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ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development 
with special reference to the dengue virus. There are numerous problems involved in dengue vaccine 
development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using 
traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these 
issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived 
dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost 
method to combat dengue and other infectious diseases. The application of new methods and strategies such as 
dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune 
deficiency virus, and malaria might play an important role. These new methods are more efficient than 
traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will 
play an important role in the control of human infectious diseases. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
 

Abbreviations: ADE: antibody-dependent enhancement, AmB: amphotericin B, bsMAb: bispecific antibody, DC: 
dendritic cells, DEN-2: dengue virus serotype 2, DENVs: dengue virus serotypes, FDA: Federal Drug Administration, 
IMAC: immomobilized-metal affinity chromatography, KDEL: endoplasmic reticulum-retention signal, MV: measles 
vaccine, NS1: non-structural protein, PDVA: plant-derived vaccine antigen, SARS: severe acute respiratory 
syndrome, TMV: Tobacco mosaic virus, TSP: total soluble protein, USDA: United States department of agriculture 

 
INTRODUCTION 
 
The success story of any immunization programme 
depends upon the efficacy of the vaccine (1-4). For 
many reasons, developing countries can not afford 
to produce expensive vaccines (1, 2, 5, 6). There are 
many issues associated with the production of 
vaccines that have been widely reviewed and 
discussed (1-4). Traditional vaccines are produced 
by the application of fermentation technology in 
various cell culture systems. However, there are 
many limitations involved with fermentation so that 
development of alternative systems for the 
production of vaccines is timely (1-3, 5, 6). Plants 
have been used as herbal drugs for millenia; they 
also play an important role in modern medicine. 
Recent advances in the area of plant biotechnology 
have revealed many achievements, including the 
production of desired vaccine antigens in plants (4, 
7-16). The use of plants for the production of 
vaccines has many advantages, which have been 

previously discussed (1, 2, 4, 6, 13, 14, 15, 17-22). 
Plant cells also play an important role in the 
accumulation of foreign proteins in specialized cell 
compartments, allowing for the retention of native 
biological activity (7, 21, 23-27). There are many 
established and published protocols in the literature 
for the isolation of protein from plant tissues. 
Purification of an antigenic protein from plant cell 
culture is very simple since the antigenic protein is 
histidine-tagged and can be separated using an 
immomobilized-metal affinity chromatography 
(IMAC) system. Plants are considered to be 
effective alternative production systems for subunit 
vaccines as they are likely to contribute to all of 
these critical features of effective vaccines (12, 14, 
28-33).   The strategy for the  production of   plant-  
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derived  vaccine    antigen  (PDVA)  against human 
infectious diseases is diagrammatically presented in 
Figure 1. Furthermore, plants are photoautotrophic 
and use light as their energy source, unlike 
mammalian or insect cell culture growth, resulting 
in a more robust and inert system for the production 
of subunit vaccines in different plant systems (4, 
34). Several plant-derived vaccines have been 
through Phase I and II clinical trials in humans and 
are increasingly developed (4, 13, 15). Plant-
derived vaccines constitute a technology with 
proven worth as a cheap and easy means to scale-up 
the production of valuable materials (7, 15, 21, 26, 
27, 35). The production of antigenic protein in 
plants affects protein yield. The yields of PDVA 
can be as high as 45% of a plant cell’s total protein 
compared to that of vaccines produced from a 
mammalian cell culture system (36). Thus far, 
several plant species, including potato, tobacco, 
tomato, Arabidopsis, soybean, alfalfa, lettuce, lupin, 
rice, banana, grapes, watermelon, black-eyed bean, 
cowpea, and corn have been used for production of 
vaccine antigens against dengue, tuberculosis, 
human immune deficiency virus (HIV), foot and 
mouth disease, hepatitis virus B surface antigen, 
cholera toxin B, severe acute respiratory syndrome 
(SARS), Norwalk virus capsid protein, avian 
influenza (H5N1 subtype), swine fever, malaria, 
diabetes-type 1, human papilloma virus, rotavirus, 
and smallpox recombinant vaccine virus (3-5, 30-
33, 37, 38). Separately, the use of a magnifection 
system increased the total soluble protein 
accumulation level of hepatitis B virus (HB core) in 
tobacco by more than 7% (6, 39-41). Plant-derived 
vaccines (PDVs) could soon be on the market due to 
many advantages. This is mainly due to the 
established plant tissue culture protocols for many 
commercial plants, as well as established gene 
cloning and plant transformation technology (42). 
A number of factors may modulate gene expression 
in plants, including: appropriate codon optimization 
popularized by Geneart Inc., Germany, Integrated 
DNA Technologies (IDT), USA, Biobasic Inc., 
Canada, Abnova Inc., Taiwan; promoter, leader and 
polyadenylation signals. 

