NEW GENETIC TYPE OF DIAMOND DEPOSITS: GEOLOGICAL PECULIARITIES AND ORIGIN

Central Research Institute of Geological Prospecting for Base and Precious Metals, Varshavskoe sh. 129 "b", Moscow 113545, Russia

Kumdykolskoye diamond deposit of the new genetic type was found in 1980 by geologists of the Kokchetav expedition in the Kokchetav crystalline massif of North Kazakhstan. It contains the great amount of diamonds and enormous explored reserves. It's discovery means that it was found the third type of nature diamond deposits because only kimberlitic and impactitic types were known before it.

Three groups of geologists have different viewpoints on genesis of new diamond type. Group one advocates the mantle origin of diamonds. A second idea is that the diamonds were formed in the Earth crust under the ultrahigh pressure of regional metamorphism. A third (our) theory, that is based on geological data (structure of the deposit, petrology of the diamond-bearing rocks and composition of rock-forming minerals, also the diamond peculiarities) is that diamonds were crystallized "in situ" under moderate P-T conditions.

I. The Kumdykolskoye deposit has following peculiarities:
1. Diamonds are lokalizated in the primordial stratificied formation of garnet-biotite gneisses, schists and calciphyres with lenses of eclogites and amphibolites. Main part of ores (93.3%) are composed by gneissis and quartz rocks with high SiO2 (from 60 to 75%); garnet-pyroxene ore, including altered eclogites occupies 4% and carbonate ore - 2.7% of ores volume. The occurrences of diamonds within stratified rocks of mainly acid composition and theirs absence within nonaltered eclogites and rare ultramaphites don't confirm the diamond origination in Earth's mantle.

2. The deposit is connected with tectonic zone, the rocks of which had been milonitized, broken down and transformated as a result of metamorphic processes. Rock-forming minerals (mainly garnet and piroxene) are characterized by wide range of their compositions. The garnets are represented by pyrope-grossular-almandines, pyrope-grossularares, grossularas and grossular-almandines, piroxenes - by diopsides and salites. It was traced the changing of chemical compositions from nondiamond-bearing rocks to ore. As a rule, gneissis were enriched by Ca. In this process, new Ca-bearing minerals are formed, but garnets and pyroxenes within gneissis enriched by Ca too. The same process took place in eclogites, which were transformed to garnet-pyroxene ore. Garnets composition changed from pyrope-almandine to almandine-grossular (Fig.1). The extraction of gas fase from the rocks of deposit revealed enrichment by CO2, CH4 and others hydrocarbons.

Fig.1. The change of garnets from eclogites to diamondiferous garnet-pyroxene rocks. Garnets: 1 - from eclogites, 2 - from garnet-pyroxene rocks.
3. In difference of kimberlites, the mineral-satellites of diamonds are absent in the new type of deposits. Diamonds are within rock-forming minerals - garnet, pyroxene, amphibole, micas, quartz and many others. The compositions of minerals containing diamond inclusions and of minerals from the ore-free rocks haven't essential distinctions. For example, the garnets from diamondiferous rocks with diamond inclusions and the same minerals from diamond-free rocks aren't differed by chemical composition. But there are variations within groups of rocks (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>38.32</td>
<td>40.32</td>
<td>38.03</td>
<td>38.83</td>
<td>39.25</td>
<td>38.02</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.17</td>
<td>0.22</td>
<td>0.05</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.02</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.52</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>25.99</td>
<td>13.68</td>
<td>26.33</td>
<td>17.67</td>
<td>20.98</td>
<td>22.14</td>
</tr>
<tr>
<td>MnO</td>
<td>2.55</td>
<td>1.07</td>
<td>2.01</td>
<td>0.69</td>
<td>1.47</td>
<td>2.47</td>
</tr>
<tr>
<td>CaO</td>
<td>7.14</td>
<td>15.33</td>
<td>4.25</td>
<td>12.06</td>
<td>4.36</td>
<td>10.54</td>
</tr>
<tr>
<td>MgO</td>
<td>5.02</td>
<td>7.70</td>
<td>6.91</td>
<td>7.04</td>
<td>9.75</td>
<td>3.95</td>
</tr>
<tr>
<td>Total</td>
<td>100.09</td>
<td>100.57</td>
<td>98.97</td>
<td>98.14</td>
<td>97.60</td>
<td>98.62</td>
</tr>
</tbody>
</table>

Table 1. Compositions of garnets from gneissis: 1,2-with diamond inclusions, 3,4-from nondiamondiferous rocks within ore zone, 5,6-the same, outside ore zone.

