($g u n \bar{a}$) by the Sine of the congruent arc (sadrcssa-bāhu-jyak \bar{a}) [and] having been lowered (adharī-krtā), its arc (cāpa) becomes the true declination (sphuṭaapama). Its direction (diś) is the same (sama) as the direction of the conjunction or the disjunction (samyoga-viyoga-diś). 12

What is declared by many others, in multitudes of ways, [as the] true declination (sphuṭa-apakrama), [that] is actually imprecise (sthūla). At some point, whichever star in the circle of asterisms (bha-valaya) remains stationed at the ecliptic pole (kadamba), the latitude (bāna) of that [star] is always ninety (navati) [degree]. What is derived from the greatest declination (parama-krānti) [i.e., the obliquity of the ecliptic], that, in this case, is the true declination (spaṣta-krānti) [of the star] measuring the day-[Sine] (dyu-[jīvō]) [i.e., the Cosine of the first declination of the longitude]. [This] should be seen in the very [exposition of the] sphere (gola) by wise men who know [the science] of spheres (gola-vidusa). 13

In this manner, the wise Nityānanda, son of Devadatta, living in this city of Indrapurī, brought the [section on] true declination to completion in the quintessential Sarvasiddhāntaraja 'King of all siddhāntas'.

4 SARVASIDDH $\bar{A} N T A R \bar{A} J A$, I.SPA•KR $\bar{A}:$ TECHNICAL ANALYSIS

The Sarvasiddhāntarāja I.spa-krā describes three methods to compute the true declination of a celestial object. Nityānanda explains these methods in eleven metrical verses that are taken from his Siddhāntasindhu Part II. 6 (see Table 1). In the following subsections, I discuss the mathematics behind each of these methods, and include reference to other Islamicate and Sanskrit works where similar (or near-similar) methods have been attested. I begin my discussion by first describing the different geometrical objects and trigonometrical relations identified on the celestial sphere.

4.1 GEOMETRY ON THE CELESTIAL SPHERE

Figure 1 depicts the celestial sphere with a celestial object positioned at S above the celestial equator $\bigcirc T \Upsilon R \underline{\Omega}$ and directed towards the (northern) celestial pole P. The ecliptic $\bigcirc T^{\prime} ケ R^{\prime} \underline{\Omega}$, with its pair of ecliptic poles P^{\prime} and $\overline{\mathrm{P}^{\prime}}$, is inclined to the celestial equator at the equinoctial points Υ (i.e., 0° Aries) and $\underline{\Omega}$ (i.e., 180° Libra) with obliquity $\epsilon .^{23}$ The circle $\bigcirc \mathrm{P}^{\prime} \mathrm{PR}^{\prime} \mathrm{R}$ is the solstitial colure. ${ }^{24}$ The circle $\bigcirc \mathrm{N} \Upsilon \mathrm{H} \Omega$ is the great circle of a celestial sphere that passes through S and the vernal equinoctial point Υ (and the autumnal equinoctial point $\underline{\Omega}$) and intersects the solstitial colure at points N and H . This circle is called the great circle congruent to the ecliptic. ${ }^{25}$

The position of the celestial object (at S) can be described with its ecliptic and equatorial coordinates as

$$
\begin{aligned}
& \text { Ecliptic coordinates } \\
& \overparen{\mathrm{SD}}=\beta \text { (latitude) } \\
& \overparen{\Upsilon D}=\lambda \text { (longitude) }
\end{aligned}
$$

23 On various occasions in his Siddhāntasindhu Part II. 6 and Sarvasiddhāntarāja I.spa-krā, Nityānanda refers to the obliquity of the ecliptic as the greatest declination (parama-krānti). Mullā Farīd uses the Persian expression mayl-i kullī 'total declination' to refer to the ecliptic obliquity in his $Z \bar{i} j-i$ Shāh Jahān̄̄ Discourse II.6.
24 Nityānanda identifies the solstitial colure (āyana-vrtta) in his Siddhāntasindhu Part II.6, $[\alpha]_{\text {verse }}$ and in his Sarvasiddhāntarāja I.spa-krā, verse 4, as the circle passing through the four poles (dhruva-catuṣka-yāta-ṿtta); in other words, the great circle passing through the two pairs of celestial and ecliptic poles. In the

Equatorial coordinates
$\overparen{S A}=\delta$ (declination)
$\widehat{\Upsilon A}=\alpha$ (right ascension)
Z \bar{y}-i i Shāh Jahān̄̄ Discourse II.6, passages [8], [9], and [11], Mullā Farīd also identifies the solstitial colure as dāyiri-yi mārri bi aqtāb-i arba $^{c} i$ 'circle passing through the four poles' (see Misra 2021: pp. 88, 90, and 94).
25 Nityānanda calls this great circle the circle congruent to the ecliptic (bhacakra-sadṛ́sa-ṿtta) in his Sarvasiddhāntarāja I.spa-krā, verses 4-7, and also in his Siddhāntasindhu Part II.6, $[\alpha]_{\text {verse }}-[\delta]_{\text {verse }}$ as it resembles (sadṛ́sa) the ecliptic (bhacakra) in meeting the celestial equator at the two equinoctial points, and is inclined to the celestial equator (like the ecliptic) with changing inclination (see Misra 2021: pp. 94 and 96).

Figure 1: The celestial sphere showing the different spherical triangles inscribed by the celestial equator, the ecliptic, a great circle congruent to the ecliptic (and passing through the celestial object), and their different secondary circles.
where the ecliptical projection point D represents the point of intersection of the secondary to the ecliptic passing through the celestial object at S . Hence, $« \mathrm{SDT}^{\prime}$ or $\varangle \mathrm{SDR}^{\prime}=90^{\circ}$. Similarly, the equatorial projection point A represents the point of intersection of the secondary to the equator passing through the celestial object at S, and accordingly, \varangle SAT or $\varangle S A R=90^{\circ}$. The secondary to the ecliptic passing through the celestial object at S goes past its ecliptical projection point D and intersect the equator at C , with the arc $\widehat{\mathrm{P}^{\prime} \mathrm{SD}}=90^{\circ}$. Also, the secondary to the equator passes through the ecliptical projection point D and meets the celestial
equator at point B, with the $\operatorname{arc} \widehat{\mathrm{PDB}}=90^{\circ}$. These, then, allows us to define the arcs
$\overparen{\mathrm{DB}}=\delta_{1}(\lambda)$ as the 'first declination' (simply called krānti or apama) and
$\overparen{D C}=\delta_{2}(\lambda)$ as the 'second declination' (dvitīyā-krānti or anya-apama)
corresponding to the arc of longitude $\widehat{\Upsilon D}=\lambda$ of the celestial object at S. Appendix B discusses Nityānanda's rule for calculating the second declination from the first (in the Sarvasiddhāntarāja I.4.49-50ab).

Mullā Farīd, in his Z $\bar{j}-i$ Shāh Jahān̄ Discourse II.6, passages [1] and [7], refers to the first and second declinations of the longitude as mayl-i daraji-yi u 'declination of its degree' and mayl-i thānī-yi daraji-yi u 'second declination of its degree' respectively, with the longitude of the celestial object simply called daraji-yi u'its degree' (see Misra 2021: pp. 86 and 88). ${ }^{26}$

We can also consider two antipodal points F and \bar{F} on the ecliptic such that

$$
\begin{align*}
& \widehat{\mathrm{FrD}}=90^{\circ} \text { and } \widehat{\mathrm{DR}^{\prime} \overline{\mathrm{F}}}=90^{\circ} \text {, with } \widehat{\Upsilon D}=\lambda \\
& \text { Thus, } \overparen{\mathrm{Fr}}=90^{\circ}-\lambda \text { and } \widehat{\overline{\mathrm{F}} \Upsilon}=90^{\circ}+\lambda \tag{4}
\end{align*}
$$

This helps us define the arcs $\widehat{\mathrm{GF}}$ and $\widehat{\overline{\mathrm{GF}}}$ on the secondary to the equator (shown as the dashed arc $\widehat{G P \bar{G}}$ in Figure 1) that intersects points F and \bar{F} of the ecliptic respectively.

- The $\operatorname{arc} \overparen{G F}$ represents the first declination of the complement of the longitude of the celestial object; in other words,

$$
\begin{equation*}
\widehat{\mathrm{GF}}=\delta_{1}\left(90^{\circ}-\lambda\right) \text { or } \delta_{1}(\bar{\lambda}) \text { where } \bar{\lambda}=90^{\circ}-\lambda \tag{5}
\end{equation*}
$$

- And arc $\widehat{\widehat{\mathrm{GF}}}$ represents the first declination of the longitude of the celestial object increased by 90°; in other words,

$$
\begin{equation*}
\widehat{\overline{\mathrm{GF}}}=\delta_{1}\left(90^{\circ}+\lambda\right) . \tag{6}
\end{equation*}
$$

In the Siddhāntasindhu Part II.6, [2] verse ${ }^{\text {and the Sarvasiddhāntarāja I.spa.krā, }}$ verse 2, Nityānanda refers to the argument $\left(90^{\circ}+\lambda\right)$ as sa-bha-traya '[longitude] increased by three signs', see § 4.2.2. Mullā Farīd, in the Zīj-i Shāh

26 The partial first and second declinations are called al-māyl al-awwal al-juz $\bar{\imath}$ and al-māyl al-thān̄̄ al-juz ${ }^{\top} \bar{\imath}$ respectively in Arabic, see Kūshyār b. Labbān's al-Zīj al-Jāmic ${ }^{c}$
(c. 1020-1025), chapter III (book 31): al-bāb al-mufrad $f \bar{\imath} j a w a \bar{a} i^{c}$ cilm al-hay'a 'A special chapter on generalities of the science of cosmology', Bagheri (2006).

Jahān̄̄ Discourse II.6, passage [2], calls $\delta_{1}\left(90^{\circ}+\lambda\right)$ as the mayl-i mankūs-i da-raji-yi kawkab 'inverse declination of the degree of the celestial object' (see Misra 2021: pp. 86 and 92).

- The equal inclinations of the northern and southern halves of ecliptic (with respect to the celestial equator) suggest that the first declinations of antipodal ecliptic points F and $\overline{\mathrm{F}}$ are equal. In other words,

$$
\begin{equation*}
\overparen{\mathrm{GF}}=\widehat{\overline{\mathrm{GF}}} \text { or } \delta_{1}\left(90^{\circ}-\lambda\right)=\delta_{1}\left(90^{\circ}+\lambda\right) . \tag{7}
\end{equation*}
$$

4.1.1 List of triquadrantal spherical triangles

Looking at the various secondaries to the ecliptic and the equator in Figure 1, we can identify the following triquadrantal spherical triangles on the celestial sphere: ${ }^{27}$
> $\triangle P^{\prime} D F$ where $\overparen{P^{\prime} D}, \overparen{D F}$, and $\overparen{P^{\prime} \mathrm{F}}$ are all 90°; \triangle LCF where $\overparen{L C}, \overparen{C F}$, and $\overparen{L F}$ are all 90°; and \triangle PCG where $\overparen{P C}, \overparen{C G}$, and $\overparen{P G}$ are all 90°.

4.1.2 List of complementary arcs

Also, the construction of various secondaries to the ecliptic and the equator in Figure 1 allows us to identify the following complementary arcs on the celestial sphere:

- the arc of the complement of ecliptic obliquity $\overparen{\mathrm{PR}^{\prime}}=\overparen{\mathrm{PR}}-\overparen{\mathrm{R}^{\prime} \mathrm{R}}=90^{\circ}-\epsilon$ where the arc of ecliptic obliquity $\overparen{\mathrm{R}^{\prime} \mathrm{R}}\left(=\widehat{\mathrm{P}^{\prime} \mathrm{P}}\right)=\epsilon$,
- the arc of the co-latitude $\widehat{\mathrm{P}^{\prime} \mathrm{S}}=\overparen{\mathrm{P}^{\prime} \mathrm{D}}-\overparen{\mathrm{SD}}=90^{\circ}-\beta$ where the arc of the latitude $\overparen{S D}=\beta$,
- the arc of co-longitude $\widehat{\mathrm{R}^{\prime} \mathrm{D}}=\widehat{\Upsilon^{\prime}}-\widehat{\Upsilon D}=90^{\circ}-\lambda$ where the arc of the longitude $\widehat{\Upsilon D}=\lambda$,
- the arc of the co-declination $\overparen{P S}=\overparen{P A}-\overparen{S A}=90^{\circ}-\delta$ where the arc of the declination $\overparen{S A}=\delta$,

27 Point P^{\prime} is the pole with respect to the points D and F (on the ecliptic) that are mutually separated by 90°, and hence all sides of the spherical triangle $\triangle \mathrm{P}^{\prime} \mathrm{DF}$ measure ninety degrees. Moreover, point F is the pole with respect to the points L and C (on the secondary to the ecliptic) that are also mutually separated by 90° (since
$\widehat{P^{\prime} \mathrm{L}}=\widehat{\mathrm{DC}}=\delta_{2}(\lambda)$), and hence all sides of the spherical triangle $\triangle \mathrm{LCF}$ also measure ninety degrees. And lastly, with point C being the pole of the points P and F that lie on a secondary to the celestial equator passing through G , it is evident that all sides of the spherical triangle $\triangle \mathrm{PCG}$ also measure ninety degrees.

- the arc of the co-'first' declination $\widehat{P D}=\overparen{P B}-\overparen{D B}=90^{\circ}-\delta_{1}(\lambda)$ where the arc of the first declination $\overparen{D B}=\delta_{1}(\lambda)$,
- the arc of the co-'second' declination $\widehat{L D}=\overparen{L C}-\widehat{D C}=90^{\circ}-\delta_{2}(\lambda)$ where the arc of the second declination $\widehat{D C}=\delta_{2}(\lambda)$, and
- the arc of the complement of the 'first declination of the complement of the longitude' $\widehat{\mathrm{LG}}=\widehat{\mathrm{LF}}-\widehat{\mathrm{GF}}=90^{\circ}-\delta_{1}(\bar{\lambda})=\overline{\delta_{1}(\bar{\lambda})}$ where the arc of the first declination of the complement of the longitude $\overparen{G F}=\delta_{1}\left(90^{\circ}-\lambda\right)=\delta_{1}(\bar{\lambda})$.

4.1.3 Computing the true declination of a celestial object, the modern method

 The true declination δ of a celestial object at S (in Figure 1) can be computed by applying the spherical law of cosines to the spherical triangle $\triangle \mathrm{P}^{\prime} \mathrm{PS}$ formed by the ecliptic pole P^{\prime}, the celestial pole P , and the celestial object at S as follows.In the excerpt (from Figure 1) shown below to the left, $\widehat{, P \mathrm{P}}=\epsilon, \widehat{P^{\prime} \mathrm{S}}=90^{\circ}-\beta$, $\widehat{P S}=90^{\circ}-\delta$, and $\varangle \mathrm{PP}^{\prime} \mathrm{S}=\widehat{\mathrm{R}^{\prime} \mathrm{D}}=90^{\circ}-\lambda$. By applying the spherical law of cosines, ${ }^{28}$ we find

Excerpt of $\triangle \mathrm{DBr}$ from Figure 1.

Excerpt of $\triangle P^{\prime} P S$ from Figure 1.

28 For discussions on the history of trigonometry see Debarnot (1996) and Van Brummelen (2013). Also see Sengupta
(1931) for a comparison between Greek and Indian methods of spherical trigonometry in the context of astronomy.
$\cos \overparen{P S}=\cos \overparen{\mathrm{PP}^{\prime}} \cdot \cos \overparen{\mathrm{P}^{\prime} \mathrm{S}}+\sin \overparen{\mathrm{PP}^{\prime}} \cdot \sin \overparen{\mathrm{P}^{\prime} \mathrm{S}} \cdot \cos \varangle \mathrm{PP}^{\prime} \mathrm{S}$, in other words, $\cos \left(90^{\circ}-\delta\right)=\cos \epsilon \cdot \cos \left(90^{\circ}-\beta\right)+\sin \epsilon \cdot \sin \left(90^{\circ}-\beta\right) \cdot \cos \left(90^{\circ}-\lambda\right)$ or

$$
\begin{equation*}
\sin \delta=\cos \epsilon \cdot \sin \beta+\sin \epsilon \cdot \cos \beta \cdot \sin \lambda \tag{8}
\end{equation*}
$$

Now, as the excerpt (from Figure 1) shown above to the right indicates, the right spherical triangle $\triangle \mathrm{DBr}$ has $\overparen{D B}=\delta_{1}(\lambda), \widehat{\Upsilon D}=\lambda$, and $\varangle \mathrm{DrB}=\widehat{R^{\prime} R}=\epsilon$. And hence, applying the spherical law of sines to triangle $\triangle \mathrm{DB} \Upsilon$, we have, ${ }^{29}$

$$
\begin{align*}
\frac{\sin \overparen{D B}}{\varangle D \Upsilon B}= & \frac{\widehat{\Upsilon D}}{\varangle \Upsilon B D} \Rightarrow \frac{\sin \delta_{1}(\lambda)}{\sin \epsilon}=\frac{\sin \lambda}{\sin 90^{\circ}} \text { or, } \\
& \sin \delta_{1}(\lambda)=\sin \epsilon \cdot \sin \lambda . \tag{9}
\end{align*}
$$

Thus, from equations (8) and (9), we have

$$
\begin{equation*}
\sin \delta=\cos \epsilon \cdot \sin \beta+\cos \beta \cdot \sin \delta_{1}(\lambda) \tag{10}
\end{equation*}
$$

from which the true declination δ can be readily computed, knowing the latitude β and the first declination $\delta_{1}(\lambda)$ of the celestial object (at S), and the ecliptic obliquity ϵ.

4.2 PRELIMINARY DEFINITIONS OF CONSTITUENT ARCS

In his statements on the three methods to compute the true declination of a celestial object, Nityānanda refers to certain arcs of great circles on the celestial sphere, as well as their corresponding measures, by translating their Arabic or Persian names into Sanskrit. Some of these terms are not commonly known in Sanskrit astronomy, and hence, I include a preliminary description of these quantities in the following subsections.

4.2.1 Curve of true declination

The curve of true declination (sphuṭa-apama-añka) is the distance of a celestial object from the celestial equator measured along a secondary circle to the ecliptic that passes through the body of the celestial object. In the chapter on spheres (golādhyāya) in his Sarvasiddhāntarāja (II.117), Nityānanda defines the curve of true declination expressly:

29 The method of computing the (sine of the) declination of a point on the ecliptic as a product of the (the sines) of ecliptic obliquity and the longitude of that point can be found in Ptolemy's Almagest (c. second century Ce), Book I. 14 (see Toomer 1984: 69-
70). Ptolemy's expression for the 'method of declination', however, is expressed in terms of chords (instead of sines) and relies on Menelaus' proposition III. 1 (first form) from his Sphaerica (see Neugebauer 1975: Theorem I on p. 28).

विषुवमण्डलखेचरमध्यगं विशिखस्त्रधनुर्यदिहास्ति सः ॥
स्फुटतरापमका⿷्क्र उदीरितो गणितगौलविचारविचक्षणेः ॥ ११७॥
viṣuvamaṇdalakhecaramadhyagaṃ viśikhasūtradhanur yad ihāsti sah \| sphuṭatarāpamakān̄ka udīrito gaṇitagolavicāravicakṣaṇaiḥ|| 117 ||

What arc (dhanus) of the direction [circle] of latitude (viśikha-sūtra) is here between the celestial equator (viṣuva-mandala) and the celestial object (khecara), that [arc] is declared as the curve of true declination (sphuțatara-apama-añka) by those who are wise (vicaksana) in the investigations (vicāra) of computations (gaṇita) and spheres (gola). 117
In verse 1 of the Sarvasiddhāntarāja I.spa $\cdot k r \bar{a}$, he adds to this definition, saying
खगस्य बाणो ऽन्यतमो ऽपमः पुनर्यदा द्वयं चैकदिशिस्थितं भवेत् ॥
तदा द्वयोः संयुतिरन्यथान्तरं स्फुटापमाङ्काख्य इहोच्यते स्वदिक् ॥ ? ॥
khagasya bāno 'nyatamo 'pamah punar
yadā dvayaṃ ca ikadiśisthitaṃ bhavet II
tadā dvayoh samyutir anyathāntaram
sphuṭāpamā̀̈kākhya ihocyate svadik \|| 1 \|
[Given] the latitude of a celestial object (khagasya bāṇa), [and] again, the other declination (anyatama-apama) [i.e., the second declination]: if indeed both should be situated in one direction (eka-diś), then [we take] the sum (samyuti) of the two of them; otherwise, [we take their] difference (antara). [The result] is known as the curve of true declination (sphuṭa-apama-añka). Here, [it is] said to be [in] its own direction (sva-diś). 1

Nityānanda's statements allow us to conceive the curve of true declination as the arc $\overparen{S C}$ in Figure 1. The arc $\overparen{S C}$ is equal to the sum or difference of the arcs of the second declination $\overparen{D C}$ and the latitude $\overparen{S D}$ depending on their mutual orientations. Figure 2 depicts the two configurations of the celestial object (at S) in relation the celestial equator and the ecliptic such that

1. when the arcs of second declination $\overparen{D C}$ and the latitude $\overparen{S D}$ as similarly oriented, i.e., both lying to the north (or both lying to the south) of the celestial equator and the ecliptic respectively, the curve of true declination $\overparen{S C}$ is $\overparen{D C}+\overparen{S D}$ or $\delta_{2}(\lambda)+\beta$, see Figure 2 ; and
2. when the arcs of second declination $\overparen{D C}$ and the latitude $\overparen{S D}$ as differently oriented, i.e., both lying in opposing hemispheres with respect to the celestial equator and the ecliptic respectively, the curve of true declination $\overparen{S C}$ is $\overparen{D C}-\overparen{S D}$ or $\delta_{2}(\lambda)-\beta$, see Figure $2 b$.

Thus, more generally

$$
\begin{equation*}
\text { sphuṭa-apama-anka or } \overparen{\mathrm{SC}}=\widehat{\mathrm{DC}} \pm \overparen{\mathrm{SD}}=\delta_{2}(\lambda) \pm \beta \text {. } \tag{11}
\end{equation*}
$$

There are two grammatical points of note in verse 1:

1. In the Siddhāntasindhu Part II.6, [1] verse, Nityānanda translates the Persian expression hissṣi-yi bucd 'share of the distance' from Mullā Farīd's Zī̀-i Shāh Jahān̄̄ Discourse II.6, passage [1] as sphuṭa-apama-aṃśa 'share of the true declination' (see Misra 2021: pp. 86 and 92). ${ }^{30}$ In his Sarvasiddhāntarāja I.spa•krā, verse 1, he changes this near-literal Sanskrit translation of a Persian expression to sphuta-apama-añka 'curve of true declination'. Geometrically, all three expressions refer to the arc $\overparen{S C}$ of equation (11).
2. Ordinarily, the Sanskrit word anjka implies a number, measure, or mark; however, in this specific technical context, I take this word to mean the curved side of a figure, i.e., an arc of a great circle. ${ }^{31}$ In various places in Siddhāntasindhu, Nityānanda uses the word añka in the expression for the 'curve of true declination' (sphuṭa-apama-añka). The word aṅka also appears in the golādhyāya of his Sarvasiddhāntarāja (II.117, stated above) where he defines this geometrical quantity.
I suspect the use of aṅka in the expression sphuṭa-apama-ankka for the 'curve of true declination' (i.e., $\overparen{S C}$) may serve to differentiate it from ordinary expressions like sphuta-apama-cāpa that may be confused for the arc of true declination (i.e., $\overparen{S A}$). The use of the expression sphuṭatara-apamaka-añka, lit. curve of the 'truer' declination, in his golādhyāya further qualify the unique name of this geometrical quantity.

[^8]
(a) Similarly Oriented

Figure 2: The curve of true declination of a celestial object (at S) in two different configurations:
(a) Similarly Oriented The arc $\widehat{\mathrm{NrH}}$ represents a great circle congruent to the ecliptic and passing through the celestial object at a given instant for which the second declination $\delta_{2}(\lambda)$ and latitude β are similarly orientated in their respective hemispheres, i.e., $\delta_{2}(\lambda)$ and beta are both in the northern (or southern) hemispheres in relation to the celestial equator and the ecliptic respectively.
(b) Differently Oriented The arc $\widehat{\mathrm{N}^{+} \Upsilon \mathrm{H}^{\dagger}}$ represents a great circle congruent to the ecliptic and passing through the celestial object at a given instant for which the second declination $\delta_{2}(\lambda)$ and the latitude β are oppositely oriented in their respective hemispheres, i.e., $\delta_{2}(\lambda)$ and β are both in opposing hemispheres in relation to the celestial equator and the ecliptic respectively.

4.2.2 Day-Sine of the longitude

The day-Sine of the longitude is the measure of the circle of day-Radius of a celestial object lying on the ecliptic; in other words, the Radius of the day-circle of the ecliptical projection of the object in the celestial sphere.

Figure 3: The circle of day-Radius corresponding to the ecliptical projection D of a celestial object (at S) with longitude λ and first declination $\delta_{1}(\lambda)$.

Figure 3 depicts a celestial object at S , at a particular time of the day, with longitude λ and first declination $\delta_{1}(\lambda)$. The day-Sine is then the measure of the Radius of the small circle passing through point D (ecliptical projection of the celestial object). Thus, with $\overparen{\mathrm{DB}}=\left\langle\mathrm{DOD}^{*}=\delta_{1}(\lambda)\right.$ in right-angled $\triangle \mathrm{DOD}^{*}$, we have

$$
\overparen{\mathrm{DD}^{*}}=\overparen{\mathrm{OD}} \cdot \sin \delta_{1}(\lambda)=\sin \delta_{1}(\lambda) \quad \text { and } \quad \widehat{\mathrm{OD}}^{*}=\widehat{\mathrm{OD}} \cdot \cos \delta_{1}(\lambda)=\cos \delta_{1}(\lambda) \text {. }
$$

where $\widehat{O D}=\mathcal{R} .3^{32}$ With $\widehat{\mathrm{OD}^{*}}=\overparen{\mathrm{O}^{*} \mathrm{D}}$, the Radius of the day-circle (i.e., dayRadius), or equivalently,

$$
\begin{equation*}
\text { the day-Sine of the longitude }(d y u j \bar{v} \bar{v} \bar{a})=\widehat{\mathrm{O}^{*} \mathrm{D}}=\operatorname{Cos} \delta_{1}(\lambda) \text {. } \tag{12}
\end{equation*}
$$

32 I capitalise trigonometric functions to indicate a non-unitary radius, i.e., $\operatorname{Sin}=\mathcal{R} \sin$ and $\operatorname{Cos}=\mathcal{R} \cos$ where the radius \mathcal{R} is the Radius or sinus totus (i.e., sine of 90°). Mullā

Farīd's $Z \bar{\imath} \bar{j}-i$ Shāh Jahān̄̄ and Nityānanda's Siddhāntasindhu and Sarvasiddhāntarāja take $\mathcal{R}=60$.

Correspondingly, the day-Sine [of the longitude] increased by three zodiacal signs is then equal to the Cosine of the first declination of the 'longitude increased by 90°, i.e.,

$$
\begin{align*}
& \text { the day-Sine [of the longitude] increased by } \tag{13}\\
& \text { three zodiacal signs }(s a-b h a-\text { traya-dyujīvā})
\end{align*}=\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right) \text {. }
$$

4.2.3 Arcs of maximum true declination and maximum latitude

In the Sarvasiddhāntarāja I.spa.krā, verses 5 and 6, Nityānanda defines the following two constituent arcs of the solstitial colure (āyana-vrtta):

1. the arc of maximum true declination (para-sphuṭa-apama) that corresponds to the distance between the celestial equator (viṣuva-vrtta) and the [great] circle congruent to the ecliptic (bhavṛtta-sadṛśa-vrtta), and
2. the arc of maximum latitude (para-iṣu) that corresponds to the distance between the ecliptic (bhavana-cakra) and the [great] circle congruent to the ecliptic (bhavrtta-sadṛśa-vrtta).

Figure 4a shows the great circle congruent to the ecliptic in a supra-ecliptic configuration similar to Figure 2a. Here, arcs $\overparen{R H}$ and $\overparen{R^{\prime} H}$ represents the arcs of maximum true declination and maximum latitude respectively. The circle $\bigcirc \mathrm{N} \Upsilon H \underline{\Omega}$ represents the great circle congruent to the ecliptic that passes through the celestial object positioned at S at a given moment of time, and is inclined to the ecliptic at an arc angle of $\overparen{R^{\prime} H}=\beta_{+}^{\prime}=\imath$. In this configuration, the circle $\bigcirc \mathrm{N} \Upsilon H \underline{\Omega}$ also represents the orbit of the celestial object (with the longitude of the ascending node λ_{Ω} equal to zero). The arc $\widehat{\mathrm{RR}^{\prime}}$ is the obliquity ϵ of the ecliptic to the celestial equator, seen here to be less than the arc of maximum true declination of the celestial object.

Similarly, Figure 4 b represents a sub-ecliptic configuration of the great circle congruent to the elliptic comparable to Figure $2 b$. Here, the arcs $\widehat{\mathrm{RH}^{\dagger}}$ and $\widehat{\mathrm{R}^{\prime} \mathrm{H}^{\dagger}}$ represents the arcs of maximum true declination and maximum latitude respectively. The circle $O \mathrm{~N}^{+} 饣 \mathrm{H}^{+} \underline{\Omega}$ represents the great circle congruent to the ecliptic that passes through the celestial object positioned at S at a given moment of time, and is inclined to the ecliptic at an arc angle of $\widehat{\mathrm{R}^{\prime} \mathrm{H}^{\dagger}}=\beta_{-}^{\prime}=\iota^{+}$. Here, the circle $\bigcirc \mathrm{N}^{+} \mathrm{P}^{\dagger} \underline{\Omega}$ represents the orbit of the celestial object (when the longitude of the ascending node λ_{Ω} is taken as zero). As before, the arc $\widehat{\mathrm{RR}^{\prime}}$ is the obliquity ϵ of the ecliptic to the celestial equator, seen here to be more than the arc of maximum true declination of the celestial object.

(a) Supra-ecliptic configuration

(b) Sub-ecliptic configuration

Figure 4: The arcs of the maximum true declination and the maximum latitude of a celestial object (at S) in two different configurations. In both configurations, the great circle congruent to the ecliptic is also taken to be the orbit of the celestial object with the longitude of the ascending node $\lambda_{\Omega}=0^{\circ}$.
(a) Supra-ecliptic configuration with the great circle congruent to the ecliptic $\bigcirc N \Upsilon H \underline{\Omega}$ above the ecliptic $\bigcirc \Upsilon^{\prime} \mathrm{R}^{\prime} \mathrm{T}^{\prime}$.
(b) Sub-ecliptic configuration with the great circle congruent to the ecliptic $\bigcirc \mathrm{N}^{+} \Upsilon \mathrm{H}^{\dagger} \underline{\underline{\Omega}}$ below the ecliptic $\bigcirc \Upsilon^{\prime} \underline{\Omega}^{\prime}$.

Mullā Farīd, in his $\mathrm{Z} \overline{\mathrm{l}} \mathrm{j}-i$ Shāh Jahān̄ $\bar{\imath}$ Discourse II.6, passages [10] and [11], refers to the arc of maximum latitude ($\widehat{\mathrm{R}^{\prime} \mathrm{H}}$ or $\widehat{\mathrm{R}^{\prime} \mathrm{H}^{\dagger}}$ in Figure 4) as qaws-i avval 'first arc' and the arc of maximum true declination ($\overparen{\mathrm{RH}}$ or $\overparen{\mathrm{RH}^{\dagger}}$ in Figure 4) as qaws-i duvum 'second arc' (see Misra 2021: p. 90).

Remarks

1. In case of the Sun, the arc of maximum true declination is equal to the obliquity of the ecliptic, and hence, it remains constant. However, for some celestial objects like the Moon, their orbits precess about the ecliptic pole. In other words, the nodal line ($p \bar{a} t a$) of the orbit revolves in the plane of the ecliptic changing its nodal longitude (pāta-bhāga). This precession of the orbital nodes affects the value of the arc of maximum true declination by causing cyclical variations. For instance, in case of the Moon, the lunar orbit is inclined to the ecliptic (whose obliquity is 23.5°) at about 5.1°, and has a nodal precession of 18.6 years (with respect to the vernal equinox or 0° Aries). The draconic monthly variation in the maximum declination of the Moon changes from about $\pm 18.4^{\circ}$ at the minor lunar standstill to about $\pm 28.6^{\circ}$ at the major lunar standstill every 9.3 years. Nityānanda's use of the word tatkṣane 'at that very moment' in verse 5 suggests that he recognises the variation in the arc of maximum true declination (of certain celestial objects) with time.
2. For the arc of maximum latitude measured on the solstitial colure to correspond to the distance between the ecliptic and the great circle congruent to the ecliptic, one of the nodes ($p \bar{a} t a$) of the orbit of the celestial object needs to be coincident with the vernal equinoctial point Υ. In the last pāda of verse 6, Nityānanda explicitly states that the equinoctial point (viṣuva) and the orbital node ($p \bar{a} t a$) are in conjunction (yuga). In both configurations of Figure 4 , the longitude of the ascending node λ_{Ω} is taken as 0°. Hence, the arc of maximum latitude $\widehat{\mathrm{R}^{\prime} \mathrm{H}}=\beta_{+}^{\prime}=\imath$ in Figure 4 a or $\widehat{\mathrm{RH}^{\dagger}}=\beta_{-}^{\prime}=\iota^{\dagger}$ in Figure 4b. More generally,

$$
\begin{equation*}
\text { the arc of maximum latitude }=\beta_{+/-}^{\prime}=\iota \text { or } \iota^{\dagger} \tag{14}
\end{equation*}
$$

depending on the orientation of the great circle congruent to the ecliptic (i.e., the orbit of the celestial object) and the ecliptic.
3. With the nodal longitude $\lambda_{\Omega / \vartheta}=0^{\circ}$, the great circle congruent to the ecliptic can be regarded as the orbit of the celestial object, and hence,

- for the supra-ecliptic configuration in Figure 4a, the arc of maximum true declination $\overparen{\mathrm{R}^{\prime} \mathrm{H}}$ is the sum of the ecliptic obliquity $\widehat{\mathrm{RR}^{\prime}}$ and
the orbital inclination (or the arc of maximum latitude) $\widehat{R^{\prime} H}$, i.e., $\delta_{\text {true }}^{\max }=\epsilon+\iota$ or $\epsilon+\beta_{+}^{\prime}$; and
- for the sub-ecliptic configuration in Figure 4 b, the arc of maximum true declination $\widehat{\mathrm{R}^{\prime} \mathrm{H}^{\dagger}}$ is the difference between the ecliptic obliquity $\overparen{\mathrm{RR}^{\prime}}$ and the orbital inclination (or the arc of maximum latitude) $\widehat{\mathrm{R}^{\prime} \mathrm{H}^{\dagger}}$, i.e., $\delta_{\text {true }}^{\max }=\epsilon-\iota^{\dagger}$ or $\epsilon-\beta_{-}^{\prime}$.

Expressed more generally, we have the arc of maximum true declination

$$
\begin{equation*}
\delta_{\text {true }}^{\max }=\epsilon+\iota \text { or } \epsilon-\iota^{\dagger} \text { or equivalently, } \epsilon \pm \beta_{ \pm}^{\prime} \tag{15}
\end{equation*}
$$

depending on the orientation of the great circle congruent to the ecliptic (i.e., the orbit of the celestial object) and the ecliptic.

4.2.4 Congruent arc and its complementary

In the Sarvasiddhāntarāja I.spa•krā, verse 7 , Nityānanda defines the following two constituent arcs of the circle congruent to the ecliptic (bhavrtta-sadrśa-vrtta):

1. the congruent arc (sadriś-bhujā) that measures the distance of the celestial object from the equinoctial point (viṣuvat), and
2. its complement, the congruent complementary arc (sadris-koṭi), that measures the distance of the celestial object from the solstitial colure (āyanavrtta).

In Figure 4a, $\overparen{\Upsilon S}$ is the congruent arc while $\overparen{S H}=90^{\circ}-\overparen{\Upsilon S}$ is the complement of the congruent arc. Similarly, in Figure $4 b, \overparen{\gamma S}$ is again the congruent arc while $\widehat{\mathrm{SH}^{\dagger}}=90^{\circ}-\overparen{\overparen{P}}$ is the complement of the congruent arc.

The terms bhujā 'base' and koṭi 'complement of base' are often used in Sanskrit mathematics in connection to arcs of a circle (cāpa, dhanus, kodaṇda, etc.) or the chords/half-chords corresponding to arc (jyā, jyakā, jyārdha, etc.). Typically, the $b h u j \bar{a}$ (also called bhuja, bāhu, or dos, synonyms for 'arm', 'side', or 'base') of an angle is calculated from (i) the degrees elapsed in odd quadrants of a circle, or (ii) the degree yet to be elapsed in even quadrants. The koṭi (sometimes understood as the 'perpendicular') refers to the complement of the bhujā in each quadrant. The bhujā and koti arcs in each of the four quadrants are shown below.

Quadrant	bhujā	$k o t i c$
I	$\widehat{\mathrm{EP}_{1}}$	$\widehat{\mathrm{P}_{1} \mathrm{~N}}$
II	$\widehat{\mathrm{P}_{2} \mathrm{~W}}$	$\widehat{\mathrm{NP}_{2}}$
III	$\widehat{\mathrm{WP}_{3}}$	$\widehat{\mathrm{P}_{3} \mathrm{~S}}$
IV	$\widehat{\mathrm{P}_{4} \mathrm{E}}$	$\widehat{\mathrm{SP}_{4}}$

For our present purpose, we distinguish between

1. the measures of $b h u j \bar{a}$ and koṭi on the ecliptic, represented by arcs $\overparen{\mathscr{T} D}$ (longitude λ) and $\widehat{R^{\prime} D}$ (co-longitude $\bar{\lambda}$) in Figure 1 respectively; and
2. the measures of sadrḉ-bhujā and sadŕś-koṭi on the great circle congruent to the ecliptic, represented by arcs $\overparen{\Upsilon S}$ (congruent arc λ^{\prime}) and $\overparen{S H}$ (congruent complementary arc $\overline{\lambda^{\prime}}$) in Figure 1 respectively.
As noted before (in § 4.1, p. 102), Mullā Farīd simply calls the longitude $\widehat{\Upsilon D}$ of the celestial object as daraji-yi u 'its degree' in his Zīj-i Shāh Jahān̄̄̄ Discourse II.6. The co-longitude $\bar{\lambda}$ of the celestial object is called bucd-i daraji-yi kawkab az in-qiläb-i aqrab 'distance of the degree of a celestial object from the nearest solstice' in $Z \bar{i} \bar{j}-i$ Shāh Jahān $\bar{\imath}$ Discourse II.6, passage [8]. In the same passage (and passage [9]), Mullā Farīd also calls the congruent complementary arc $\overparen{S H}$ as $b u^{c} d-i$ kawkab az «dāyiri-yi mārri bi aqtā̄-i arbaci» 'distance of a celestial object from the "circle passing through the four poles"' (see Misra 2021: p. 88).

4.3 PRELIMINARY COMPUTATIONS OF CONSTITUENT ARCS

4.3.1 Computing the congruent arc and the congruent complementary arc

Nityānanda proposes the following rules to compute the congruent arc (sadrksabähu) and congruent complementary arc (sadrcksa-koṭi) defined in § 4.2.4 in the Sarvasiddhāntarāja I.spa-krā, verses 8-9ab:

> खगस्य कोटिसिझ्जिनी स्वबाणकोटिजीवया ॥
> हता त्रिभज्यकोद्धृता सदृक्षकोटिसिज्जिनी ॥ ८॥
> तद्धनुर्नवति ९० तश्चुतं यदा जायते सदृशबाहुसंज्ञकम् ॥ ९म,द्दि
khagasya koṭisiñjinū svabānakotijī̄vayā ||
hatā tribhajyakoddhṛtā sadṛkṣakoṭisiñjin̄̄$||\mid$
taddhanur navati go taścyutaṃ yadā jāyate sadṛśabāhusaṃjñakam || gab
The Sine of the complement of the arc of longitude of a celestial object (khagasya kotti-siñjin̄̄), having been multiplied (hatā) by the Cosine of its latitude (sva-bāna-kotijīvōa) [and] having been divided (uddhrtā) by the Radius [i.e., by the sinus totus] (tribhajyak \bar{a}), [should be] the Sine of the congruent complementary arc (sadṛc̣a-koṭi-siñjinī) [i.e., the Sine of the complement of the sadṛs-bhujā]. 8
When [the measure of] its arc (dhanus), having been reduced from ninety [degrees] (navatitaś-cyuta), is determined, [it] has the name congruent arc (sadṛ́śa-bāhu). gab

In other words,
$\operatorname{Sin}\binom{$ congruent }{ complementary arc }$=\frac{\operatorname{Sin}\binom{\text { complement of }}{\text { arc of longitude }} \cdot \operatorname{Cos} \text { (latitude) }}{\text { sinus totus (or Radius) }}$, from which,

$$
\text { congruent } \operatorname{arc}=90^{\circ}-\operatorname{arcSin}(\text { congruent complementary arc }) .
$$

Expressed mathematically,

$$
\operatorname{Sin} \overline{\lambda^{\prime}}=\frac{\operatorname{Sin} \bar{\lambda} \cdot \operatorname{Cos} \beta}{\mathcal{R}} \Rightarrow \lambda^{\prime}=90^{\circ}-\operatorname{arcSin}\left(\operatorname{Sin} \overline{\lambda^{\prime}}\right)
$$

Looking at Figure 5, we can identify

- $\overparen{\Re S}=\lambda^{\prime}$ as the congruent arc (sadṛksa-bāhu), and hence $\overparen{S H}=90^{\circ}-\lambda^{\prime}$ or $\overline{\lambda^{\prime}}$ as its complement, i.e., the congruent complementary arc (sadrkṣa-koṭi);
- $\widehat{\Upsilon D}=\lambda$ as the longitude (bhuja or bāhu), and hence $\widehat{\mathrm{R}^{\prime} \mathrm{D}}=90^{\circ}-\lambda$ or $\bar{\lambda}$ as its complement, i.e., the co-longitude (koti); and
- $\overparen{\mathrm{SD}}=\beta$ as the latitude (bāna), and hence $\overparen{\mathrm{P}^{\prime} \mathrm{S}}=90^{\circ}-\beta$ or $\bar{\beta}$ as its complement, i.e., the co-latitude.

By applying the Rule of Four Quantities to the right spherical triangles $\triangle P^{\prime} H S$ and $\triangle P^{\prime} R^{\prime} D$ we find, ${ }^{33}$

[^9]

Figure 5: Right spherical triangles $\triangle \mathrm{P}^{\prime} \mathrm{HS}$ and $\triangle \mathrm{P}^{\prime} \mathrm{R}^{\prime} \mathrm{D}$ on the celestial sphere.

$$
\frac{\sin \overparen{S H}}{\sin \overparen{R^{\prime} D}}=\frac{\sin \overparen{P^{\prime} \mathrm{S}}}{\sin \overparen{P^{\prime} D}} \text { or equivalently, } \frac{\sin \left(90^{\circ}-\lambda^{\prime}\right)}{\sin \left(90^{\circ}-\lambda\right)}=\frac{\sin \left(90^{\circ}-\beta\right)}{\sin 90^{\circ}}
$$

Thus, $\sin \left(90^{\circ}-\lambda^{\prime}\right)=\sin \left(90^{\circ}-\lambda\right) \cdot \sin \left(90^{\circ}-\beta\right)$ or

$$
\begin{equation*}
\sin \overline{\lambda^{\prime}}=\sin \bar{\lambda} \cdot \cos \beta \tag{16}
\end{equation*}
$$

For a non-unitary Radius (sinus totus), we then have

$$
\begin{equation*}
\operatorname{Sin} \overline{\lambda^{\prime}}=\frac{\operatorname{Sin} \bar{\lambda} \cdot \operatorname{Cos} \beta}{\mathcal{R}} \tag{17}
\end{equation*}
$$

or in other words, $\operatorname{Sin}(s a d r k s ̣ a-k o t ̣ i)=\frac{\operatorname{Sin}(k o t ̣ i) \cdot \operatorname{Cos}(b \bar{a} n ̣ a)}{\mathcal{R}}$ agreeing with verse 8 .