4. The diamonds of metamorphic type are typomorphic. The differences have shown in the table 2.

<table>
<thead>
<tr>
<th></th>
<th>Kimberlitic type</th>
<th>Impactitic type</th>
<th>Metamorphic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>0.1mm-1000mm</td>
<td>0.2-5.0mm(average-0.5-2.0mm)</td>
<td>0.001-1.3mm(average 0.02-0.05mm)</td>
</tr>
<tr>
<td>Colour</td>
<td>Glass, colourless, rare colours</td>
<td>Grey-black, yellow</td>
<td>Yellowish-green</td>
</tr>
<tr>
<td>Habit</td>
<td>Octahedral, rare cubes, dodecahedrons et al.</td>
<td>Polycrystals of table form</td>
<td>Cubes, imperfect (rozette like, spheroidal, table) crystals with zoned-sectoral structure</td>
</tr>
<tr>
<td>Isotopic composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a)diamond</td>
<td>-1 - -11%</td>
<td>-12.0 - -17.0%</td>
<td>-11.6 - -17.0%</td>
</tr>
<tr>
<td>b)graphite</td>
<td>the same</td>
<td>the same</td>
<td>the same</td>
</tr>
<tr>
<td>Mechanism of crystallization</td>
<td>Face (grane)</td>
<td>Just transition graphite-diamond</td>
<td>Nonface fibrous</td>
</tr>
</tbody>
</table>

Table 2. The properties of diamonds from different genetic types
5. The diamonds of different ores are different (Table 3.)

<table>
<thead>
<tr>
<th>Ore type</th>
<th>Typomorphic diamonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet-biotite-quartz-feldspatite rocks over gneissis</td>
<td>Yellowish-green cubic crystals, often skeletal ones, 20-50μm - average size</td>
</tr>
<tr>
<td>Biotite-quartz rocks</td>
<td>Yellowish-green and colourless octahedron the same size</td>
</tr>
<tr>
<td>Pyroxene-flogopite-carbonate rocks</td>
<td>Yellow, grey, white imperfect (rozette-like, spheroidal) crystals, 1-10μm size</td>
</tr>
<tr>
<td>Garnet-pyroxene rocks and eclogites</td>
<td>Grey cubic crystals, 100-1000μm size</td>
</tr>
</tbody>
</table>

Table 3.

6. Diamonds from different types of rocks differ by isotopic composition: diamonds from pyroxene-flogopite-carbonaceous rocks contain more 13C than those from apogneissis rocks.

II. There are a few nonindustrial diamond manifestations in the Kokchetav massif besides the deposit. Some of them are localizated in altered rocks as a deposit and are represented by the bodies within tectonic zones, the others - by very small ones of a garnet-pyroxene skarns, confined to the margin of granitic massif near the deep fault zone. The reliability of these finds is confirmed by diamond presence in thin sections. Two finds of diamond have taken place within recrystallized eclogites, but this were not confirmed by thin sections. Common feature of these occurrences is localization in altered rocks near the deep fault zone.

III. Not so far ago, Barchy ore area was found in the distance 15 km from the Kumdykolskoye deposit. Its geological position is like the deposit. A lot of ore zones were found in this new area. There are some difference between Barchy area and the deposit. Diamondiferous rocks of Barchy area often are more compound. As a rule, gneissis contain the diisten and tourmaline and thier garnets are more ferriferous, than in the deposit. The most of diamonds have perfect and transparent forms; atelene skeleton forms are occurred rarely.

IV. The geological data on the deposit and nonindustrial manifestations give the evidence of the diamond crystallization from gas fase in tectonic zones under moderate P-T conditions. Principal possibility of such process is confirmed by theoretical (Rudenko et al., 1993) and experimental (Fedoseev and Derjaguin, 1983) investigations.