With Sin (sadṛssa-koṭi) in equation (17), Nityānanda states, in verse gab, that the congruent arc or sadṛksa-bāhu is $90^{\circ}-\operatorname{arcSin}[\operatorname{Sin}(\operatorname{sad} r k s ̣ a-k o t i)]$, or

$$
\lambda^{\prime}=90^{\circ}-\operatorname{arcSin}\left(\operatorname{Sin} \overline{\lambda^{\prime}}\right), \text { i.e., }
$$

$$
\begin{equation*}
\lambda^{\prime}=90^{\circ}-\operatorname{arcSin}\left(\frac{\operatorname{Sin} \bar{\lambda} \cdot \operatorname{Cos} \beta}{\mathcal{R}}\right) . \tag{18}
\end{equation*}
$$

The Sine of the congruent arc, i.e., Sin (sadrkssa-bāhu) or Sin $\left(\lambda^{\prime}\right)$, can then be readily computed from the sadr $k s a-b \bar{a} h u$ or λ^{\prime}.

Remarks

1. In Mahendra Sūri's method to compute the true declination of a celestial object in his Yantrarāja I.41-48, equation (17) is expressed as

$$
\operatorname{Cos} \lambda^{\prime}=\frac{\operatorname{Cos} \lambda \cdot \operatorname{Cos} \beta}{\mathcal{R}} .
$$

The identification Sin $\overline{\lambda^{\prime}}$ (Sine of the sadrks $a-k o t i i$) with $\operatorname{Cos} \lambda^{\prime}$ (Cosine of the sadrksa-bāhu) follows by recognising $\overline{\lambda^{\prime}}=90^{\circ}-\lambda^{\prime}$. Similarly, $\operatorname{Sin} \bar{\lambda}$ (Sine of the $k o t ̣ i)$ is identified with $\operatorname{Cos} \lambda$ (Cosine of the bāhu) with $\bar{\lambda}=90^{\circ}-\lambda$ (see Plofker 2000: equation 3 on p. 41 and equation 8 on p. 42).
2. Ibn Yūnis calls the Sin of equation (18) as al-jayb al-awwal 'first sine' in his derivation of the third method to compute the true declination in his al-Zij al-Kabīr al-Ḥäkimī, XXXIX.1.c (see King 1972: equation 1.10 on p. 295).
4.3.2 Computing the maximum latitude and the maximum true declination

In the Sarvasiddhāntarāja I.spa•krā, verses 9cd-10a, Nityānanda outlines the method of computing the arc of maximum latitude (para-iṣu), defined previously in § 4.2.3 as β^{\prime}, as follows:

तद्दनुः परशाराह्बयो भवेद्न... (१०म)
yā nabhogaviśikhasya siñjinī bhājitā 'dharasadṛkṣadorjyayā || gcd || taddhanuḥ paraśarāhvayo bhaved... (10a)

Or, what is the Sine of the latitude of a celestial object (nabhogaviśikhasya siñjinī$)$, having been divided (bhājitā) by the lowered Sine of the congruent arc (adhara-sadrks $\operatorname{sa-dorjy\overline {a}),~9cd~}$
its arc (dhanus) should be [called] the maximum latitude (para-śara) by name.... (10a)

In other words,

$$
\text { maximum latitude }=\operatorname{arcSin}\left[\frac{\operatorname{Sin}(\text { latitude })}{\operatorname{Sin}(\text { congruent arc }) / \text { sinus totus }(\text { or Radius })}\right],
$$

or expressed mathematically, $\beta^{\prime}=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \beta}{\operatorname{Sin} \lambda^{\prime} / \mathcal{R}}\right)$.
Looking at the right spherical triangles $\triangle \Upsilon D S$ and $\triangle \Upsilon R^{\prime} H$ in Figure 5, we observe

- $\overparen{\Re S}=\lambda^{\prime}$ is the congruent arc (sadrkssa-dos) and $\overparen{S D}=\beta$ is the latitude (viśikha);
- $\widehat{\Upsilon H}=90^{\circ}$ and $\widehat{\mathrm{HR}^{\prime}}=\beta^{\prime}$, the maximum latitude (para-śara).

Again, applying the Rule of Four Quantities to these right spherical triangles, we find

$$
\frac{\sin \overparen{\mathrm{HR}}}{\sin \overparen{\mathrm{SD}}}=\frac{\sin \overparen{\Upsilon H}}{\sin \overparen{\Re S}} \text { or equivalently } \frac{\sin \beta^{\prime}}{\sin \beta}=\frac{\sin 90^{\circ}}{\sin \lambda^{\prime}}
$$

Thus,

$$
\begin{equation*}
\sin \beta^{\prime}=\frac{\sin \beta}{\sin \lambda^{\prime}} \tag{19}
\end{equation*}
$$

For a non-unitary Radius (sinus totus), we then have

$$
\begin{align*}
\qquad \operatorname{Sin} \beta^{\prime} & =\frac{\operatorname{Sin} \beta \cdot \mathcal{R}}{\operatorname{Sin} \lambda^{\prime}} \text { or } \frac{\operatorname{Sin} \beta}{\operatorname{Sin} \lambda^{\prime} / \mathcal{R}} \tag{20}\\
\text { or effectively, } \beta^{\prime} & =\operatorname{arcSin}\left(\frac{\operatorname{Sin} \beta}{\operatorname{Sin} \lambda^{\prime} / \mathcal{R}}\right) \tag{21}
\end{align*}
$$

This is the expression para-śara $=$ dhanus of $\left[\frac{\operatorname{Sin}(b \bar{a} n ̣ a)}{\operatorname{Sin}(\text { adhara-sadṛkṣa-dos })}\right]$ in verses 9cd-10a.

Remarks

1. The compound adhara-sadrkṣa-dor-jyayā 'by the lowered Sine (adhara-jy \bar{a}) of the congruent arc (sadrkṣa-dos)' in verse 9d refers to the divisor $\operatorname{Sin} \lambda^{\prime} / \mathcal{R}$. Nityānanda translates the Islamicate arithmetical operation of lowering (munhatt kardan), i.e., dividing a quantity by sixty (equal to the Radius or the sinus totus \mathcal{R}), as adhara- $k r$ (or adharī-kr) 'to lower'.
MS Bn.II parses the word adhara in the middle of the verse on line 11 of f. 63 r as ...adhara-sa-ṣaṣṭi-bhakta-bhājaka-bhajanam atrādhara-bhajana-saṃjñam [u]cyate '...adhara is the sixtieth part [lit. with sixty divided] of the divisor of the division; here what is called adhara-division is declared'. Mullā Farīd, in his Z $\bar{\imath} j-i$ Shāh Jahān̄ $\bar{\imath}$ Discourse II.6, passage [9] uses the term munhaṭt-i qismat kardan 'to low-divide' while describing the same method of computing the arc of maximum latitude (which he calls qaws-i avval 'the first arc')
(see Misra 2021: 88). MS Bn.II is unique in parsing the meaning of the word adhara mid-verse, and also identifying the operation as adhara-bhajana 'lowdivision'.
2. In verse 10a, Nityānanda uses the word taddhanus 'the arc of that value' to refer to the measure of arc corresponding to the result of the previous division (in verse gcd). This suggests that the division $\frac{\operatorname{Sin} \beta}{\operatorname{Sin} \lambda^{\prime} / \mathcal{R}}$ in equation (20) yields a measures equivalent to the Sine of a quantity, which, in this case, is $\operatorname{Sin}\left(\beta^{\prime}\right)$. Therefore, the arc (dhanus) of maximum latitude (paraśara) is the inverse Sine of the result of the division as equation (18) shows. Nityānanda's expression for the maximum latitude differs from what Mahendra Sūri proposes in his Yantrarāja I.41-48. As Plofker describes, Mahendra Sūri's method takes $\beta^{\prime}=\operatorname{Sin} \beta / \operatorname{Sin} \lambda^{\prime}$. The result of this division is called bhāgādikam 'result in degrees etc.' (Yantrarāja: 1.42) that becomes syād antaram 'the difference', i.e., the additive correction, employed in the next step of this procedure. The omission of the factor of \mathcal{R} and the approximation of $\operatorname{Sin}\left(\beta^{\prime}\right)$ as β^{\prime} in Mahendra Sūri's method appear to be possible early corruptions or misinterpretations (see Plofker 2000: 42-43).
3. In his al-Z $\bar{i} j$ al-Kabīr al-Hākimī, XXXIX.1.c, Ibn Yūnis calls the arc of maximum latitude al-qaws al-iṣlāh 'the correction arc' (see King 1972: equation 1.11 on p. 295).

In the Sarvasiddhāntarāja I.spa•krā, verse 1obcd-11, Nityānanda describes the arc of maximum true declination (para-sphuṭa-krānti) $\delta_{t r u e}^{m a x}$ (previously defined in §4.2.3) as

वा परेषुपरमापमाख्ययोः ॥
संयुतिर्वियुतिरस्ति च कमाद्गोलबाणसमभिन्नदिक्तया ॥ १०द्धि,त्रि,च ॥
स ग्रहस्य परमस्फुटापमो जायते युतिवियोगदिक्स्थितः ॥
एवमभ्रनव ९० तो ऽधिको यदा खाष्टभू १८० परिमितेर्विशोधितः ॥ ११॥
vā pareṣuparamāpamākhyayoḥ ||
saṃyutir viyutir asti ca kramād golabāṇasamabhinnadik tayā|| 1obcd ||
sa grahasya paramasphutāpamo jāyate yutiviyogadik sthitah \| evam abhranava go to 'dhiko yadā khāṣṭabhū 180 parimiter viśodhitah || 11 ||

There is the sum (samyuti) or the difference (viyuti) of the two [quantities] known as the maximum latitude (para-iṣu) and the greatest declination (parama-apama) [i.e., the obliquity of the ecliptic] with the
latitude (bāna) and the celestial hemisphere (gola) [i.e., the declination of the celestial object] in the same or different directions (sama-bhinna-diś) respectively. 1obcd
That [result], being situated in the direction of the conjunction or the disjunction (yuti-viyoga-diś), becomes the maximum true declination of a celestial object (grahasya parama-sphuṭa-apama). Thus, when [its measure is] greater (adhika) than ninety [degrees] (abhra-nava), [it is] made to be subtracted (viśodhita) from a measure of one hundred and eighty [degrees] (kha-așta-bh $\bar{u}) .11$

In other words,
maximum true declination $=$ ecliptic obliquity \pm maximum latitude, with $0^{\circ} \leq$ maximum true declination $\leq 90^{\circ}$.
Expressed mathematically,

$$
\delta_{\text {true }}^{\max }=\epsilon \pm \beta_{ \pm}^{\prime} \text { where } \delta_{\text {true }}^{\max }=\left[180^{\circ}-\left(\epsilon+\beta_{+}^{\prime}\right)\right] \forall \epsilon+\beta_{+}^{\prime}>90^{\circ}
$$

From equation (15), we known that $\delta_{\text {true }}^{\max }=\epsilon+\beta_{+}^{\prime}$ or $\delta_{\text {true }}^{\max }=\epsilon-\beta_{-}^{\prime}$, and hence,

$$
\begin{equation*}
\delta_{\text {true }}^{\max }=\epsilon \pm \beta_{ \pm}^{\prime} . \tag{22}
\end{equation*}
$$

The choice of addition or subtraction depends on the orientation of the great circle congruent to the ecliptic (understood here, as the orbit of the celestial object with the nodal longitude being zero, i.e., the node of the orbit coincident with the vernal equinoctial point Υ).

According to Nityānanda, when the latitude (bāna) and the celestial hemisphere (gola)-i.e., the direction of the celestial object in relation to the celestial equator; in other words, its declination-are similarly oriented, the arc of maximum true declination is the addition of the ecliptic obliquity (parama-apama, lit. greatest declination) and the arc of maximum latitude (para-sara). When the latitude and the celestial hemisphere are differently oriented, arc of maximum true declination is the difference between the ecliptic obliquity and the arc of maximum latitude.

Figure 6 shows the two configurations for the orbit of a celestial object. The node of the orbit is coincident with the vernal equinoctial point in both configurations, with the obliquity of the ecliptic $\widehat{\mathrm{TT}^{\prime}}=\widehat{\mathrm{RR}^{\prime}}=\epsilon$.

1. For the orbital path $\mathrm{N}^{+} \mathrm{S}_{1}^{+} \mathrm{S}_{2}^{+} \mathrm{S}_{3}^{+} \mathrm{S}_{4}^{+} \mathrm{H}^{+}$, the declination and the latitude of the celestial object are both directed towards the northern hemisphere of the celestial sphere, i.e., towards P and P^{\prime} respectively. These are seen at positions S_{3}^{+}and S_{4}^{+}of the figure. Alternatively, both the declination and the latitude of the celestial object are directed towards the southern hemisphere of the celestial sphere, i.e., towards $\overline{\mathrm{P}}$ and $\overline{\mathrm{P}^{\prime}}$ respectively. These are the positions S_{1}^{+}and S_{2}^{+}in the figure. In both these cases, it can be seen that

Figure 6: Configuration of the orbit of a celestial object with (a) its declination and latitude being similarly orientated in their respective hemispheres, i.e., both towards the northern or southern half of the celestial sphere, represented here by the path $\mathrm{N}^{+} \mathrm{S}_{1}^{+} \mathrm{S}_{2}^{+} \mathrm{S}_{3}^{+} \mathrm{S}_{4}^{+} \mathrm{H}^{+}$); or (b) its declination and latitude being oppositely oriented in their respective hemispheres, i.e., one towards the northern half of the celestial sphere and the other towards the southern half (or vice versa), represented here by the path $\mathrm{N}^{-} \mathrm{S}_{1}^{-} \mathrm{S}_{2}^{-} \mathrm{S}_{3}^{-} \mathrm{S}_{4}^{-} \mathrm{H}^{-}$.

- the maximum latitude $\widehat{\mathrm{N}^{+} \mathrm{T}^{\prime}}=\widehat{\mathrm{H}^{+} \mathrm{R}^{\prime}}=\beta_{+}^{\prime}$, and
- the maximum true declination $\widehat{\mathrm{N}^{+} \mathrm{T}}=\widehat{\mathrm{H}^{+} \mathrm{R}}=\delta_{\text {true }}^{\max }=\epsilon+\beta_{+}^{\prime}$.

2. For the orbital path $\mathrm{N}^{-} \mathrm{S}_{1}^{-} \mathrm{S}_{2}^{-} \mathrm{S}_{3}^{-} \mathrm{S}_{4}^{-} \mathrm{H}^{-}$, the declination and the latitude of the celestial object are directed towards the northern (towards P) and southern (towards $\overline{\mathrm{P}^{\prime}}$) hemispheres of the celestial sphere respectively. Positions S_{3}^{-} and S_{4}^{-}in the figure depict this configuration. Reciprocally, positions S_{1}^{+}and S_{2}^{+}show the celestial object with its declination and the latitude directed
towards the southern (towards $\overline{\mathrm{P}}$) and northern (towards P^{\prime}) hemispheres of the celestial sphere respectively. In both these cases, we find

- the maximum latitude $\widehat{\mathrm{N}^{-} \mathrm{T}^{\prime}}=\widehat{\mathrm{H}^{-} \mathrm{R}^{\prime}}=\beta_{-}^{\prime}$, and
- the maximum true declination $\widehat{\mathrm{N}^{-\mathrm{T}}}=\widehat{\mathrm{H}^{-\mathrm{R}}}=\delta_{\text {true }}^{\max }=\epsilon-\beta_{-}^{\prime}$.

Remarks

1. In Mahendra Sūri's method in his Yantrarāja I.43, the greatest declination (i.e., the obliquity of the ecliptic) is increased or decreased by the maximum latitude (called the additive correction in degrees etc., see note 2 on p. 121) "when [the longitude] of the star and the latitude are in the same or different hemispheres respectively" (see Plofker 2000: 41).
2. In his al-Z $\bar{j} j$ al-Kabīr al-H̄̄̄kimī, XXXIX.1.c, Ibn Yūnis calls the arc of maximum true declination al-qaws al-mācil 'the inclination arc' al-qaws al-iṣlāh 'the correction arc' (see King 1972: equation 1.12 on p. 295).

The direction of the maximum true declination $\delta_{\text {true }}^{\max }$ is along the direction of the sum (yuti) of the ecliptic obliquity and the maximum latitude, or along the residue (viyuti) of the maximum latitude removed from the ecliptic obliquity. The value of the maximum true declination lies between 0° and 90°. Figure 7 depicts the configuration where the great circle congruent to the ecliptic (i.e., the orbit of a celestial body) is inclined to the ecliptic at an angle larger than $90^{\circ}-\epsilon$. In this case, as Nityānanda explains,

$$
\begin{equation*}
\delta_{\text {true }}^{\max }=\epsilon+\beta_{+}^{\prime} \equiv\left[180^{\circ}-\left(\epsilon+\beta_{+}^{\prime}\right)\right] \forall \epsilon+\beta_{+}^{\prime}>90^{\circ} . \tag{23}
\end{equation*}
$$

4.4 THE FIRST METHOD OF TRUE DECLINATION

Nityānanda's describes the first method to compute the true declination of a celestial object in Sarvasiddhāntarāja I.spa•krā, verse 2, as follows:

स्फुटापमाङ्कसिश्जिनी सभत्र्यद्युजीवया ॥
हता त्रिभज्यकोद्यृता स्फुटापमज्यका भवेत् ॥ २ ॥
sphuṭāpamāñkasiñjinī sabhatrayadyujīvayā \|
hatā tribhajyakoddhrtā sphuṭāpamajyakā bhavet || 2 ||
The Sine of the curve of true declination (sphuṭa-apama-añka-siñjin̄̄), having been multiplied (hatā) by the day-Sine [of the longitude] increased by three zodiacal signs (sa-bha-traya-dyujīvā) [i.e., by the Cosine of the first declination of the 'longitude increased by 90°] [and] having been divided (uddhrtā) by the Radius [i.e., by the sinus totus]

Figure 7: Configuration of the great circle congruent to the ecliptic (i.e., the orbit of a celestial object) in the celestial sphere where $\epsilon+\beta_{+}^{\prime}>90^{\circ}$.
(tribhajyak \bar{a}) should be the Sine of the true declination (sphuṭa-apamajyakā̄). 2

In other words,

or expressed mathematically, $\operatorname{Sin} \delta=\frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}}$ where

Mathematical pression	ex-Sanskrit expression	English translation
$\operatorname{Sin} \delta$ sphuta-apama-jyak \bar{a} $\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right]$ sphuta-apama-añka-siñjini Sine of the true declination, Sine of the curve of true de- clination, day-Sine [of the longitude] increased by three zodiacal signs, i.e., Cosine of the first declination of the 'longitude		
\mathcal{R}	sa-bha-traya-dyujīvā	increased by 90°, and Radius or sinus totus.

4.4.1 Derivation of the first method

The mathematical expression of the first method of true declination can be derived as follows:

1. The excerpt (from Figure 1) below, to the left, shows, the right spherical triangle $\triangle \mathrm{SAC}$ has $\overparen{\mathrm{SC}}=\beta+\delta_{2}(\lambda)$, or more generally, $\delta_{2}(\lambda) \pm \beta$ (see equation (11)) , $\overparen{\mathrm{SA}}=\delta$, and $\varangle \mathrm{SAC}=90^{\circ}$. Applying the spherical law of sines to triangle \triangle SAC gives

$$
\begin{align*}
& \frac{\sin \overparen{\mathrm{SC}}}{\sin \varangle \mathrm{SAC}}=\frac{\sin \overparen{\mathrm{SA}}}{\sin \varangle \mathrm{SCA}}, \text { i.e., } \\
& \frac{\sin \left[\delta_{2}(\lambda) \pm \beta\right]}{\sin 90^{\circ}}=\frac{\sin \delta}{\sin \varangle \mathrm{SCA}} \text { or } \\
& \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \cdot \sin \varangle \text { SCA. } \tag{24}
\end{align*}
$$

Excerpt of \triangle SAC from Figure 1.
2. Looking at the excerpt (from Figure 1) below, we can recognise that $\widehat{\mathrm{P}^{\prime} \mathrm{P}}=\epsilon$, $\sin \varangle \mathrm{PP}^{\prime} \mathrm{C}=90^{\circ}-\lambda$ since $\varangle \mathrm{PP}^{\prime} \mathrm{C}$ is the angle of $\overparen{\mathrm{R}^{\prime} \mathrm{D}}$, and $\sin \overparen{\mathrm{PC}}=90^{\circ}$ as P is the pole with respect to point C on the celestial equator. Again, the spherical law of sines applied to the spherical triangle $\triangle \mathrm{PP}^{\prime} \mathrm{C}$ gives

$$
\frac{\sin \overparen{P C}}{\sin \varangle \mathrm{PP}^{\prime} \mathrm{C}}=\frac{\sin \overparen{\mathrm{P}^{\prime} \mathrm{P}}}{\sin \varangle \mathrm{P}^{\prime} \mathrm{CP}} \text {, i.e., } \sin \varangle \mathrm{P}^{\prime} \mathrm{CP}=\frac{\sin \overparen{\mathrm{P}^{\prime} \mathrm{P}} \cdot \sin \varangle \mathrm{PP}^{\prime} \mathrm{C}}{\sin \overparen{\mathrm{PC}}} \text { or }
$$

$$
\begin{equation*}
\sin \varangle \mathrm{P}^{\prime} \mathrm{CP}=\frac{\sin \epsilon \cdot \sin \left(90^{\circ}-\lambda\right)}{\sin 90^{\circ}} . \tag{25}
\end{equation*}
$$

Excerpt of $\triangle P^{\prime} P C$ from Figure 1.
3. From equation (25), we have,

$$
\begin{equation*}
\sin \varangle \mathrm{P}^{\prime} \mathrm{CP}=\sin \epsilon \cdot \cos \lambda \Rightarrow \sin \varangle \mathrm{P}^{\prime} \mathrm{CP}=\sin \epsilon \cdot \sin \left(90^{\circ}+\lambda\right) . \tag{26}
\end{equation*}
$$

4. The 'first declination' of a celestial object with, say, longitude x° can be given by the 'method of declination' as $\sin \left[\delta_{1}\left(x^{\circ}\right)\right]=\sin \epsilon \cdot \sin x^{\circ}$, see equation (9).
5. Thus, equation (26) can be expressed as

$$
\begin{equation*}
\sin \varangle \mathrm{P}^{\prime} \mathrm{CP}=\sin \delta_{1}\left(90^{\circ}+\lambda\right) \Rightarrow \varangle \mathrm{P}^{\prime} \mathrm{CP}=\delta_{1}\left(90^{\circ}+\lambda\right) \cdot 3^{34} \tag{27}
\end{equation*}
$$

6. We can also recognise that $\varangle \mathrm{PC} \upharpoonright$ is a right angle, and hence,

$$
\begin{align*}
& \varangle \mathrm{P}^{\prime} \mathrm{C} r \\
&=\varangle \mathrm{PC} r-\varangle \mathrm{PCP}^{\prime} \Rightarrow \varangle \mathrm{P}^{\prime} \mathrm{C} \Upsilon=90^{\circ}-\delta_{1}\left(90^{\circ}+\lambda\right) \tag{28}\\
& \Rightarrow \varangle \mathrm{P}^{\prime} \mathrm{C} \Upsilon=\varangle \mathrm{SCA}=90^{\circ}-\delta_{1}\left(90^{\circ}+\lambda\right) .
\end{align*}
$$

34 In Islamicate astronomy, the quantity $\delta_{1}\left(90^{\circ} \pm \lambda\right)$ is called the 'inverse declination' (al-māyl al-mackūs) of a point [with standard ecliptic coordinates (β, λ)], e.g., in the late twelfth-century zījes of Marāgha as-
tronomers like the $Z \bar{i} \bar{j}-i \quad$ Ilkhān $\bar{\imath}$ of al-Țūsī (see Hamadani-Zadeh 1987:188) and Tāj al-Azyāj of Muḥyī l-Dīn al-Maghribī (see Dorce 2002-3: 196).
7. From equations (24) \& (28), we have

$$
\begin{align*}
& \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \cdot \sin \left[90^{\circ}-\delta_{1}\left(90^{\circ}+\lambda\right)\right] \text { or equivalently } \\
& \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \cdot \cos \delta_{1}\left(90^{\circ}+\lambda\right) \tag{29}
\end{align*}
$$

For a non-unitary Radius (sinus totus), we then have

$$
\begin{equation*}
\operatorname{Sin} \delta=\frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}} \tag{30}
\end{equation*}
$$

4.4.2 Historical testimonies of the first method

The first method of true declination, expressed mathematically in equation (30), can be found in several Islamicate works (prior to Mullā Farīd's Z $\bar{\imath} j-i$ Shāh Jahān̄ $\bar{\imath}$). For example,

1. The letter (№ 2) of $\mathrm{Ab} \overline{\mathrm{u}}$ Naṣr Manṣūr b. ${ }^{\mathrm{c} A l \overline{1}} \mathrm{~b}$. ${ }^{\text {CIrāq }}$ (960-c. 1036) to al-Bīrūnī on the proof of the operations in the 'table of rectifications' in the $z \bar{\imath} j$ of Habash al-Hāsib (766-d. c. post 869) called Risālah fī barāhīn $a^{c} m a \bar{l}$ Habash bi-jadwal al-taqwīm. 35 Irani (1956:90-91) discusses Abū Naṣr Manṣūr b. 'Alī b. 'Irāq's proof of Habash al-Hāsib's operation for finding the declination of a star by the table of rectification, identical to Nityānanda's rule in equation (30).
2. Also, Abū Naṣr Manṣūr b. ${ }^{\text {cAlī }}$ b. ${ }^{\text {CIrāq's letter (№ 9) to al-Bīrūnī, entitled }}$ the Risāla fī macrifat al-qusīy al-fallakiyya bi-ṭārīq ghair țarīq al-nisba al-mucallafa, describes a method (different to the method of compounded ratios) to compute the various arcs on the sphere; one of the steps in Abū Naṣr
 (1941: 445) for a technical study of Abū Naṣr Manṣūr b. 'Alī b. 'Irāq's rules; in particular, see pages 430 (line 17) to 431 (line 28) for a German translation of the rule to compute the arc of declination based on the Arabic MS 2468/2519 from the Bankipore collection of the Khuda Bakhsh Oriental Library in Patna (India).
3. The rule of equation (30) is also seen in Abu ${ }^{\circ} l$-Wafā Būzhjānī's Kitāb al-Majisțī (c. 997-c. 1010) read from MS Paris BnF 2494 «L'Almageste d'Abou ग-Wafâ al-Boûzdjân̂̀», ff. 67v:18-69v:17, held at the Bibliothèque nationale de France in Paris ${ }^{37}$ (see Debarnot 1985: footnote 3 on p. 212).

35 Recorded as Tract № 4, 71 pages, in the collection of his letters Ras $\bar{a} c i l ~ ग l-B \bar{\imath} r u \bar{u} n \bar{l}$ published by Osmaniya Oriental Publications Bureau, Hyderabad 1948.

36 Recorded as Tract № 8 , 13 pages, in the $\operatorname{Ras} \bar{a} c i l{ }^{\imath}$-Bīrūn̄, op. cit. reference in footnote 35.
37 Open access via Bibliothèque nationale de France Digital Library Gallica at ark: /12148/ btv1b100374763.
4. al-Bīrūnī's Kitāb Taḥdīd al-Amākin (c. eleventh century) Chapter V. 63 states the (first) rule to compute the true declination of a star that is identical to equation (30) (see Kennedy 1973: 119-121).
5. al-Țūsī's (first) method to find the declination of 'other points' using the inverse in his $Z \bar{i} \bar{j}-i \operatorname{Ilkh} \bar{a} n \bar{\imath}$ (c. late thirteenth century) is identical to equation (30) (see Hamadani-Zadeh 1987: 188). Hamadani-Zadeh describes al-Ṭūsī's instructions on calculating the inverse declination of the point (with longitude λ); however, he incorrectly calls 'the first declination δ_{1} corresponding to λ^{\prime} as the inverse declination on p. 188, lines 10-11. The inverse declination is correctly understood as $\delta_{1}\left(90^{\circ}+\lambda\right)$.
6. The $Z \bar{i} \bar{j}-i$ Jadīd-i Sulțān̄ $\bar{\imath}$ Discourse II. 5 (alias Z $\bar{i} j$ - i Ulugh Beg, published 14381439) of Sulṭān Ulugh Beg describes three methods to determine the actual distance (i.e., true declination) of a star from the (celestial) equator. The first method, expressed mathematically, is identical to equation (30) (see Sédillot 1853: 89). The description of the first method also states how the second declination and latitude are to be added when they have the same sign (with respect to the equator); otherwise they are to subtracted. Mullā Farīd's Z $\bar{j}-i$ Shāh Jahān̄̄ Discourse II.6, repeats these statements from Ulugh Beg's Zī̀-i Jadīd-i Sulṭān̄̄ Discourse II. 5 near-verbatim.

Among contemporaneous Sanskrit authors, Nityānanda's first method of true declination also appears in Munīśvara's Siddhāntasārvabhauma I.4.41-42 (1646) and Kamalākara's Siddhāntatattvaviveka VIII.23cd-24ab (1658). Appendices D and E include the Sanskrit text, English translations, and technical discussions of Munīśvara's rule and Kamalākara's first method respectively.

4.5 THE SECOND METHOD OF TRUE DECLINATION

Nityānanda's describes the second method to compute the true declination of a celestial object in Sarvasiddhāntarāja I.spa $\cdot k r \bar{a}$, verse 3, as follows:

```
परमकान्तिकोटिज्या स्फुटकान्त्यङ्कजीवया ॥ हतान्यकान्तिकोटिज्याप्ता स्यात्स्पष्टापमज्यका ॥ ३ ॥
paramakrāntikotijyā sphuṭakrāntyañkajīvayā \|
hatānyakrāntikotijyāptā syāt spaṣṭāpamajyakā || 3 ||
```

The Cosine of the greatest declination (parama-krānti-koțijyā) [i.e., the Cosine of the ecliptic obliquity], having been multiplied (hatā) by the Sine of the curve of true declination (sphuta-krānti-añka-jīvā) [and] having been divided ($\bar{a} p t \bar{a}$) by the Cosine of the other declination (anya-krānti-kotijyā) [i.e., by the Cosine of the second declination], should be the Sine of the true declination (spaṣta-apama-jyakā). 3

In other words,
$\operatorname{Sin}\binom{$ true }{ declination }$=\frac{\operatorname{Cos}\binom{\text { ecliptic }}{\text { obliquity }} \cdot \operatorname{Sin}\binom{\text { curve of }}{\text { true declination }}}{\operatorname{Cos}(\text { second declination })}$,
or expressed mathematically, $\operatorname{Sin} \delta=\frac{\operatorname{Cos} \epsilon \cdot \operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right]}{\operatorname{Cos} \delta_{2}(\lambda)}$ where

Mathematical pression	ex-Sanskrit expression	English translation
$\operatorname{Sin} \delta$	spasta-apama-jyak \bar{a} parama-krānti-kotijyā	Sine of the true declination, $\operatorname{Cos} \epsilon$
Cosine of the greatest declination, i.e., Cosine of the ecliptic obliquity,		
$\left.\operatorname{Cos} \delta_{2}(\lambda) \pm \beta\right]$	sphuta-krānti-anika-jīvāSine of the curve of true declination, and	

4.5.1 Derivation of the second method

The mathematical expression of the second method of true declination can be derived following King (1972: pp. 293-295) where a similar expression from Ibn Yūnis's al-Zī̀ al-Kabīr al-H̄ākimī: 39.1(b) is explained.

1. In the right spherical triangle $\triangle \Upsilon D C$, shown below, to the left, we observe, $\varangle C D \Upsilon=90^{\circ}, \varangle D \Upsilon C=\widehat{R^{\prime} R}=\epsilon$, and $\widehat{D C}=\delta_{2}(\lambda)$. Applying Geber's theorem to the right spherical triangle $\triangle \Upsilon D C$, we have, ${ }^{38}$

$$
\begin{align*}
& \cos \varangle D \Upsilon C=\cos \overparen{D C} \cdot \sin \varangle D C \Upsilon \text { or } \\
& \cos \epsilon=\cos \delta_{2}(\lambda) \cdot \sin \varangle D C \Upsilon, \text { or } \\
& \sin \varangle D C \Upsilon=\frac{\cos \epsilon}{\cos \delta_{2}(\lambda)} . \tag{31}
\end{align*}
$$

Excerpt of $\triangle \Upsilon D C$ from Figure 1.

[^10]2. This allows us to write
\[

$$
\begin{align*}
& \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \cdot \sin \varangle \text { SCA from equation }(24) \text { as } \\
& \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \cdot \sin \varangle D C \Upsilon \because \varangle S C A=\varangle D C \Upsilon \text {, see Figure } 1 . \\
& \text { Therefore, } \sin \delta=\sin \left[\delta_{2}(\lambda) \pm \beta\right] \frac{\cos \epsilon}{\cos \delta_{2}(\lambda)} \tag{32}
\end{align*}
$$
\]

In terms of a non-unitary Radius (sinus totus), we then have

$$
\begin{equation*}
\operatorname{Sin} \delta=\frac{\operatorname{Cos} \epsilon \cdot \operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right]}{\operatorname{Cos} \delta_{2}(\lambda)} \tag{33}
\end{equation*}
$$

The equivalence between the mathematical formulae in verses 2 and 3, i.e., equations (30) and (33), is derived in Appendix C.

4.5.2 Historical testimonies of the second method

The second method of true declination, expressed mathematically in equation (33), can also be found in various Islamicate works (prior to Mullā Farīd's Z \bar{j}-i Shāh Jahān $\bar{\imath}) .{ }^{39}$ For example,

1. the (first) method to determine the distance of a star from the equator in al-Bīrūnī’s Kitāb Maqālīd cilm al-Hayª (c. 994) (see Debarnot 1985: 210-212);
2. the second method of determining the declination of a celestial body in Ibn Yūnis' al-Z̄̄̄j al-Kabīr al-Hākimī (1003) (see King 1972: 39.1(b) on pp. 293-295);
3. the (second) method to find the declination of 'other points' in al-Tūsī's $Z \bar{l} j-i=1 l k h \bar{a} n \bar{\imath}$ (c. late thirteenth century) (see Hamadani-Zadeh 1987: 188);
4. the rule in chapters 1 and 2 of al-Kāshī's $\bar{\imath} \bar{j} \dot{j}$ al-Khāq̄ān̄̄ (c. 1413/1414), Treatise IV (see Kennedy 1985: 9) where the rule appear on f. 168r: 11-12 with its proof on f. 174v: 10-11 of MS London India Office Persian 430 (Ethé 2232) of the Z $\bar{i} \dot{j}$ al-Khāqān \bar{i}; and
5. the second method in Ulugh Beg's Z $\bar{i} j-i$ Jad $\bar{\imath} d-i$ Sulțān $\bar{\imath}$ Discourse II. 5 (published 1438-1439) (see Sédillot 1853:90), and repeated near-verbatim in Mullā Farīd's Zī̀-i Shāh Jahānı̄ Discourse II.6.

39 One of the earlier statements of this rule can be found in Ptolemy's Almagest (c. second century ce), Book VIII. 5 on the 'computation of simultaneous culmination of sun and star' (see Toomer 1984: 411).

Ptolemy's method expresses this result in chords (instead of sines) and is derived from the first form of Menelaus' Proposition III. 1 from his Sphaerica (see Neugebauer 1975: Theorem I on p. 28).

Remarks

1. The second method in Ulugh Beg's $Z \bar{y} \bar{j}-i$ Jad $\bar{d} d-i$ Sultuan $\bar{\imath}$ elaborates on the values of the true declination δ of a celestial object when its latitude β and first/second declination $\delta_{1 / 2}(\lambda)$ take particular values depending on its position in the sky.
(a) When $\beta=0^{\circ}, \delta=\delta_{1}(\lambda)$. Here, the celestial object lies on the ecliptic (with no latitude) and hence, its true declination simply corresponds to the first declination (like, e.g., the declination of the Sun). Thus,

$$
\operatorname{Sin} \delta=\operatorname{Sin} \delta_{1}(\lambda)=\frac{\operatorname{Sin} \epsilon \cdot \operatorname{Sin} \lambda}{\mathcal{R}}
$$

using equation (9) for non-unitary Radius (sinus totus).
(b) When $\beta \neq 0^{\circ}$ and $\delta_{1}(\lambda)=0^{\circ}$, in other words, when the celestial object has a non-zero-latitude and its first declination is zero, the object lies on the equinoctial colure. The equinoctial colure is a great circle passing through the celestial poles and the equinoctial points; conceived in Figure 1 as a circle passing through the points Υ, P, and $\underline{\Omega}$. In this case, the second declination of the object is also zero, i.e., $\delta_{2}(\lambda)=0$, and hence, equation (33) gives

$$
\operatorname{Sin} \delta=\frac{\operatorname{Cos} \epsilon \cdot \operatorname{Sin} \beta}{\mathcal{R}}
$$

(c) When $\beta \neq 0^{\circ}$ and $\delta_{1}(\lambda)=\epsilon$, in other words, when the celestial object has a non-zero-latitude and its first declination is equal to the ecliptic obliquity, the object lies on the solstitial colure. The solstitial colure is a great circle passing through the celestial poles and the solstitial points; shown in Figure 1 as the circle $\bigcirc P^{\prime} R^{\prime} T^{\prime} T$. In this case, the second declination of the object is also equal to the ecliptic obliquity, i.e., $\delta_{2}(\lambda)=\epsilon$, and hence, equation (33) gives

$$
\operatorname{Sin} \delta=\operatorname{Sin}(\epsilon \pm \beta) \text { or } \delta=\epsilon \pm \beta
$$

where $\epsilon \pm \beta$ represents a special case of the curve of true declination with $\delta_{2}(\lambda)=\epsilon$.
2. Mullā Farīd repeats these three special cases in his $Z \bar{\imath} j-i$ Shāh Jahān̄ $\bar{\imath}$ Discourse II.6, passages [5], [6], and [7]. These were then translated by Nityānanda in his Siddhāntasindhu Part II.6, $[5]_{\text {prose }},[6]_{\text {prose, }}$ and $[7]_{\text {prose }}$ (see Misra 2021: pp. 86, 88, 92, and 94). The Sarvasiddhāntarāja I.spa $k r a \bar{a}$ excludes these prose passages in its recension of the second method (see Table 1).

Among Sanskrit authors, Mahendra Sūri, in his Yantrarāja I.46-48, and his student Malayendu Sūri's commentary on these verses, discuss a method to compute the true declination that closely resembles the second method described here (see Plofker 2000: 42-43) However, their expressions of equation (33) use the first declination instead of the second. This is geometrically inaccurate, and as Plofker speculates, their use of the first declination is either a 'convenient approximation or a very natural mistake' (p. 43).

4.6 THE THIRD METHOD OF TRUE DECLINATION

Nityānanda's describes the third method to compute the true declination of a celestial object in Sarvasiddhāntarāja I.spa•krā, verse 12, as follows:

परस्फुटकान्तिभवज्यका गुणा सदृक्षबाहुज्यकया ऽधरीकृता ॥ तदीय चापं भवति स्फुटापमो दिगस्य संयोगवियोगदिक्समा ॥ १२ ॥
 parasphuṭakrāntibhavajyakā guṇā sadṛkṣabāhujyakayā 'dharīkrtā \| tadīya cāpaṃ bhavati sphuṭāpamo digasya saṃyogaviyogadiksamā || 12 ||

The Sine of the maximum true declination (para-sphuta-krānti-bhava$j y a k \bar{a})$, having been multiplied (gun̄a) by the Sine of the congruent arc (sadṛkṣa-bāhu-jyakā) [and] having been lowered (adharī-krtā), its arc (cāpa) becomes the true declination (sphuța-apama). Its direction (dis) is the same (sama) as the direction of the conjunction or the disjunction (samyoga-viyoga-diś). 12

In other words,
$\begin{gathered}\text { true } \\ \text { declination }\end{gathered}=\operatorname{arcSin}\left[\frac{\operatorname{Sin}(\text { maximum true declination }) \cdot \operatorname{Sin}(\text { congruent arc })}{\operatorname{sinus} \text { totus }(\text { or Radius })}\right]$, or expressed mathematically, $\delta=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \delta_{t r u e}^{\max } \cdot \operatorname{Sin} \lambda^{\prime}}{\mathcal{R}}\right)$ where

Mathematical pression	ex-Sanskrit expression	English translation
δ	sphuţ-apama	true declination,
Sin $\delta_{\text {true }}^{\text {max }}$	para-sphuṭa-krānti-bhava-jyakā	Sine of the maximum true declination,
$\operatorname{Sin} \lambda^{\prime}$	sadṛkṣ-bāhu-jyakā	Sine of the congruent arc, and
$1 / \mathcal{R}$	(adharī-krtā)	having been lowered, i.e., divided by the Radius or sinus totus.

4.6.1 Derivation of the third method

The mathematical expression of the third method of true declination can be derived as follows:

1. The excerpt (from Figure 1) below, to the left, shows, the right spherical triangle $\triangle \Upsilon$ AS with $\overparen{\Upsilon S}$ as the congruent $\operatorname{arc} \lambda^{\prime}, \overparen{S A}$ as the true declination δ, \varangle SA $\Upsilon=90^{\circ}$, and $\varangle S \Upsilon A$ as the angle corresponding to the arc of maximum true declination $\delta_{t r u e}^{\max }$. The arc $\overparen{\Re}$ is a part of the great circle congruent to the ecliptic (identified here, as the orbit of the celestial object) such that the latitude β and the declination δ are both similarly oriented (northwards); in other words, $\delta_{\text {true }}^{\text {max }}=\epsilon+\beta_{+}^{\prime}$. Applying the spherical law of sines to triangle $\triangle \Upsilon A S$ gives

$$
\begin{gather*}
\frac{\sin \overparen{S A}}{\sin \varangle S \Upsilon A}=\frac{\sin \overparen{S T}}{\sin \varangle S A T} \text { or equivalently, } \\
\sin \delta=\sin \lambda^{\prime} \cdot \sin \delta_{\text {trux }}^{\text {max }} \tag{34}
\end{gather*}
$$

Written in terms of a non-unitary Radius (sinus totus), we find

$$
\begin{equation*}
\operatorname{Sin} \delta=\frac{\operatorname{Sin} \lambda^{\prime} \cdot \operatorname{Sin} \delta_{\text {true }}^{\max }}{\mathcal{R}} \tag{35}
\end{equation*}
$$

Excerpt of $\triangle \Upsilon$ AS from Figure 1.

This allows us to compute the true declination δ as

$$
\begin{equation*}
\delta=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \lambda^{\prime} \cdot \operatorname{Sin} \delta_{\text {true }}^{\max }}{\mathcal{R}}\right) \tag{36}
\end{equation*}
$$

The computations of the quantities $\operatorname{Sin} \lambda^{\prime}$ and $\operatorname{Sin} \delta_{\text {true }}^{\max }$ are discussed in $\S 4.3 .1$, equation (18), and $\S 4 \cdot 3 \cdot 2$, equations (21) and (22) respectively. The direction of the true declination is the same as the direction of the arc of maximum true declination $\delta_{\text {true }}^{\max }$; see discussions in § 4.3.2.

Remark The compound adharikrtā 'having been lowered' in verse 12 b refers to division by sixty, i.e., divided by the Radius or the sinus totus. Its use is comparable to the operation of lowering (adhari-kr) discussed in note 1 on p. 120, in the context of verse 9d. Once again, MS Bn.II parses the word adharīkrtā in the
middle of the verse on line 2 of f .63 v as ṣasti-bhajanam-adh[y]arīkaranam-ucyate 'division by sixty is called lowering'. Here, we find a clear parallel between the Persian expression munhatt kardan 'to make low' and the Sanskrit adhari-karana, 'making low'.

4.6.2 Historical testimonies of the third method

The third method of true declination, expressed mathematically in equation (36), can also be found in various Islamicate works (prior to Mullā Farīd's Zīj-i Shāh Jahān̄̄̀). For example,

1. the second method to determine the distance of a star from the equator in al-Bīrūnī's Kitāb Maqālīd cilm al-Hayª (c. 994) (see Debarnot 1985: 214);40
2. the third method of determining the declination of a celestial body in Ibn Yūnis' al-Z̄̄̄j al-Kabīr al-H̄ākim̄̄ (1003) (see King 1972:39.1(c) on pp. 295-296);
3. the rule in chapters 1 and 2 of al-Kāshī's Z $\bar{i} j$ al-Khāqān̄̄ (c. 1413/1414), Treatise IV (see Kennedy 1985:9) where the rule appear on f. 168r: 7 with its proof on f. 174v:6 of MS London India Office Persian 430 (Ethé 2232) of the $Z \bar{i} \bar{j}$ al-Khāq $\bar{a} n \bar{i} ;$ and
4. the third method in Sulțān Ulugh Beg's Z $\bar{j}-\mathrm{i}$ Jad $\bar{\imath} d-i$ Sulțān $\bar{\imath}$ Discourse II. 5 (published 1438-1439) (see Sédillot 1853:90-91), and repeated nearverbatim in Mullā Farīd's Zīj-i Shāh Jahān̄̄ Discourse II.6).41

Remark al-Bīrūnī also discusses a similar method of computing the distance of a star from the equator (with a slightly different derivation) in his Kitāb Taḥdīd al-Amākin (c. eleventh century), Chapter V.63: second method (see Kennedy 1973: 121), and also in his al-Qānūn al-Mas ${ }^{〔} \bar{u} d \bar{\imath}$ (c. 1030) (see Kennedy 1974: p. 65, with reference to Chapter 4, On the extraction of the distance of a star having (non-zero) latitude from the celestial equator on pp. 390-394 in Hyderabad-Dn., 1954-56 printed edition of al-Bīrūnī's al-Qānūn al-Mas ${ }^{\wedge} \bar{u} d \bar{\imath}$ (Canon Masudicus), three volumes.)

40 al-Bīrūnī's second method slightly differs from Nityānanda's rule in equation (36). Essentially, the arguments λ^{\prime} and β^{\prime} in equation (36) are expressed as complements $\overline{\lambda^{\prime}}$ and $\overline{\beta^{\prime}}$, and hence, the Sines in the numerator on the right-hand side of the equation appear as Cosines in al-Bīrūnī's expression.
41 Like al-Bīrūnī, Ulugh Beg's and Mullā Farīd's methods also use the expression $\overline{\lambda^{\prime}}$.

This quantity, understood as the distance of the celestial object from the "circle passing through the four poles" (i.e., from the solstitial colure), is discussed at the end of the § 4.2.4. Also, Ulugh Beg and Mullā Farīd both refer to the arcs of maximum latitude β^{\prime} and maximum true declination $\delta_{\text {true }}^{\max }$ as the first and second arcs respectively (see p. 114.)

Among Sanskrit authors, Mahendra Sūri's verses, in his Yantrarāja I. 43-44, and Malayendu Sūri's commentary on these verses, discuss a method similar Nityānanda's third method of true declination (see Plofker 2000: 42-43). As noted before (in remark 2 on p. 121), Mahendra Sūri considers $\frac{\operatorname{Sin} \beta}{\operatorname{Sin} \lambda^{\prime}}$ as the maximum latitude β^{\prime} (instead of $\frac{\operatorname{Sin} \beta^{\prime}}{\mathcal{R}}$, i.e., $\sin \beta^{\prime}$, following equation (20)). With this value, Mahendra Sūri calculates the maximum true declination $\delta_{\text {true }}^{\max }$ as $\epsilon \pm \beta^{\prime}$ (from equation (22)), and subsequently

$$
\begin{equation*}
\operatorname{Sin} \Delta \delta=\frac{\operatorname{Sin} \lambda^{\prime} \cdot \operatorname{Sin} \delta_{t r u e}^{\max }}{\mathcal{R}} \quad \text { (see Plofker 2000: } 42 \text {). } \tag{37}
\end{equation*}
$$

The right-hand side of equation (37) is identical to what is seen in equation (35); however, Mahendra Sūri takes this result to equal the Sine of a 'declination correction' $\Delta \delta$ instead of Sine of the true declination δ. The true declination is this declination correction, calculated as the inverse Sine of equation (37), 'increased or diminished by the latitude when [the longitude of] the star and the latitude are in the same or different hemispheres'; in other words, $\delta=\beta \pm \Delta \delta$ in a direction 'either south or north with respect to the equator' (Plofker 2000: Yantrarāja: I.44cd-45acd, p. 41). As Plofker suggests, Mahendra Sūri's method appears to be a possible corruption or confusion of the Ibn Yūnis's method (pp. 42-43).

4.6.3 Special case of celestial objects stationed at the ecliptic pole

In the Sarvasiddhāntarāja I.spa•krā, verse 13, Nityānanda discusses the special case when the celestial object-specifically identified as a star $(u d u)$ - is stationed at the ecliptic pole. For such a star,
$\operatorname{Sin}\binom{$ true }{ declination }$=\operatorname{Sin}\binom{$ complement of }{ greatest declination }$=\operatorname{Cos}\binom{$ first declination }{ of the longitude }. or expressed mathematically, $\operatorname{Sin} \delta=\operatorname{Sin}\left(90^{\circ}-\epsilon\right)=\operatorname{Cos} \delta_{1}(\lambda)$ where

Mathematical pression	ex-Sanskrit expression English translation	
Sin (δ)	spasta-krānti parama-krānti	Sine of the true declination, greatest declination, i.e., obliquity of the ecliptic, and
$\operatorname{Cos}\left[\delta_{1}(\lambda)\right]$	$d y u j \bar{\imath} v \bar{a}$	day-Sine, i.e., Cosine of the first declina- tion of the longitude, see $\S 4.2 .2$.

Derivation Figure 8 shows a star S stationed at the north ecliptic pole P^{\prime} (with longitude $\lambda=270^{\circ}$) in the celestial sphere. The circle $\bigcirc \mathrm{N} \sim \mathrm{H} \underline{\Omega}$ represents the great circle congruent to the ecliptic and passing through the star, with point H being coincident to the north ecliptic pole P^{\prime} (and also the position S of the star in its orbit). In this configuration,

1. the latitude of the star β (i.e., arcs $\overparen{\mathrm{P}^{\prime} \mathrm{D}}, \overparen{\mathrm{P}^{\prime} \mathrm{Q}}$, or $\overparen{\mathrm{P}^{\prime} \mathrm{R}^{\prime}}$) is always 90° for any value of its longitude λ;
2. the first declination $\delta_{1}(\lambda)$ (i.e., arc $\widehat{Q A}$ that measures the distance between the ecliptic and the equator along the great circle passing through the celestial pole and the ecliptical projection point, indicated in Figure 8 as Q) corresponds to the ecliptic obliquity ϵ (i.e., arc $\widehat{\mathrm{T}^{\prime} \mathrm{T}}$) when $\lambda=270^{\circ}$, i.e., $\delta_{1}(\lambda)=\epsilon ;$
3. the congruent arc (sadrks $a-b \bar{a} h u) \widehat{\Upsilon^{\prime}}$ or λ^{\prime} is also 90°;
4. the maximum latitude β^{\prime} (i.e., arcs $\widehat{\mathrm{P}^{\prime} \mathrm{T}^{\prime}}$ or $\widehat{\mathrm{HT}^{\prime}}$) is simply, $\sin \beta^{\prime}=\frac{\sin \beta}{\sin \lambda^{\prime}}=1$ using equation (19), implying β^{\prime} is 90°; and
5. the maximum true declination $\delta_{\text {true }}^{\max }$ (i.e., arc $\left.\overparen{\mathrm{HT}}\right)$ is $180^{\circ}-\left(\epsilon+\beta^{\prime}\right)$ because $\beta^{\prime}+\epsilon>90^{\circ}$, see equation (23). This implies that

$$
\delta_{\text {true }}^{\max }=180^{\circ}-\left(\epsilon+90^{\circ}\right)=90^{\circ}-\epsilon
$$

Therefore, using equation (34), the true declination of the star positioned at the north ecliptic pole (i.e., $\operatorname{arcs} \overparen{\mathrm{SA}}$ or $\overparen{\mathrm{HT}}$) is

$$
\sin \delta=\sin \lambda^{\prime} \cdot \sin \delta_{t r u e}^{\max }=\sin 90^{\circ} \cdot \sin \left(90^{\circ}-\epsilon\right)=\sin \left(90^{\circ}-\epsilon\right)
$$

In other words, $\sin \delta=\sin \left(90^{\circ}-\epsilon\right)=\cos \epsilon=\cos \delta_{1}(\lambda)=\sin \left[90^{\circ}-\delta_{1}(\lambda)\right]$, or

$$
\begin{equation*}
\delta=90^{\circ}-\epsilon=90^{\circ}-\delta_{1}(\lambda) \tag{38}
\end{equation*}
$$

Equation (38) is the mathematical statement of what Nityānanda describes in verse 13: the true declination is directly obtained from the maximum declination (or ecliptic obliquity) for any star stationed at the ecliptic pole.

Figure 8: The celestial sphere with a star S stationed at the north ecliptic pole P^{\prime} (shown here with longitude $\lambda=270^{\circ}$). The circle $\bigcirc \mathrm{NrH} \underline{\Omega}$ represents the great circle congruent to the ecliptic such that orbital point H , the position of the star at S , and the ecliptic pole P^{\prime} are coincident. The true declination δ of the star can then be seen to be equal to the complement of the ecliptic obliquity ϵ, or equivalently, the complement of the first declination of the star.

ACKNOWLEDGEMENTS

Ithank the Max-Planck-Institut Für Wissenschaftsgeschichte in Berlin, the School of Mathematics \& Statistics at University of Canterbury in Christchurch (New Zealand), and the Institut for Tværkulturelle og Regionale Studier (ToRS) at Københavns Universitet for their generous support in hosting me at different stages of this work.

I thank Prof. Kenneth Zysk and Dr Jacob Schmidt-Madsen (Centre for the Study of Indian Science at ToRS) for their insightful suggestions in preparing this work. I also thank Prof. Clemency Montelle, Prof. Kim Plofker, and Dr Benno van Dallen for sharing their expertise on technical aspects of Sanskrit and Islamicate astronomy. And finally, I am especially grateful to the two anonymous reviewers for their invaluable comments and critiques in shaping the final version of this paper, and for their meticulousness in pointing out inadvertent typographical errors. This document was built and typeset in $X_{G} T_{E} X$ for which I acknowledge the developers and maintainers of the Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network.

This study is a part of the research project on 'Early Modern Exchanges in Sanskrit Astral Sciences' (EMESAS). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Individual Fellowship Grant Agreement № 836055 .

European
Commission

INDEX OF MANUSCRIPTS

(References are to page numbers in this article.)

Alwar RORI 2619: 89f
Bankipore Khuda Bakhsh 2468/2519: 128
Benares SBL 35741: 89f
Benares SBL 37079: 89f
London India Office Persian 430: 131,135
MS Kathmandu NAK 5.7255: 89f
Paris BnF 2494: 128
Pune BORI 206 of A 1883/84: 89f
Pune Fergusson College Library Mandlik Jyotisha 15/BL 368: 89f
Ujjain Scindia OI 9409: 89, 91

REFERENCES

Bagheri, M. (2006), 'Kūshyār ibn Labbān's Glossary of Astronomy', SCIAMVS 7: 145-74.

Bhațṭācārya, J. V. (1891) (ed.), Sūryasiddhānta with the commentary Gūḍārthaprakāśikā of Rañganātha (Calcutta: Siddheśvara Press).

Chatterjee, B. (1970), Khaṇḍakhādyaka of Brahmagupta with the Vivṛtibhāṣya of Bhattotpala and English Commentary. Volumes I and II (Varanasi: Motilal Banarsidass Publishers).
_- (1981), Śsiṣadhīvṛddhidatantra of Lalla with the commentary of Mallikārjuna Sūri: Parts I and II. Critical edition with Introduction, English Translation, Mathematical Notes and Indices (New Delhi: Indian National Science Academy).

Chaturvedi, M. D. (1981) (ed.), Siddhāntaśiromaṇi of Bhāskarācārya with his autocommentary Vāsanābhāṣya and Vārttika of Nṛsiṃha Daivajña (Library Rare Text Publication Series № 5; Varanasi: Sampurnanand Sanskrit University).

Debarnot, M.-T. (1985) (ed.), al-Bīrūn̄̄ Kitāb Maqālīd ${ }^{\text {cilm }}$ al-Hay${ }^{\circ}$ a. La Trigonométrie sphérique chez les Arabes de l'Est à la fun du X ${ }^{e}$ siècle (Damascus: Institut Français de Damas).

- (1996), 'Trigonometry', in R. Rashed and R. Morelon (eds.), Encyclopedia of the History of Arabic Science, ii (New York: Routledge), 160-203.

Dikshit, S. B. (1890), 'The Romaka Siddhāntas', Indian Antiquary, 19: 133-42.
Divakaran, P. P. (2018), The Mathematics of India. Concepts, Methods, Connections (Sources and Studies in the History of Mathematics and Physical Sciences; New Delhi: Springer), IsBN: 9789811317743 .
Dorce, C. (2002-3), 'The Tāj al-Azyāj of Muheȳ̄ l-Dīn al-Maghribī (d. 1283): methods of computation', Suhayl: International Journal for the History of the Exact and Natural Sciences in Islamic Civilisation, 3: 193-212, IssN: 1576-9372.
Dvivedi, K. C. (1993-8) (ed.), Siddhāntatattvaviveka of Śrī Kamalākara Bhatṭa, with the commentary 'Vasanābhāṣya' of Śrī Gañgādhara Śarmā (M. M. Sudhākaradvivedi Granthamāla. Volume 3; Varanasi: Sampurnanand Sanskrit University).
Dvivedi, S. (1910) (ed.), Mahāsiddhānta A treatise on Astronomy of Āryabhaṭa. Edited with his own commentary (Benaras: Government Sanskrit College).
Hamadani-Zadeh, J. (1987), 'Nāṣīr Ad-Dīn on Determination of the Declination Function', in G. S. et al (ed.), History of Oriental Astronomy, xci (Access International Astronomical Union Colloquium; Cambridge: Cambridge University Press), 185-9, IsBN: 9780521346597.
Hirose, S. (2017), 'Critical edition of the Goladīpik \bar{a} (Illumination of the sphere) by Parameśvara, with translation and commentaries', PhD thesis (Paris: de l'Universitè Sorbonne Paris Cité), https://tel. archives-ouvertes.fr / tel-02082959.
Hodgson, M. G. S. (1974), The Venture of Islam: Conscience and History in a World Civilization: 1. The Classical Age of Islam (Chicago, Illinois: The University of Chicago Press), isbn: 9780226346786.

Irani, R. A. K. (1956), 'The Jadwal al-Taqwīm of Habash al-Hāsib', PhD thesis (Beirut, Lebanon: American University of Beirut).
Kennedy, E. S. (1973), A Commentary upon Bīrūnī's Kitāb Tahīid al-Amākin (Beirut, Lenbanon: American University of Beirut).
-_ (1974), 'Al-Bīrūnī's Mascudic Canon', al-Abhath, 24: 59-81.
__(1985), 'Spherical Astronomy in Kāshī's Khāqān̄̄ Zī̀', Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften, 2: 1-46.
King, D. (1972), 'The astronomical works of ibn Yūnus', PhD thesis (New Haven, Connecticut: Yale University).
Luckey, P. (1941), 'Zur Entstehung der Kugeldreiecksrechnungy', Deutsche Mathematik, 5: 405-46.

Minkowski, C. (2014), 'Learned Brahmins and the Mughal Court: The Jyotiṣas', in V. Dalmia and M. D. Faruqui (eds.), Religious Interactions in Mughal India (New Delhi: Oxford University Press), 102-34. Dor: 10.1093/acprof : oso/ 9780198081678.001.0001.

Misra, A. (2016), 'The Golādhyāya of Nityānanda's Sarvasiddhāntarāja: An Examination of 'The Chapter on Spheres' in a seventeenth century text on Mathematical Astronomy', PhD thesis (Christchurch, New Zealand: University of Canterbury). Doi: $10.26021 / 8602$.

- (2021), 'Persian Astronomy in Sanskrit: A Comparative Study of Mullā Farīd's Z $\bar{j}-i$ Shāh Jahān̄ $\mathfrak{\imath}$ and its Sanskrit Translation in Nityānanda's Siddhāntasindhu', History of Science in South Asia, 9: 30-127. Dor: 10. 18732/ hssa64.

Miśra, B. (1932) (ed.), The Siddhāntaśekhara of Śrīpati. A Sanskrit astronomical work of the $11^{\text {th }}$ century. Edited, with the commentary of Makkibhattla (Chaps. I-IV) and an Original Commentary (Chaps. IV-X). Parts I and II (Calcutta: Calcutta University Press).
Montelle, C. and Plofker, K. (2018), Sanskrit Astronomical Tables (Sources and Studies in the History of Mathematics and Physical Sciences; Cham, Switzerland: Springer Nature Switzerland AG). Doi: 10.1007/978-3-319-97037-0.

Montelle, C. and Ramasubramanian, K. (2018), 'Determining the Sine of One Degree in the Sarvasiddhāntarāja of Nityānanda', SCIAMVS 19: 1-52, ISSN: 13454617.

Montelle, C., Ramasubramanian, K., and Dhammaloka, J. (2016), 'Computation of Sines in Nityānanda's Sarvasiddhāntarāja', SCIAMVS 17: 1-53, ISsN: 13454617.

Nair, S. (2020), Translating Wisdom: Hindu-Muslim Intellectual Interactions in Early Modern South Asia (Oakland, California: University of California Press), isbn: 9780520345683.

Narasimha, R. (2007), 'Epistemology and Language in Indian Astronomy and Mathematics', Journal of Indian Philosophy, 35(5/6): 521-41. Dor: 10 . 1007 / s10781-007-9033-5.

- (2012), 'Pramanas, Proofs, and the Yukti in Classical Indic Science', in Asia, Europe, and the Emergence of Modern Science. Knowledge Crossing Boundaries, ed. A. Bala (New York: Palgrave Macmillan), 93-109, IsBN: 9781137031730.

Neugebauer, O. (1975) (ed.), A History of Ancient Mathematical Astronomy (Studies in the History of Mathematics and Physical Sciences; Heidelberg: SpringerVerlag). Doi: 10.1007/978-3-642-61910-6.

Ojhā, M. (1978), Siddhāntasārvabhauma by Munīśvara (Varanasi: Sampurnanand Sanskrit University).

Pai, V., Ramasubramanian, K., Sriram, M. S., and Srinivas, M. D. (2018), Karaṇapaddhati of Putamana Somayāj̄̄ (Singapore: Springer Nature), isbn: 9789811068140.

Pingree, D. (1970-94), Census of the Exact Sciences in Sanskrit (Series A; Philadelphia: American Philosophical Society), ARK: ark:/13960/t4dp0cq1z.
__ (1978), 'Islamic Astronomy in Sanskrit', Journal for the History of Arabic Science, 2: 315-30.

- (1991), 'Jyotiḥsāstra Astral and Mathematical Literature', in J. Gonda (ed.), A History of Indian Literature, VI. Fasc. 4 (Wiesbaden: Otto Harrassowitz), 1149, ISBN: 9783447021654.
- (1996), 'Indian Reception of Muslim Versions of Ptolemaic Astronomy', in F. J. Ragep, S. P. Ragep, and S. Livesey (eds.), Tradition, Transmission, Transformation: Proceedings of Two Conferences on Premodern Science Held at the University of Oklahoma (Leiden: Brill), 471-85, isbn: 9789004101197.
_- (2003), 'The Sarvasiddhāntarāja of Nityānanda', in J. P. Hogendijk and A. al-Hamīd Ṣabrah (eds.), The Enterprise of Science in Islam: New Perspectives (Dibner Institute studies in the history of science and technology; Cambridge, Massachusetts: MIT Press), 269-84, IsBN: 9780262519168.

Plofker, K. (2000), ‘The Astrolabe and Spherical Trigonometry in Medieval India', Journal for the History of Astronomy, xxxi: 37-54. Dor: 10 . 1177 / 002182860003100103.

- (2002), 'Spherical Trigonometry and Astronomy of the Medieval Kerala School', in S. M. R. Ansari (ed.), History of Oriental Astronomy, cclxxv (Astrophysics and Space Science Library; Dordrecht: Springer), 83-93. Doi: 10 .1007/978-94-015-9862-0_8.
-_(2009), Mathematics in India (Princeton: Princeton University Press), Isbn: 9780691120676.

Raikva, K. K. (1936) (ed.), The Yantrarāja of Mahendra Sūri, together with the commentary of Malayendu Sūri and the Yantraśiromaṇi of Viśrāma (Bombay: Nirnay Sagar Press).
Ramasubramanian, K. and Sriram, M. S. (2011), Tantrasañgraha of Nīlakaṇṭha Somayājī (Sources and Studies in the History of Mathematics and Physical Sciences; London: Springer-Verlag), isbn: 9780857290366.
Sarma, K. V. V. (1973), A History of the Kerala School of Hindu Astronomy (In Perspective) (Hoshiarpur: Vishveshvaranand Institute of Sanskrit and Indological Studies, Punjab University).

Sarma, S. R. (1999), 'Yantrarāja: The Astrolabe in Sanskrit', Indian Journal of History of Science, 34(2): 145-58, https://insa.nic.in/writereaddata/ UpLoadedFiles/IJHS/Vol34_2_6_SRSarma.pdf, (on 23 Aug. 2022).
_- (2000), 'Sulțān, Sūri and the Astrolabe', Indian Journal of History of Science, 35(1): 129-47, Academia.edu: 48765849.

- (2008) (ed.), The Archaic and the Exotic: Studies in the History of Indian Astronomical Instruments (New Delhi: Manohar Publications), Isbn: 9788173045714.
- (2019) (ed.), 'A Descriptive Catalogue of Indian Astronomical Instruments', Electronic Open Access version, http://crossasia-repository.ub.uni -heidelberg.de/4167.

Sédillot, L.-A. (1853), Prolégomènes des tables astronomiques d'Oloug-Beg. Traduction et Commentaire (Paris: L'Institut de France (Firmin-Didot Frères Printers)).

Sengupta, P. C. (1931), 'Greek and Hindu Methods in Spherical Astronomy', Journal Of The Department Of Letters University of Calcutta, XXII: 1-25.
Sharma, R. S. (1966a) (Chief), Shri Brahmagupta Viracita Brāhmasphuțasiddhānta with Vāsanā, Vijñāna and Hindi Commentaries (New Delhi: Indian Institute of Astronomical and Sanskrit Research).
——(1966b) (Chief), Shri Brahmagupta Viracita Brāhmasphuṭasiddhānta with Vāsanā, Vijñāna and Hindi Commentaries (New Delhi: Indian Institute of Astronomical and Sanskrit Research).

Shukla, K. S. (1960), Bhāskara I and his Works. Part II. Mahābhāskarīya (Hindu Astronomical and Mathematical Text Series № 3; Lucknow: University of Lucknow Press).

- (1986), Vaṭeśvarasiddhānta and Gola of Vaṭeśvara. Critically Edited with English Translation and Commentary. Parts I and II (New Delhi: Indian National Science Academy).

Sriram, M. S. (2008), 'Kerala School of Astronomy and Mathematics', in Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, ed. H. Selin (Dordrecht: Springer Netherlands), 1160-4. Doi: 10.1007/ 978-1-4020-4425-0_8683.

Toomer, G. J. (1984), Ptolemy's Almagest. Translation and Annotation (London: Duckworth Publications), ISBN: 9780387912202.
Van Brummelen, G. (2013), Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry (Princeton: Princeton University Press), ISBN: 9780691148922.

APPENDICES

A ON COMPUTING THE TRUE DECLINATION IN MEDIEVAL SANSKRIT TEXTS

Figure A1: Celestial sphere showing the position S of a celestial object with equatorial coordinates $(\overparen{S A}, \overparen{\Upsilon A})$ or (δ, α); ecliptic coordinates $(\overparen{\mathrm{SD}}, \overparen{\Upsilon D})$ or (β, λ); and polar coordinates $(\overparen{S Q}, \widehat{\Upsilon Q})$ or $\left(\beta_{\text {polar }}, \lambda_{\text {polar }}\right)$.

Figure A1 shows a celestial object (star or planet) positioned at S in the celestial sphere with arcs $\widehat{T Y R}$ and $\widehat{T^{\prime} \Upsilon R^{\prime}}$ being the celestial equator and ecliptic respectively. The coordinates of this celestial object are ($\widehat{\mathrm{SA}}, \overparen{\Upsilon A}$) or (δ, α) in equatorial coordinates, ($\overparen{\mathrm{SD}}, \overparen{\Upsilon D})$ or (β, λ) in ecliptic coordinates, and $(\overparen{S Q}, \overparen{\Upsilon Q})$ or ($\beta_{\text {polar }}$, $\left.\lambda_{\text {polar }}\right)$ in polar coordinates.

The arcs $\widehat{\mathrm{XD}}$ and $\widehat{\mathrm{SS}^{\dagger}}$ in Figure A1 are parts of the small day-circles (dyu-vrtta) of the celestial object passing through points D and S respectively. Point D is the intersection of the secondary to the ecliptic passing through the celestial object at S and the ecliptic. In Sanskrit astronomy, point S is considered as the position of the disk (bimba) of the planet (graha), while the ecliptic point D represents its image (pratibimba) or projection (viksepa). The day-circle through D intersects the declination arc $\overparen{S A}$ at point X and the day-circle through point S intersects the polar arc through D, i.e., $\overparen{P D}$, at point S^{\dagger}. The equatorial points B and C represent the points of intersections of the polar $\operatorname{arc} \overparen{\mathrm{PD}}$ and the ecliptic arc $\overparen{\mathrm{P}^{\prime} \mathrm{D}}$ with the celestial equator respectively.

A. 1 ON THE USE OF POLAR COORDINATES

The arc of true declination $\overparen{S A}$ of a celestial object can be decomposed into polar coordinates as

$$
\begin{equation*}
\overparen{\mathrm{SA}}=\widehat{\mathrm{QA}} \pm \overparen{\mathrm{SQ}}, \text { or equivalently } \delta=\delta^{\prime}\left(\lambda_{\text {polar }}\right) \pm \beta_{\text {polar }}{ }^{1} \tag{A1}
\end{equation*}
$$

where $\widehat{\mathrm{QA}}=\delta^{\prime}\left(\lambda_{\text {polar }}\right)$ is the declination of ecliptic point Q that lies at an ecliptic longitude of $\lambda_{\text {polar }}$ from the vernal equinoctial point Υ (o° Aries). Historically, Sanskrit astronomers often appropriated the polar coordinates ($\beta_{\text {polar }}, \lambda_{\text {polar }}$) of a celestial object.

The polar coordinate system is a non-orthogonal coordinate system. Here, the polar latitude $\beta_{\text {polar }}$ is measured with respect to the equatorial pole P , whereas the polar longitude $\lambda_{\text {polar }}$ is measured with respect to the ecliptic pole P^{\prime}. Hence

- the polar longitude $\lambda_{\text {polar }}(\operatorname{arc} \widehat{\Upsilon Q})$ can be regarded as the ecliptic longitude λ (arc $\widehat{\Upsilon D}$) corrected by the ecliptic $\operatorname{arc} \lambda_{d r s}(\operatorname{arc} \overparen{Q D})$. In Sanskrit astronomy, this ecliptic arc is called the āyana-drkkarma 'visibility correction due to ecliptic deviation'.
- And the polar latitude $\beta_{\text {polar }}(\operatorname{arc} \overparen{S Q})$ can be thought of as a transformation of the ecliptic latitude $\beta(\operatorname{arc} \overparen{S D})$ along the direction of the declination δ ($\operatorname{arc} \overparen{S A}$); in other words, $\beta \leadsto \beta_{\text {polar }}$ along the direction of δ.

The Indian and Greek methods of converting the ecliptic longitude of a heavenly body into its polar longitude is discussed in Sengupta (1931:20-24). Also,

[^11]discussions on the curve of true declination (sphuṭa-apama-aṅka) in § 4.2.1.

Plofker (2000:40) discusses a typical Sanskrit method of (approximately) calculating the polar coordinates from which, in theory, the true declination of the celestial object could be determined. However, most siddhāntic texts prescribe a different (approximate) method for this calculation.

A. 2 ON THE USE OF ECLIPTIC COORDINATES

Alternatively, the true declination of the celestial object δ, the equivalent $\operatorname{arcs} \overparen{S A}$ and $\overparen{S^{\dagger} B}$ in equatorial coordinates, can also be decomposed as $\overparen{S A}=\overparen{X A} \pm \overparen{S X}$ and $\widehat{S^{+} \mathrm{B}}=\overparen{\mathrm{DB}} \pm \widehat{\mathrm{S}^{+} \mathrm{D}} .^{2}$ This implies,

$$
\begin{equation*}
\delta=\overparen{S A}=\overparen{S^{+} B}=\delta^{\prime}(\lambda) \pm \overparen{S X} \text { or } \delta^{\prime}(\lambda) \pm \overparen{S^{+} D} \tag{A2}
\end{equation*}
$$

where the $\overparen{X A}=\overparen{D B}=\delta^{\prime}(\lambda)$ is the declination of the ecliptic projection point D. The value of $\overparen{D B}$ is computed using the spherical law of sines applied to right spherical triangle $\triangle \Upsilon B D$ and $\triangle \Upsilon R R^{\prime}$ such that

$$
\operatorname{Sin} \overparen{D B}=\operatorname{Sin} \delta^{\prime}(\lambda)=\frac{\operatorname{Sin} \epsilon \cdot \operatorname{Sin} \lambda}{\mathcal{R}}
$$

a method commonly referred to as the method of declination. (This is also the expression of the first declination, see Appendix B.)

In most medieval Sanskrit siddhāntas, the arc $\overparen{S X}\left(\right.$ or $\left.\overparen{S^{\dagger} D}\right)$ was often considered equal to the ecliptic latitude $\overparen{S D}$ or β on account of the smallness of a planet's deviation from the ecliptic (i.e., β being small, $\overparen{S X}=\widehat{S^{\dagger} D} \approx \beta$). ${ }^{3}$ This allowed the true declination δ in equation (A2) to be approximated as

$$
\begin{equation*}
\delta=\overparen{\mathrm{SA}}=\overparen{\mathrm{S}^{+} \mathrm{B}} \approx \delta^{\prime}(\lambda) \pm \beta \tag{3}
\end{equation*}
$$

[^12]liptic longitude $\lambda_{\mathbb{C}}$ can be expressed as
$$
\operatorname{Sin} \beta_{\mathbb{C}}=\frac{\operatorname{Sin}\left(\lambda_{\mathbb{C}}-\lambda_{\Omega}\right) \cdot \operatorname{Sin} \iota^{\circ}}{\mathcal{R}}
$$

In its approximate form,

$$
\beta_{\mathbb{C}} \approx \frac{\operatorname{Sin}\left(\lambda_{\mathbb{C}}-\lambda_{\Omega}\right) \cdot 4 ; 30^{\circ}}{\mathcal{R}}
$$

$$
\text { as } \operatorname{Sin} \beta_{\mathbb{C}} \sim \beta_{\mathbb{C}} \forall \beta_{\mathbb{C}} \in\left[0^{\circ}, 4 ; 30^{\circ}\right] \text { and }
$$

$$
\operatorname{Sin} 4 ; 30^{\circ} \sim 4 ; 30^{\circ}
$$

REMARKS

1. According to Sudhākara Dvivedi's Sanskrit commentary, the Nūtanatilaka (1902), on the Brāhmasphuṭasiddhānta X.15-16 (628), Brahmagupta describes the true declination (sphuta-krānti) as the sum or difference of its ecliptic declination (dhruva-krānti) $\overparen{\mathrm{DB}}$ and its true (polar) latitude (spaṣta-śara) $\overparen{\mathrm{SX}}$. The true latitude being small, it is then simply approximated by the ecliptic latitude $\overparen{S D}$ following equation (A_{3}) (see Sharma 1966a: 585-589).
The same approximation is also repeated in the calculation of the true declination of the Moon in the Brāhmasphuțasiddhānta VII.5. As Sharma (1966b: 483-485) describes (in the upapatti on p. 484), the arc $\overparen{S D}$ is understood as the mean latitude (madhyama-śara) while the arc $\overparen{\mathrm{DB}}$ is the mean declination (madhyama-krānti). In contrast, the $\operatorname{arc} \overparen{S X}\left(\right.$ or $\left.\overparen{S^{\dagger} D}\right)$ is considered to be the true latitude (spaṣta-śara). With the true latitude being small (when compared to the mean latitude), the true declination is again approximated following equation (A3).
Brahmagupta's Khaṇdakhādyaka I.3.7cd (665) also states equation (A3) as the general rule to compute the true declination of a planet (see Chatterjee 1970: p. 96 in Volume I and p. 59 in Volume II).
2. Bhāskara I, in his Mahābhāskarīya VI. 8 (c. seventh century) (see Shukla 1960: p. 38 and pp. 188-189) and the (modern) Sūryasiddhānta II. 58 (c. 8oo) (see Bhattāāārya 1891:82) both describe equation (A3) as the method to calculate the true declination of a planet (Moon).
3. Lalla, in his Śiṣadhīvrddhidatantra I.9.1-2 (c. late eight or early ninth century) also uses the approximate method of equation (A_{3}) to compute the true declination (sphuta-krānti) of the Moon from its mean declination (madhyama-krānti) and its latitude (vikṣepa) (see Chatterjee 1981: p. 132 in Part I and pp. 162-163 in Part II).
4. Vaṭeśvara, in his Vaṭeśvarasiddhānta I.6.21ab (904) (see Shukla 1986: p. 275 in Part I and pp. 542-543 in Part II) and Āryabhaṭa II, in his Mahāsiddhānta I.3.38b (c. late ninth century) (see S. Dvivedi 1910:65) reiterate the rule in equation $\left(A_{3}\right)$ to compute the true declination of a planet (Moon).
5. Śrīpati, in his Siddhāntaśekhara XXI.7 (c. eleventh century) describes a method to compute the true declination of the Moon identical to equation (A3) (see Miśra 1932: p. 439 in Part I).

To calculate the arc $\overparen{S X}$ (or arc $\overparen{S^{\dagger} D}$) precisely, instead of approximating it with the ecliptic latitude $\overparen{S D}$, the right-angled convex triangle $\triangle \mathrm{SXD}$ (or $\triangle \mathrm{DS}^{\dagger} \mathrm{S}$)
is approximated as a right-angled planar triangle. This then gives

$$
\begin{align*}
\overparen{\mathrm{SX}} \sim \mathrm{SX} & =\frac{\mathrm{SD} \cdot \operatorname{Cos} \angle \mathrm{XSD}}{\mathcal{R}}=\frac{\beta \cdot \operatorname{Cos} \angle \mathrm{XSD}}{\mathcal{R}}=\frac{\beta \cdot \sqrt{\mathcal{R}^{2}-\operatorname{Sin} \angle \mathrm{XSD}}}{\mathcal{R}} \text { or } \\
\widehat{\mathrm{S}^{\dagger} \mathrm{D}} \sim \mathrm{~S}^{\dagger} \mathrm{D} & =\frac{\mathrm{SD} \cdot \operatorname{Cos} \angle \mathrm{SDS}^{\dagger}}{\mathcal{R}}=\frac{\beta \cdot \operatorname{Cos} \angle \mathrm{SDS}^{+}}{\mathcal{R}}=\frac{\beta \cdot \sqrt{\mathcal{R}^{2}-\operatorname{Sin} \angle \mathrm{SS}^{\dagger} \mathrm{D}}}{\mathcal{R}} \tag{A4}
\end{align*}
$$

With parallel great-circle arcs $\overparen{P A}$ and $\overparen{P B}$ intersected by the great-circle arc $\overparen{P^{\prime} \mathrm{C}}$ in Figure A1, we can consider the (planar-approximate) $\angle \mathrm{XSD}$ or $\angle \mathrm{SS}^{\dagger} \mathrm{D}$ equal in measure to the spherical angle $\varangle \mathrm{PSP}^{\prime}$. Thus, for the spherical triangle $\triangle \mathrm{PSP}^{\prime}$, the spherical law of sines gives

$$
\sin \varangle \mathrm{PSP}^{\prime}=\frac{\sin \left(90^{\circ}-\lambda\right) \cdot \sin \epsilon}{\sin \left(90^{\circ}-\delta\right)}=\frac{\sin \left(90^{\circ}+\lambda\right) \cdot \sin \epsilon}{\cos \delta}
$$

since $\sin \left(90^{\circ}+x\right)=\cos (x)=\sin \left(90^{\circ}-x\right)$. Hence,

$$
\begin{align*}
\operatorname{Sin} \varangle \mathrm{PSP}^{\prime} & =\frac{\operatorname{Sin}\left(90^{\circ} \pm \lambda\right) \cdot \operatorname{Sin} \epsilon}{\operatorname{Cos} \delta}(\text { for non-unitary Radius or sinus totus) } \\
\Rightarrow \operatorname{Sin} \varangle \mathrm{PSP}^{\prime} & =\frac{\mathcal{R} \cdot \operatorname{Sin} \delta^{\prime}\left(90^{\circ} \pm \lambda\right)}{\operatorname{Cos} \delta} \quad \because \operatorname{Sin} \delta^{\prime}\left(\mathrm{x}^{\circ}\right)=\frac{\operatorname{Sin} \mathrm{x}^{\circ} \cdot \operatorname{Sin} \epsilon}{\mathcal{R}} \tag{5}
\end{align*}
$$

In Sanskrit astronomy, the quantity $\varangle \mathrm{PSP}^{\prime}$ is called the a yana-valana 'deflection due to ecliptic obliquity'. Its value is between o° (when $\lambda= \pm 90^{\circ}$ and assuming $\beta=o^{\circ}$) and ϵ (when $\lambda=o^{\circ}$). Correspondingly, the denominator in equation (A_{5}) can be approximated as

$$
\begin{aligned}
& \operatorname{Cos}(\delta=\epsilon) \sim \mathcal{R} \because \epsilon \in\left[23.5^{\circ}, 24^{\circ}\right] \text { when } \lambda= \pm 90^{\circ} \text { and assuming } \beta=0^{\circ} \\
& \text { and } \operatorname{Cos}\left(\delta=0^{\circ}\right)=\mathcal{R} \text { when } \lambda=0^{\circ} .
\end{aligned}
$$

This allows equation $\left(\mathrm{A}_{5}\right)$ to be written as

$$
\begin{equation*}
\operatorname{Sin} \varangle \mathrm{PSP}^{\prime} \approx \operatorname{Sin} \delta^{\prime}\left(90^{\circ} \pm \lambda\right) \quad \text { or } \quad \operatorname{Cos} \varangle \mathrm{PSP}^{\prime} \approx \operatorname{Cos}^{\prime}\left(90^{\circ} \pm \lambda\right) \tag{A6}
\end{equation*}
$$

From equations (A4) and (A6), we find

$$
\begin{equation*}
\overparen{\mathrm{SX}} \sim \mathrm{SX} \text { or } \overparen{\mathrm{S}^{+} \mathrm{D}} \sim \mathrm{~S}^{+} \mathrm{D}=\frac{\beta \cdot \sqrt{\mathcal{R}^{2}-\operatorname{Sin} \varangle \mathrm{PSP}^{\prime}}}{\mathcal{R}} \approx \frac{\beta \cdot \operatorname{Cos} \delta^{\prime}\left(90^{\circ} \pm \lambda\right)}{\mathcal{R}} \tag{7}
\end{equation*}
$$

and hence, the true declination arc $\overparen{S A}$ or $\overparen{S^{\dagger} B}$ in equation (A2) can then be approximated as

$$
\begin{align*}
& \overparen{\mathrm{SA}}=\overparen{\mathrm{S}^{\dagger} \mathrm{B}}=\delta \approx \delta^{\prime}(\lambda) \pm \frac{\beta \cdot \sqrt{\mathcal{R}^{2}-\operatorname{Sin} \varangle \mathrm{PSP}^{\prime}}}{\mathcal{R}} \text { or } \tag{A8}\\
& \overparen{\mathrm{SA}}=\overparen{\mathrm{S}^{\dagger} \mathrm{B}}=\delta \approx \delta^{\prime}(\lambda) \pm \frac{\beta \cdot \operatorname{Cos} \delta^{\prime}\left(90^{\circ} \pm \lambda\right)}{\mathcal{R}}
\end{align*}
$$

REMARKS

1. Bhāskara II, in his Siddhāntaśiromaṇi I.8.3 (1150) describes two methods to compute the true declination of a planet by applying a correction to the declination (krānti-saṃskāra); in other words, adding a correction to the arc $\overparen{\mathrm{DB}}$ or $\delta^{\prime}(\lambda)$. Bhāskara II's methods are identical to the two approximations of the true declination arc $\overparen{S A}=\overparen{S^{\dagger} B}$ in equation (A8) (see Chaturvedi 1981: 276-278).
Bhāskara II repeats the second rule of equation (A8) (using Cosine) in his Siddhāntaśiromaṇi II.9.10 to calculate the rectified latitude (spaṣta-śara). The rectified latitude is then added to the mean declination (madhyama-krānti) in equation (A8) (see Chaturvedi 1981: 433).
2. The rules for computing the true declination of the Sun and the Moon according to the Nila School of Kerala (South India), ${ }^{4}$ especially the methods of Nīlakaṇṭha Somayājī (c. 1444-c. 1545) in his Tantrasañgraha (1501) and Śañkara Vāriyar (c. 1500-c. 1560) in his prose commentary Laghuvivrti on the Tantrasañgraha, are discussed in Plofker (2002:87-91) and Ramasubramanian and Sriram (2011:359-369). Also, see Hirose (2017: 234-238) where the method of determining the corrected latitude and true declination in Parameśvara's Goladīpikā (c. post 1432-c. ante 1443) is discussed.

[^13]scribed Divakaran (2018: Chapter 9: The Nila Phenomenon on pp. 257-290).

B ON DERIVING THE SECOND DECLINATION FROM THE FIRST IN NITYĀNANDA'S SARVASIDDH $\bar{A} N T A R \bar{A} J A$ I.4.49-50AB

In the topic on three questions (tripraśna) [on direction, place, and time] in the chapter on computations (ganitādhyāya) of the Sarvasiddhāntarāja, Nityānanda derives the second declination from the first. His begins his discussion on the two types of declination with the statement ${ }^{5}$

अथ कान्तिसूत्रगतकान्तेः इारसूत्रगतकान्त्यानयनम् ।
 atha krāntisūtragatakrānteh sarasūtragatakrānty ānayanam |

Now, [the rule for] calculating (ānayana) the [second] declination (krānti) associated with the line-of-latitude (śara-sūtra) from the [first] declination (krānti) associated with the line of declination (krānti-sūtra).
In Figure B1, the arc $\overparen{D B}$ is the arc of first declination and the $\operatorname{arc} \overparen{D C}$ is the arc of the second declination, both measured from point D, the intersection of the secondary to the ecliptic passing through the celestial object at S and the ecliptic $\operatorname{arc} \widehat{\mathrm{T}^{\prime} \Upsilon \mathrm{R}^{\prime}}$.

1. The polar longitudinal arc $\overparen{\mathrm{PDB}}$ passing through the ecliptical projection of the celestial object, i.e., point D , produces the arc of first declination $\overparen{D B}$. Hence, the measure of the first declination is associated with the line of declination (krānti-sūtra).
2. The secondary to the ecliptic, i.e., arc $\widehat{\mathrm{P}^{\prime} \mathrm{SDC}}$ is associated with the line of latitude (śara-sūtra) where arc $\overparen{S D}$ is the latitude (śara) of the celestial object. Hence, the second declination arc $\overparen{D C}$ is considered in connection to the latitudinal direction.

In verses 49-50ab of tripraśnādhikāra, Nityānanda describes a method to compute the second declination (dvitīyā-krānti) from the first declination (krānti):

```
या कोटितो भवेत्कान्तिः सा विलोमानि गद्यते ॥
विल्लोमकान्तिकोटिज्योद्दृता त्रिज्या गुणा पुनः ॥ &९ ॥
कान्तिज्या फलजं चापं द्वितीया कान्तिरुच्यते ॥ ५०म,द्बि
yā koṭito bhavet krāntih sā vilomāni gadyate ॥| vilomakrāntikotijyoddhṛtā trijyā guṇā punah || 49 ||
```

5 The numbering of the verses in the tripraśnādhikāra of the Sarvasiddhāntarāja is different in different manuscripts. I follow MS Np: National Archives Nepal,

NAK 5.7255 (NGMCP Microfilm Reel № B $354 / 15$) as it appears to be the most uniform in its verse-numbering.

Figure B1: The celestial sphere showing the spherical triangles inscribed by the celestial equator, the ecliptic, and their different secondary circles with respect to a celestial object positioned at S.

krāntijyā phalajaṃ cāpaṃ dvitīyā krāntir ucyate || 50ab

Whatever [ecliptic] declination (krānti) is [derived] from the complement [of the longitude] (i.e., from the koti), that is called the reverse (viloma) [declination]. The sinus totus (trijy $\bar{a})$ divided by the Cosine of the reverse declination (viloma-krānti-kotijyā) and again multiplied 49...
...by the Sine of the [ecliptic] declination (krānti-jyā). The arc (cāpa) produced from the result (phala) is called the second declination (dvitīyā-krānti). 50ab

To understand this method, we first apply the spherical law of sines to the right spherical triangle $\triangle \mathrm{DBC}$ in Figure B1:

$$
\begin{align*}
& \frac{\sin \overparen{D C}}{\varangle D B C}=\frac{\sin \overparen{D B}}{\varangle D C B} \Rightarrow \sin \overparen{D C}=\frac{\sin \overparen{D B} \cdot \sin \varangle D B C}{\sin \varangle D C B}, \text { or } \\
& \sin \delta_{2}(\lambda)=\frac{\sin \delta_{1}(\lambda)}{\sin \varangle D C B} \quad \because \sin \varangle D B C=\sin 90^{\circ}=1 . \tag{B1}
\end{align*}
$$

With $\varangle \mathrm{DCB}=\varangle \mathrm{PCB}-\varangle \mathrm{PCP}^{\prime}=90^{\circ}-\varangle \mathrm{PCP}^{\prime}$, we can again apply the spherical law of sines to the spherical triangle $\triangle \mathrm{PCP}^{\prime}$ as

$$
\frac{\sin \varangle \mathrm{PCP}^{\prime}}{\sin \overparen{\mathrm{PP}^{\prime}}}=\frac{\sin \varangle C \mathrm{P}^{\prime} \mathrm{P}}{\sin \overparen{C P}} \Rightarrow \frac{\sin \varangle \mathrm{PCP}^{\prime}}{\sin \epsilon}=\frac{\sin \left(90^{\circ}-\lambda\right)}{\sin 90^{\circ}} .
$$

This gives $\sin \varangle P C P^{\prime}=\sin (\epsilon) \cdot \sin (90-\lambda)=\sin \delta_{1}\left(90^{\circ}-\lambda\right)$, since $\sin \delta_{1}\left(x^{\circ}\right)=$ $\sin \epsilon \cdot \sin x^{\circ}$. Thus, $\sin \varangle P C P^{\prime}=\sin \delta_{1}\left(90^{\circ}-\lambda\right)$ or $\varangle P C P^{\prime}=\delta_{1}\left(90^{\circ}-\lambda\right)$, and hence

$$
\begin{equation*}
\varangle D C B=90^{\circ}-\varangle \mathrm{PCP}^{\prime}=90^{\circ}-\delta_{1}\left(90^{\circ}-\lambda\right) . \tag{B2}
\end{equation*}
$$

From equations (B_{1}) and (B_{2}), it follows that

$$
\begin{equation*}
\sin \delta_{2}(\lambda)=\frac{\sin \delta_{1}(\lambda)}{\sin \left[90^{\circ}-\delta_{1}\left(90^{\circ}-\lambda\right)\right]}=\frac{\sin \delta_{1}(\lambda)}{\cos \delta_{1}\left(90^{\circ}-\lambda\right)} \tag{B3}
\end{equation*}
$$

For a non-unitary Radius (sinus totus), we have

$$
\begin{equation*}
\operatorname{Sin} \delta_{2}(\lambda)=\frac{\operatorname{Sin} \delta_{1}(\lambda) \cdot \mathcal{R}}{\operatorname{Cos} \delta_{1}\left(90^{\circ}-\lambda\right)^{\prime}} \tag{4}
\end{equation*}
$$

which is the mathematical expression of the statement
$\operatorname{Sin}($ second declination $)=\frac{\operatorname{Sin}(\text { first declination }) \cdot \operatorname{sinus} \text { totus }(\text { or Radius })}{\operatorname{Cos}\binom{\text { first declination of ecliptic }}{\text { longitude decreased from } 90^{\circ}}}$
in verses 49-50a. Nityānanda refers to the first declination derived from the complement (koti i) of the longitude, i.e., $\delta_{1}\left(90^{\circ}-\lambda\right)$, as the 'reverse declination' (viloma$k r a ̄ n t i)$. Compare this with the Islamicate term 'inverse declination' (al-māyl al-mackus) described in footnote 34 on p. 127. The arc Sine of the result on the right-hand side of equation (B_{4}), when expressed in degrees etc., is the expression for the second declination in verse $50 b$ above.

REMARKS

1. Munīśvara, in his auto-commentary on his Siddhāntasārvabhauma I.4.43-45 (1646), called the $\bar{A} s$ sayaprakāsinī or Siddhāntatattvārtha, also describes the declination as krāntivrttaviṣuvavrttapradeśayor madhyasthāṃśāh 'the degrees [of arc] situated in the middle of the region of the ecliptic (krānti-vrtta) and the celestial equator (viṣuvat-vrtta)', with the conditions that

- when the arc is measured on the dhruvaprotavrtta '[great] circle fixed to celestial pole (dhruva)' it is the first declination (simply called krānti 'declination') and
- when the arc is measured on the kadambaprotavrtta '[great] circle fixed to ecliptic pole (kadamba)' it is the second declination (called anyakrānti 'other declination') (see Ojhā 1978: 421).

2. It is interesting to note that Munīśvara's and Kamalākara's methods to compute the second declination (from the first declination) are also identical to Nityānanda's method; see equations (D1) and (E1). Both their methods rely on the identification of $\delta_{1}\left(90^{\circ}-\lambda\right) \leftrightarrow \delta_{1}\left(90^{\circ}+\lambda\right)$ which is discussed in equation (C_{2}).

C ON THE EQUIVALENCE OF THE FIRST AND SECOND METHODS OF DECLINATION IN NITYĀNANDA'S
 SARVASIDDH $\bar{A} N T A R \bar{A} J A$ I.SPA•KR $\bar{A} .2-3$

Figure C_{1} : Right spherical triangles $\triangle \mathrm{P}^{\prime} \mathrm{TC}$ and $\triangle \mathrm{LGC}$.

IN VERSES 2 and 3, Nityānanda gives the following two formulae (equations (30) and (33) in $\S \S 4.4$ and 4.5 respectively) to compute the Sine of the true declination (sphuṭa-apama or sphuṭa-krānti) ס:

$$
\operatorname{Sin} \delta=\frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}} \text { and } \operatorname{Sin} \delta=\frac{\operatorname{Cos} \epsilon \cdot \operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right]}{\operatorname{Cos} \delta_{2}(\lambda)}
$$

To see the equivalence of these formulae, we observe

$$
\begin{align*}
& \frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}}=\frac{\operatorname{Cos} \epsilon \cdot \operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right]}{\operatorname{Cos} \delta_{2}(\lambda)} \\
& \Rightarrow \frac{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}}=\frac{\operatorname{Cos} \epsilon}{\operatorname{Cos} \delta_{2}(\lambda)} \text { or } \cos \delta_{1}\left(90^{\circ}+\lambda\right)=\frac{\cos \epsilon}{\operatorname{Cos} \delta_{2}(\lambda)} \tag{C1}
\end{align*}
$$

This equality can be verified by looking at the right spherical triangles $\triangle \mathrm{P}^{\prime} \mathrm{TC}$ and $\triangle \mathrm{LGC}$ in Figure 1. These triangles are excerpted and redrawn in Figure C1. The triangles $\triangle \mathrm{P}^{\prime} \mathrm{TC}$ and $\triangle \mathrm{LGC}$ are right spherical triangles with the right angles $\varangle \mathrm{LGC}$ and $\varangle \mathrm{P}^{\prime} \mathrm{TC}$, and sides:

1. $\widehat{\mathrm{P}^{\prime} \mathrm{T}}=\overparen{\mathrm{PT}}-\widehat{\mathrm{P}^{\prime} \mathrm{P}}=90^{\circ}-\epsilon$,
2. $\overparen{\mathrm{LC}}=90^{\circ}$, and
3. $\widehat{\mathrm{P}^{\prime} \mathrm{C}}=\overparen{\mathrm{LC}}+\widehat{\mathrm{LP}^{\prime}}=90^{\circ}+\delta_{2}(\lambda) \quad \because \widehat{\mathrm{LP}^{\prime}}=\overparen{\mathrm{DC}}=\delta_{2}(\lambda)$ from equation (3), and
4. $\overparen{\mathrm{LG}}=90^{\circ}-\delta_{1}\left(90^{\circ}-\lambda\right)=\overline{\delta_{1}(\bar{\lambda})} .{ }^{6}$

With the Rule of Four Quantities applied to right spherical triangles $\triangle \mathrm{P}^{\prime} \mathrm{TC}$ and $\triangle \mathrm{LGC}, 7$ we have

$$
\frac{\sin \overparen{\mathrm{P}^{\prime} \mathrm{T}}}{\sin \overparen{\mathrm{LG}}}=\frac{\sin \overparen{\mathrm{P}^{\prime} \mathrm{C}}}{\sin \overparen{\mathrm{LC}}} \Rightarrow \frac{\sin \left(90^{\circ}-\epsilon\right)}{\sin \left[90^{\circ}-\delta_{1}\left(90^{\circ}-\lambda\right)\right]}=\frac{\sin \left[90^{\circ}+\delta_{2}(\lambda)\right]}{\sin 90^{\circ}}
$$

Hence,

$$
\frac{\cos \epsilon}{\cos \delta_{1}\left(90^{\circ}-\lambda\right)}=\frac{\cos \delta_{2}(\lambda)}{1} \Rightarrow \cos \delta_{1}\left(90^{\circ}-\lambda\right)=\frac{\cos \epsilon}{\cos \delta_{2}(\lambda)}
$$

Now, from equation (9), we can express $\sin \delta_{1}\left(90^{\circ} \pm \lambda\right)$ as $\sin \epsilon \cdot \sin \left(90^{\circ} \pm \lambda\right)$, or effectively, $\sin \epsilon \cdot \cos \lambda$. Hence,

$$
\begin{equation*}
\delta_{1}\left(90^{\circ}+\lambda\right)=\delta_{1}\left(90^{\circ}-\lambda\right), \tag{C2}
\end{equation*}
$$

which makes, $\cos \delta_{1}\left(90^{\circ} \pm \lambda\right)=\frac{\cos \epsilon}{\cos \delta_{2}(\lambda)}$ agreeing with equation $\left(\mathrm{C}_{1}\right)$.

[^14]7 See Van Brummelen (2013:59-64) for the proof of the Rule of Four Quantities.

D ON FINDING THE TRUE DECLINATION IN MUNĪŚVARA'S SIDDH $\bar{A} N T A S \bar{A} R V A B H A U M A$ I.4.41-42

Muniśstara, in his Siddhāntasārvabhauma (1646) 'The Emperor of all siddhāntas', discusses the computation of true declination of a celestial object in the section on the conjunction of planets with stars (bhagrahayuti). As Plofker (2002: 86) describes, Munīśvara claims the previously-stated methods of computing true declinations in siddhāntic texts are geometrically imprecise, ${ }^{8}$ and hence provides the following alternative rule (in verse 41-42): ${ }^{9}$

```
ग्रहापमज्यात्रिगुणाभिघातस्त्रिभाठ्यखेटद्युगुणेन भक्तः ॥
फलस्य चापं ग्रहजोऽपमोऽन्योंऽरााद्यः स्वदिक्तच्छरयुग्वियोगौ ॥ &१ ॥
एकान्यदिक्त्वे भवतः कमेण तद्वाहुजीवात्रिभयुक्तखेटात् ॥
द्युजीवयाघ्नी त्रिगुणेन भक्ता तच्चापमंशाद्यपमः स्फुटः स्यात् ॥ ४२ ॥
grahāpamajyätriguṇābhighātas-
tribhädhyakhetadyuguṇena bhaktah.|
phalasya cāpam! grahajo 'pamo 'nyo
'ṃśädyah svadik taccharayugviyogau || 41 |
ekānyadiktve bhavatah krameṇa
tadbāhujīvātribhayuktakheṭāt |
dyujīvayāghnī triguṇena bhaktā
taccāpam aṃsādyapamaḥ sphuṭaḥ syāt || 42 ||
```

The product of the Sine ($j y \bar{a}$) of the [first] declination of the planet (graha) and the Radius (triguṇa) [i.e., the sinus totus] is divided by the day-Sine (dyиguйa) [i.e., by the Cosine of the first declination] of [the longitude of] the planet (kheta) increased by three signs. The arc (cāpa) of the result (phala) is the other declination (anya-apama) [i.e., the second declination] connected with the planet (graha), beginning with degrees. The sum [or] difference [of the second declination] with the latitude (śara) in its own direction, 41...
...when they are in the same or different directions respectively, is [computed]. The Sine ($j \bar{\imath} v \bar{a}$) of its [appropriate] acute-angled arc ($b \bar{a} h u$) multiplied by the day-Sine (dyujīvā) [i.e., by the Cosine of the first declination] of [the longitude of] the planet (kheta) increased by three signs is divided by the Radius; it's arc (cāpa), beginning with degrees, is the true declination (sphuṭa-apama). 42

8 Munīśvara's statement (from his auto-commentary the Āśayaprakāsinī or Siddhāntatattvārtha) denouncing the
previously-stated methods as improper (asamgata) is discussed in \S 1.2.2.
9 The numbering of the verses in the bhagrahayutyadhikāra of the Siddhāntasārvabhauma follows Ojhā (1978: 420).

Figure D1: Spherical triangle $\triangle S \Upsilon D$ with its internal right spherical triangles: $\varangle \Upsilon \mathrm{AS}, \varangle \mathrm{SAC}, \varangle \Upsilon \mathrm{BD}, \varangle \mathrm{DBC}$, $\varangle \mathscr{T}$, and $\varangle \Upsilon D C$.

Munīśvara first describes the calculation of the other or second declination (anya-apama) in verse 41 and then goes on to state the method of computing the true declination (sphuṭa-apama) in verse 42. Figure D1 depicts a planet positioned at S in the celestial sphere with $\widehat{\Upsilon D}$ as it ecliptic longitude $\lambda, \overparen{S D}$ as it ecliptic latitude $\beta, \overparen{D B}$ as its first declination $\delta_{1}(\lambda), \overparen{D C}$ as its second declination $\delta_{2}(\lambda)$, and $\varangle \mathrm{D} \Upsilon C$ as the ecliptic obliquity or the measure of maximum declination ϵ. Applying the spherical law of sines to the spherical triangle $\triangle \mathrm{DBC}$, we find

$$
\sin \delta_{2}(\lambda)=\frac{\sin \delta_{1}(\lambda)}{\sin \varangle D C B} \Rightarrow \operatorname{Sin} \delta_{2}(\lambda)=\frac{\operatorname{Sin} \delta_{1}(\lambda) \cdot \mathcal{R}}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)^{\prime}}
$$

since $\varangle D C B=90^{\circ}-\delta_{1}\left(90^{\circ} \pm \lambda\right)$, see equations (B2) and (C2).
Hence,

$$
\begin{equation*}
\widehat{\mathrm{DC}}=\delta_{2}(\lambda)=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \delta_{1}(\lambda) \cdot \mathcal{R}}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}\right)_{\text {in degrees etc. }} \text { (verse I.4.41). } \tag{1}
\end{equation*}
$$

The value of $\delta_{2}(\lambda)$, taken in degrees etc., is added or subtracted to the latitude of the planet according to when they are in the same or different directions respectively (verse 41d-42a). In other words, $\delta_{2}(\lambda)+\beta$ when the second declination $\delta_{2}(\lambda)$ and the latitude β are both oriented in the same direction towards the north ecliptic pole or the south ecliptic pole, or alternatively, $\delta_{2}(\lambda)-\beta$ when the second declination $\delta_{2}(\lambda)$ and the latitude β are both oriented in different (opposing) directions.

Munīśvara does not name the result of the addition or subtraction of the latitude to the other/second declination; Nityānanda and Kamalākara, however, use the terms 'curve of true declination' (sphuṭa-apama-an்ka) and 'corrected second declination' (spasta-anya-krānti) respectively to refer to this quantity. Compare Nityānanda's and Kamalākara's discussions in § 4.2.1 and Appendix E respectively.

In verse 42 b, Munīśvara clarifies how the measure $\delta_{2}(\lambda) \pm \beta$ is to be utilised in computing the true declination. First, an acute-angled arc called bāhu corresponding to this measure is calculated as follows: ${ }^{10}$

- bāhu is simply $\delta_{2}(\lambda) \pm \beta$ when the measure is less than 90°, and
- bāhu is $180^{\circ}-\left[\delta_{2}(\lambda) \pm \beta\right]$ when the measure is greater than 90°.

With this appropriate acute-angled $b \bar{a} h u$, Munīśvara then describes the true declination in verse 42 cd as

$$
\begin{equation*}
\delta=\operatorname{arcSin}\left(\frac{\left[\operatorname{Sin} \delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}{\mathcal{R}}\right)_{\text {in degrees etc. }} \tag{D2}
\end{equation*}
$$

Munīśvara's expression in equation (D2) is identical to Nityānanda's first method discussed in $\S 4.4$, equation (30), and Kamalākara's procedure in his Siddhāntatattvaviveka VIII.23-24 discussed in Appendix E, equation (E3).

[^15]
E ON FINDING THE TRUE DECLINATION IN KAMALĀKARA'S SIDDHĀNTATATTVAVIVEKA VIII.21-25

In his siddhāntatattvaviveka (1658) 'Investigation of the truth of siddhāntas', Kamalākara proposes a method to computing the true declination (spasṭakrānti) of a celestial object in the section on the rising and setting (udayāsta) of celestial objects. Kamalākara first describes a method to calculate the second declination (anya-krānti, lit. other declination) and corrected second declination (spaṣṭa-anya-krānti, lit. corrected other declination) in verses 21-23ab, and using these quantities, calculates the true declination (sphuṭa-krānti) of the celestial object in verses 23cd-25. ${ }^{11}$
E. 1 CALCULATING THE SECOND DECLINATION (ANYA-KR $\bar{A} N T I$) AND CORRECTED SECOND DECLINATION (SPASTTA-ANYA-KR $\bar{A} N T I$) IN VERSES 21-23AB
सत्रिभग्रहजद्युज्योद्धृता रवेटापमज्यका ॥ त्रिज्यागुणाऽथ तच्चापमन्यक्रान्तिः स्वदिग्भवेत् ॥ २? ॥
चलग्रहपरकान्तिज्ययोराहतिरुद्धृता ॥
सत्रिग्रहद्युमौर्व्या वा चापमन्यापमस्ततः ॥ २२ ॥
स्वेषुसंस्कारतः स्पष्टो भवेत्संस्कारदिक्क सः ॥ २३प्र,द्वि
satribhagrahajadyujyoddhrtā khețāpamajyakā \|
trijyāguṇā 'tha taccāpam anyakrāntih svadig bhavet || 21 ||
calagrahaparakrāntijyayor āhatir uddhrtā \|
satrigrahadyumaurvyā vā cāpam anyāpamas tatah || 22 ||
sveṣusaṃskāratah spaṣṭo bhavet saṃskāradik ca sah || 23ab
The Sine $(j y \bar{a})$ of the [first] declination (apama) of the planet (kheta) divided by the day-Sine (dyujyā) [i.e., by the Cosine of the first declination] produced of [the longitude of] the planet (graha) increased by three signs then multiplied by the Radius (trijy \bar{a}) [i.e., by the sinus totus], the arc (cāpa) of that [value] is the other declination (anya$k r a \overline{n t i}$) [i.e., the second declination] in its own direction. 21
Or, the product of the Sines $(j y \bar{a})$ of the longitude of the planet (cala-graha, lit. moving planet') and the maximum declination (para-krānti) [i.e., the obliquity of the ecliptic] divided by the

11 The numbering of the verses in the udayāstādhikāra of the Siddhāntatattvaviveka
follows K. C. Dvivedi (1993-8: pp. 172-174 in Part II).
day-Sine (dyu-maurvī) [i.e., by the Cosine of the first declination] of [the longitude of] the planet (grahaja) increased by three signs, the arc (cāpa) [obtained] from that [value] is the other declination (anya-apama). 22
By the correction (saṃskāra) of its own latitude (iṣu) [to the second declination], it becomes the true/corrected [other declination] (spaṣta-[anya-krānti]), indeed in the direction of the correction. 23 ab

The verses 21-23ab describe two methods to compute the second declination $\delta_{2}(\lambda)$ of a planet. In verse 21, Kamalākara states

$$
\begin{equation*}
\delta_{2}(\lambda)=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \delta_{1}(\lambda) \cdot \mathcal{R}}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}\right) . \tag{E1}
\end{equation*}
$$

This corresponds to $\widehat{\text { DC }}$ in Figure D1, and its derivation is discussed in the context of Munīśvara's method (from his Siddhāntasārvabhauma I.4-41) in equation (D1). It also appears in Nityānanda's Sarvasiddhāntarāja I.tripraśnādhikāra.49-50ab, see equation (B4).

To understand Kamalākara's second method, we can apply the spherical law of sines to right spherical triangle $\triangle \mathscr{T} D C$ in Figure D1:

$$
\frac{\sin \overparen{D C}}{\sin \varangle D \Upsilon C}=\frac{\sin \overparen{\Upsilon D}}{\sin \varangle D C \Upsilon} \Rightarrow \sin \delta_{2}(\lambda)=\frac{\sin \lambda \cdot \sin \epsilon}{\sin \varangle D C \Upsilon} .
$$

Hence,

$$
\begin{equation*}
\operatorname{Sin} \delta_{2}(\lambda)=\frac{\operatorname{Sin} \lambda \cdot \operatorname{Sin} \epsilon}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)} . \tag{E2}
\end{equation*}
$$

The arc Sine of the expression is the second measure of $\widehat{D C}$ or $\delta_{2}(\lambda)$ described in verse 22. The identification $\varangle \mathrm{DC} \Upsilon=\varangle \mathrm{DCB}=90^{\circ}-\delta_{1}\left(90^{\circ} \pm \lambda\right)$ allows $\operatorname{Cos}\left[\delta_{1}\left(90^{\circ}+\lambda\right)\right]$ to be the divisor in the equation above; see equations (B2) and (C2).

In the first hemistich of verse 23, Kamalākara describes how a correction of the latitude of the planet $\widehat{\mathrm{SD}}$ or β added or subtracted to the second declination provides the value of the corrected second declination, i.e., $\widehat{\operatorname{SDC}}$ or $\delta_{2}(\lambda)+\beta$ in Figure D1. More generally though, the corrected second declination can be expressed as $\delta_{2}(\lambda) \pm \beta .{ }^{12}$

12 Compare Nityānanda's discussion on the curve of true declination (sphuṭa-apamaañka) in § 4.2.1, and Munīśvara's state-
ment on the appropriate choice of this arcmeasure, i.e., the acute-angled arc called bāhu, on p. 159.
E. 2 CALCULATING THE TRUE DECLINATION (SPHUT $A-K R \bar{A} N T I$) IN

VERSES 23CD-25
ग्रहकोटिद्युजीवाघ्मी तज्जीवा त्रिज्ययोद्दृता ॥ २३चिच च ॥
तचापं तु स्फुटाकान्तिः स्पष्टान्यापमदिक्स्थिता ॥
यद्वान्यापमजीवाप्ता स्फुटाऽन्यापमशिझ्जिनी ॥ २४ ॥
खेटापमज्यया निम्नी चापं बिम्बस्फ्रटापमः ॥
तद्यत्ययात्फफुटाख्यान्या कान्तिर्जैंया बुधैरिह ॥२५ ॥
grahakotidyujī̃āghnī tajjīvā trijyayoddhrtā || 23 cd ||
taccāpaṃ tu sphutākrāntih spasṭānyāpamadiksthitā \||
yadvānyāpamajī̀āptā sphuṭānyāpamaśinjiin̄̄ || 24 ||
kheṭāpamajyayā nighnū cāpaṃ bimbasphutāpamah $\|$ tad vyatyayāt sphutākhyānyā krāntir jñeyā budhair iha || 25 ||

The Sine ($j \bar{i} \bar{v} \bar{a}$) of that [i.e., the Sine of true/corrected other declination] multiplied by the day-Sine (dyujyā) [i.e., by the Cosine of the first declination] of the complement (kotic) of [the longitude of] the planet (graha) and divided by the Radius (sinus totus) $23 \mathrm{~cd} . .$.
...the arc (cāpa) of that [value] then is the true declination (sphutakränti), situated in the direction of the true/corrected other declination (spastáa-anya-apama). Or, the Sine (śinjinī) of the true/corrected other declination (sphuta-anya-apama) divided by the Sine ($j \bar{i} \bar{v} \bar{a}$) of the other declination (anya-apama) 24...
...is multiplied by the Sine (jy $\bar{a})$ of the [ecliptic first] declination (apama) of the planet; the arc (cāpa) [from that result] is the true declination (sphuta-apama) of the disk (bimba) [of the planet]. Contrary to this, the true/correct other declination (sphutākhyā-anyā-krānti) should be known [differently] by wise men in this case. 25

Here, Kamalākara proposes two methods to compute the true declination (sphuta-apama) of a celestial object. Verses 23cd-24ab suggest

$$
\begin{equation*}
\delta=\operatorname{arcSin}\left(\frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Cos} \delta_{1}\left(90^{\circ}-\lambda\right)}{\mathcal{R}}\right) \tag{E3}
\end{equation*}
$$

where delta is the arc $\widehat{S A}$ (in Figure D1, for the case of $\delta_{2}(\lambda)+\beta$). This method is identical to Nityānanda's first method described in § 4.5, equation (30) and

Munīśvara's method from his Siddhāntasārvabhauma I.4.42 in Appendix D, equation (D2). The identification $\operatorname{Cos} \delta_{1}\left(90^{\circ}-\lambda\right)=\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)$ follows from equation (C2) where the first declination of the complement of the longitude and the first declination of the longitude increased by ninety degrees are shown to be equal.

Verses $24 \mathrm{~cd}-25 \mathrm{ab}$ present Kamalākara's second method to compute the true declination. Applying the spherical law of sines to the right spherical triangle $\triangle \mathrm{DBC}$ in Figure D1 gives

$$
\begin{equation*}
\frac{\sin \varangle D C B}{\sin \overparen{D B}}=\frac{\sin \varangle D B C}{\sin \overparen{D C}} \Rightarrow \sin \varangle D C B=\frac{\sin \delta_{1}(\lambda)}{\sin \delta_{2}(\lambda)} . \tag{E4}
\end{equation*}
$$

With $\varangle \mathrm{DCB}=\varangle \mathrm{SCA}$, the spherical law of sines applied to the right spherical triangle \triangle SCA (and using equation E_{4}) yields

$$
\begin{equation*}
\frac{\sin \overparen{S A}}{\sin \varangle \mathrm{SCA}}=\frac{\sin \overparen{\mathrm{SC}}}{\sin \varangle \mathrm{SAC}} \Rightarrow \sin \delta=\frac{\sin \left[\delta_{2}(\lambda)+\beta\right] \cdot \sin \delta_{1}(\lambda)}{\sin \delta_{2}(\lambda)} \tag{5}
\end{equation*}
$$

Thus, by generalising the corrected second declination to $\delta_{2}(\lambda) \pm \beta$, and using a non-unitary Radius (sinus totus), we have

$$
\begin{equation*}
\operatorname{Sin} \delta=\frac{\operatorname{Sin}\left[\delta_{2}(\lambda) \pm \beta\right] \cdot \operatorname{Sin} \delta_{1}(\lambda)}{\operatorname{Sin} \delta_{2}(\lambda)} \tag{E6}
\end{equation*}
$$

The arc Sine of the expression is the second expression for the true declination of a celestial object. As Plofker (2002: 87) suspects, this method appears to be unique to Kamalākara's text. I have not found this exact expression attested in any Arabic, Persian, or Sanskrit works known to me.

REMARK

Both of Kamalākara's methods rely on the value of the second declination, corrected further by adding or subtracting the latitude of the planet according to the orientation of its orbit in the celestial sphere, to compute the true declination. The common factor in the right hand side of equations (E3) and (E6) -as well as equations (30) and (33) in Nityānanda's first two methods-is Sin $\left[\delta_{2}(\lambda) \pm \beta\right]$. To see the equivalence of the remaining factors in the right hand sides of equations (E3) and (E6), ${ }^{13}$ we can restate equation (E2) as

$$
\operatorname{Sin} \delta_{2}(\lambda)=\frac{\operatorname{Sin} \lambda \cdot \operatorname{Sin} \epsilon}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)}=\frac{\operatorname{Sin} \delta_{1}(\lambda) \cdot \mathcal{R}}{\operatorname{Cos} \delta_{1}\left(90^{\circ}+\lambda\right)} \quad \because \operatorname{Sin} \delta_{1}(\lambda)=\frac{\operatorname{Sin}(\lambda) \cdot \operatorname{Sin}(\epsilon)}{\mathcal{R}}
$$

13 Appendix C discusses the equivalence between equations (30) and (33) in Nityānanda's first two methods.

In other words,

$$
\frac{\operatorname{Sin} \delta_{1}(\lambda)}{\operatorname{Sin} \delta_{2}(\lambda)}=\frac{\operatorname{Cos} \delta_{1}\left(90^{\circ}-\lambda\right)}{\mathcal{R}} \text { or equation }\left(\mathrm{E}_{3}\right) \equiv \text { equation (E6), }
$$

with $\delta_{1}\left(90^{\circ}-\lambda\right)=\delta_{1}\left(90^{\circ}+\lambda\right)$ from equation $\left(\mathrm{C}_{2}\right)$.

GLOSSARY

This glossary lists Sanskrit technical expressions from the Sanskrit text of Sarvasiddhāntarāja, I.spa-krā. Individual entries are grouped together under their common English translation. At the end of each entry, appropriate verse-numbers indicate its location in $\S 3$. The format of the glossary is described in $\S 2.3$.
arc धनुस् (dhanus) $5,6,9$; कोदण्ड (kodanḍa) 7; चाप (cāpa) 12
celestial equator विषुव-वृत्त (viṣuva-ṿtta) 5
celestial hemisphere गोल (gola) 10
celestial object नभोग (nabhoga) 4, 7 ; द्युचर (dyucara) 5; भ (bha) 7
circle वृत्त (vrtta) 4
circle of asterisms भ-वलय (bha-valaya) 13
circle passing through the equinoctial points and the celestial object-
\hookrightarrow circle congruent to the ecliptic भचक-सदृशा-वृत्त (bhacakra-sadŗ́sa-vrtta) 4; भवृत्त-सदृक्ष-वृत्त (bhavrtta-sadrkṣa-vrtta) 5; भचक्र-सद्वक्ष-वृत्त (bhacakra-sadykṣavrtta) 6; भवृत्त-सदृशा-वृत्त (bhavrtta-sadr'śa-vurta) 7
congruent arc सद्टरा-भुजा (sadrś-bhujā) 7; सद्टरा-बाह्ड (sadrśa-bāhu) 9
congruent complementary arc सहृरा-कोटि (sadrć-koṭi) 7
conjunction of the equinoctial point and the node of the orbit of a celestial object विषुव-पात-युग (viṣuva-pāta-yuga) 6
Cosine of its latitude स्व-बाण-कोटिजीवा (sva-bāna-kotijīvā) 8
Cosine of the first declination of the 'longitude increased by ninety degrees'-
\hookrightarrow day-Sine [of the longitude] increased by three zodiacal signs स-भ-त्र्यद्युजीवा (sa-bha-traya-dyujiv̄ā) 2
Cosine of the first declination of the longitude-
\rightarrow day-Sine द्यु-जीवा (dyu-jīvā) 13
Cosine of the greatest declination परम-कान्ति-कोटिज्या (parama-krānti-kotijyā) 3
Cosine of the second declination-
\hookrightarrow Cosine of the other declination अन्य-कान्ति-कोटिज्या (anya-krānti-kotijyā) 3 curve of true declination स्फुट-अपम-अङ्ङ (sphuta-apama-añka) 1
difference-
\hookrightarrow difference अन्तर (antara) 1; विवर (vivara) 5, 6; वियुति (viyuti) 10
\hookrightarrow made to be subtracted विशोधित (viśodhita) 11
direction दिशा (diś) 12
direction of the sum or the difference-
\hookrightarrow direction of the conjunction or the disjunction युति-वियोग-दिशा (yuti-viyogadiś) 11; संयोग-वियोग-दिशा (saṃyoga-viyoga-diś) 12
\hookrightarrow own direction स्व-दिशा (sva-diś) 1
\hookrightarrow same or different directions सम-भिन्न-दिशा (sama-bhinna-diś) 10
division
having been divided उद्धृत (uddhrta) 2, 8
having been divided आप्त (āpta) 3
having been divided भाजित (bhājita) 9
ecliptic भवन-चक (bhavana-cakra) 6
ecliptic poles-
\hookrightarrow ecliptic pole कदम्ब (kadamba) 13
\hookrightarrow pair of ecliptic poles कदम्ब-युगल (kadamba-yugala) 4
equinoctial point विषुवत् (viṣuvat) 7
greater अधिक (adhika) 11
having been lowered अधरी-कृत (adharī-krta) 12
equivalent to त्रिभज्यका-उद्दृता (tribhajyakā-uddh•rtaa) 'having been divided by the Radius (6o)'
having been reduced from ninety नवतितश्च्युत (navatitaś-cyuta) 9
imprecise स्थूल (sthūla) 13
latitude-
\hookrightarrow latitude बाण (bāṇa) 10, 13
\hookrightarrow latitude of a celestial object खगस्य बाण (khagasya bāna) 1
lowered Sine of the congruent arc अधर-सदृक्ष-दोर्-ज्या (adhara-sadrkṣa-dor-jyā) 9
maximum latitude पर-इषु (para-iṣu) 6, 10; पर-शार (para-śara) 10
maximum true declination पर-स्फुट-अपम (para-sphuṭa-apama) 5
maximum true declination of a celestial object
ग्रहस्य पर-स्फुट-अपम (grahasya para-sphuṭa-apama) 11
multiplication
having been multiplied हत (hata) 2,3,8
multiplied गुण (guṇa) 12
ninety अभ्र-नव (abhra-nava) ${ }^{14} 11$; नवति (navati) 13
obliquity of the ecliptic-
\hookrightarrow greatest declination परम-अपम (parama-apama) 10; परम-कान्ति (paramakrānti) 13
one direction एक-दिशा (eka-diś) 1
one hundred and eighty ख-अष्ट-भू (akha-aṣta-bhū $)^{15} 11$
other declination अन्यतम-अपम (anyatama-apama) 1
synonymous with अन्य-कान्ति (anya-krānti) and identified with the द्वितीयकान्ति (dvitīya-krānti) 'second declination'
pair of celestial poles धुव-द्वय (dhruva-dvaya) 4
pair of equinoctial points विषुवत्-द्वय (viṣuvat-dvaya) 4
Radius त्रिभज्यका (tribhajyakā) 2,8
synonymous with the sinus totus, and taken as 60 (in the Sarvasiddhāntarāja)
same सम (sama) 12
scholars of spherics-
\hookrightarrow knower of spheres गोल-विद्न (gola-vid) 4
\hookrightarrow wise men who know the science of spheres गोल-विदुष (gola-viduṣa) 13
Sine of the complement of the arc of longitude of a celestial object
खगस्य कोटि-सिझ्जिनी (khagasya koṭi-siñjini) 8
Sine of the congruent arc सदृक्ष-बाहु-ज्यका (sadrkṣa-bāhu-jyakā) 12

[^16]Sine of the congruent complementary arc सद्क्ष-कोटि-सिझ्जिनी (sadṛkṣa-koti-siñjin̄̄) 8
Sine of the curve of true declination स्फुट-अपम-अङ्ふ-सिक्जिनी (sphuṭa-apama-añkasiñjin̄̄) 2; स्फुट-कान्ति-अङ-जिवा (sphuṭa-krānti-añka-jīvā) 3
Sine of the latitude of a celestial object नभोग-विशिखस्य सिझ्जिनी (nabhoga-viśikhasya siñjinii) 9
Sine of the maximum true declination पर-स्फुट-कान्ति-भव-ज्यका (para-sphuta-krānti-bhava-jyakā) 12
Sine of the true declination स्फुट-अपम-ज्यका (sphuṭa-apama-jyakā) 2; स्पष्ट-अपमज्यका (spaṣta-apama-jyakā) 3
solstitial colure-
\hookrightarrow circle passing through the four poles ध्रुव-चतुष्क-यात-वृत्त (dhruva-catuṣka-yāta-vrtta) 4
\hookrightarrow solstitial colure आयन-वृत्त (āyana-vrtta) 4, 5, 6, 7
sphere गोल (gola) 13
sum संयुति (saṃyuti) 1, 10
true declination स्फुट-अपम (sphuṭa-apama) 12; स्फुट-अपक्रम (sphuṭa-apakrama) 13; स्पष्ट-कान्ति (spaṣta-krānti) 13
well rounded सु-वृत्त (su-vrtta) 4

Please write to 〈wujastyk@ualberta.ca〉 to file bugs/problem reports, feature requests and to get involved. The History of Science in South Asia • Department of History and Classics, 2-81 HM Tory Building, University of Alberta, Edmonton, AB, T6G 2H4, Canada.

[^0]: mLA style citation form: Anuj Misra. "Sanskrit Recension of Persian Astronomy:
 The Computation of True Declination in Nityānanda's Sarvasiddhāntarāja." History of Science in South Asia, 10 (2022): 68-168. DOI: 10.18732/hssa75.
 Online version available at: http://hssa-journal.org

[^1]: 1 Montelle and Plofker (2018) provide an in-depth study on the emergence, development, and influence of the genre of astronomical table-texts (sāraṇīs or koṣthakas) in Sanskrit jyotiḥśāstra. In particular, see § 6.12 for an example of how Nityānanda transforms the presentation of tables in a Persian $z \bar{j} j$ to suit the format of a Sanskrit koṣthaka in his Siddhāntasindhu (pp. 245-248).
 2 The word Islamicate simply refers to the cultural outputs (artistic, literary, and scientific works) of the Arabic and Persian language traditions. As Hodgson origin-

[^2]: putations (ganitādhyāya) and spheres (golādhyäya).
 7 Pingree (1991:Table SR on p. 29), Misra (2016: Table 1.6 on p. 21), Montelle, Ramasubramanian, and Dhammaloka (2016: Table 1 on p. 2) and Montelle and Ramasubramanian (2018: Table 1 on p. 1) lists the topics in Nityānanda's Sarvasiddhāntarāja. However, the spaṣtakrāntyādhikāra is not included in the list of topics of the ganitādhyāya or the golādhyāya of the Sarvasiddhāntarāja in any of these studies. It is only recently in 2019 that I discovered the spastacakrāntyādhikāra as a separate self-contained section towards the end of the ganitädhyāya in all seven manuscripts of Nityānanda's Sarvasiddhāntarāja.

[^3]: 9 The word viṣava is a suspected vernacular corruption of viṣuva, see Misra (2021: footnote [v] on p. 93).

[^4]: 11 The word upalabdhi is translated as 'observation' in a few astronomical texts. For example, Bhāskara II, in his auto-commentary Vāsanābhāşa on his Siddhāntaśiromañ (1150), cites Caturveda Pṛthūdakasvāmī (a ninth century commentator on the Brähmasphutasiddhānta) to reaffirm that 'conforming with observations (upalabdhi) is the only explanation for the

[^5]: 16 Pingree (1978:319) speculates that there is an influence of Islamic lunar theory in the Sphuṭanirṇaya and Rāsigolasphuṭānīti of the Kerala astronomer Acyuta Piṣāratī (c. $1550-1621$). His supposition is based on the presence of Islam (notably, the Arab mercantile societies) in the Malabar Coast of Southwestern India during the fifteenth and sixteenth centuries. However, without any material evidence to support this claim, Plofker's observation that "it is far from clear how such a hypothetical Islamic-Kerala transmission would have taken place across ethnic and cul-

[^6]: on pp. 4351-4396) for studies on the Yantrarāja. Also, Pingree (1991:52-54) surveys the development of the genre of instrumenttexts (yantra) in Sanskrit jyotiḥ́sāstra; while S. R. Sarma (2008; 2019) provide a comprehensive study of Indian astronomical instruments.
 19 In a recent publication, Nair (2020) has studied how Sanskrit philosophical and religious texts were translated into Persian by collectives of Sanskrit and Persian scholars at the Mughal courts. Nair interprets philosophical translations as cross-cultural intellectual 'dialogues' expressed through the creation of novel vocabulary. This interpretation also extends to technical translations, particularly those that bridge language barriers in communicating foreign

[^7]: science. It is, hence, not all together surprising to read Pingree's observation that "[t]he Sarvasiddhāntarāja...provided Jagannātha [the author of Samrāțsiddhāntakaustubha (1726)] with the Sanskrit words to describe Ulugh Beg's planetary models, and Jagannātha's successors with some of the terminology with which they wrote of European astronomy" (Pingree 2003: 283). Over a hundred years after Nityānanda, his words continued to echo in the dialogues between Sanskrit and Islamicate astronomy beyond the Mughal court.
 20 See Minkowski (2014:122-127) for the history of the familial rivalry between the Kāsíi Brahmins Munīśvara (of the Devarāta gotra) and Kamalākara (of the Bhāradvāja gotra).

[^8]: 30 al-Kāshī refers to the quantity $\delta_{2}(\lambda) \pm \beta$, i.e., $\widehat{S C}$, as hisṣa-yi card 'share of the latitude' (see Kennedy 1985: 9); whereas, Ulugh Beg calls it the hisṣat al-bucd (in Arabic) 'share of the distance' (see Sédillot 1853: 89).
 31 In literary works, the word añka is sometimes used to indicate a curved line, e.g.,
 the words tri-rekhā-añka-kantha 'the three curved lines on the neck' in the Dāmodarāṣtaka, verse 2 (from the Padma Purāṇa). Its near-similar equivalent añkas (comparable to the Greek ö $\mathbf{\gamma}$ коऽ and Latin ancus) directly implies a curve or bend, see, e.g., Rgveda (IV.40.4).

[^9]: 33 See Van Brummelen (2013:59-60) for the proof of Abū Naṣr's Rule of Four Quantities applied to right spherical triangles.

[^10]: 38 See Van Brummelen (2013:77-79) for the proof of Geber's theorem for right spherical triangles.

[^11]: 1 The latitude is added to or subtracted from the declination depending on the orientation of the celestial object. Compare

[^12]: 2 See footnote 1 on p. 146
 3 The ecliptic latitude β of a planet is typically calculated (or approximated) using a method similar to the method of declinations. For instance, the Moon's orbit is at $\iota^{\circ} \sim 4 ; 30^{\circ}$ to the ecliptic with λ_{Ω} being the longitude of its ascending node. Hence, its ecliptic latitude $\beta_{\mathbb{C}}$ corresponding to its ec-

[^13]: 4 The history of the Nila (Nilā) school of mathematicians, beginning with Mādhava of Sañgamagrāma (c. $1340-$ c. 1425), is de-

[^14]: 6 These arcs, and their measures, are discussed in § 4.1.2.

[^15]: 10 Nityānanda's statements on bhuja (bāhu) and koṭi are discussed in § 4.2.4.

[^16]: 14 bhūtasaṃkhyā word-numerals, where abhra ' 0 ' and nava ' 9 ' make ' 90 '.

 15 bhūtasaṃkhyā word-numerals where kha ' 0 ', aṣta ' 8 ', and bhū ' 1 ' make ' 180^{\prime} '.