A very powerful tool in biotechnology is genetic 
transformation and transgenic plants represent a 
potentially stable and cheap propagation source for 
the production of a protein of pharmaceutical interest 
such as a vaccine (42-46). This is achieved by the 
transfer of a foreign gene of interest into the nuclear 

or organelle (chloroplast) genome of the plant to 
generate transgenic plants that express the antigenic 
protein (3, 34, 47-48). Transgenic plants are most 
commonly obtained by Agrobacterium-mediated 
gene transfer or by bombardment with DNA coated 
high velocity gold/tungsten particles (43, 49-53), 
both followed by an appropriate plant tissue culture 
regeneration methods either via organogenesis or 
somatic embryogenesis (54-65). Therefore, the 
successful application of plant tissue culture 
techniques and genetic transformation plays an 
important role in the production of PDVs. 
 
GLYCOENGINEERING 
 
Plant and mammalian glycosylation are not similar (7, 
12, 22, 66-67). The covalent attachment of sugar 
molecules to proteins in glycosylation has improved 
folding capacity, biological activity and solubility (22-
23, 68-69). Proteins produced by plants lack the 
terminal galactose and sialic acid residues commonly 
found in animals and have α-(1, 3) fucose and β- (1, 2) 
xylose which are absent in mammalian systems (7, 22, 
70).  Recently these issues have been addressed by 
the application of genetic engineering techniques 
(22). On the other hand, PDVAs have shown higher 
immunogenicity than other expression systems (7, 22, 
38). However, the immunogenicity of plant glycans 
is still of major concern in the context of plant 
proteins (7, 21, 22, 26, 27, 71). Furthermore, 13 (1, 
4)-galactosyltransferase is one of the key enzymes 
that plays an important role in the glycosylation 
pathway (7, 22, 71). Production of transgenic 
tobacco resulted in 15% of proteins expressing 
terminal (1, 4)-galactose residues (7, 21, 22, 71). 
Various methods have been adopted to modify the 
N-glycosylation pattern in plants (68, 69, 72, 73). 
Therefore, plants could be used for the production 
of glycosylated proteins for the development of 
vaccine antigens against human diseases (68, 69, 
74). 
 
COMMERCIALIZATION AND CLINICAL 
TRIALS 
 
Plant-derived vaccines will likely replace 
traditional vaccines in the pharmaceutical industry 
in the future (6, 15, 38, 39, 68, 69). A review 
article published by Tiwari and co-workers (15) 
highlighted the outcome and results of most
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Figure 1. Schematic Representation of Strategies for the development of Plant derived vaccines and diagnostics 
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clinical trials of plant-derived vaccines. Our paper 
updates that review with some more information 
on clinical trials. On the basis of published reports, 
PDVAs were successful during phase I clinical 
trials (15, 69). There are many plant-derived 
vaccines that, during clinical trials, induced 
neutralizing antibodies following immunization 
(9, 15, 44-46, 68, 69, 75, 76, 77, 78). A US-based 
company (Dow Agro Sciences LLC) received 
regulatory approval for a plant-made vaccine from 
the US Department of Agriculture (USDA) Centre 
for Veterinary Biologists in 2006 (15, 68). This 
plant culture-derived veterinary vaccine antigen 
that protects poultry from Newcastle disease 
(www.thepoultrysite.com) also met the 
requirements of the FDA (15, 68, 69). In another 
development, a Canadian-based company from 
Calgary, SemBioSys Inc., has completed Phase II 
trials of insulin produced in transgenic safflower 
(Carthamus tinctorius L.), and has filed an Inves-
tigational New Drug Application with the FDA, and 
submitted a Clinical Trial Application to European 
authorities (38, 79). Medicago Inc. (Canada) are 
currently undergoing Phase II trials for their avian 
influenza vaccine produced transiently in tobacco 
(Nicotiana tobaccum), after receiving clearance 
from Health Canada (38, 80). Taliglucerase alfa 
produced in stable carrot cell cultures is used to 
treat Gaucher disease. Protalix Bio-Therapeutics 
has just completed a Phase III trial and the product 
was approved by the FDA. Furthermore, the FDA 
has also accepted a New Drug Application and 
granted a Prescription Drug User Act action date in 
early 2011 (38, 81). Therefore, results of clinical 
trials have already confirmed the potential of 
transgenic plant biotechnology in diagnostic and 
therapeutic industry. 
 
DENGUE EXPRESSION SYSTEMS: CASE 
STUDIES 
 
Dengue is one of the major causes of mosquito-
born viral disease of humans reported in different 
regions of the world (82-87). The World Health 
Organization (WHO) estimates that approximately 
more than 2.5 billion people are at risk of getting 
infected with dengue (82, 84, 86-91). In some 
countries, dengue disease has become the leading 
cause of death among children (82-84, 92-98). 

Different expression systems (bacterial, 
mammalian, baculovirus, and yeast) have been used 

for the production of dengue antigenic protein from 
various laboratories around the world. Bacterial 
expression is one of the most commonly employed 
expression systems for the production of 
recombinant proteins (99, 147). A gene fragment 
from the structural envelope glycoprotein E and the 
non-structural protein  (NS1) of dengue virus 
serotype 2 (DEN-2) was expressed in E. coli as a 
fusion protein with Staphylococcal protein A (100). 
The expressed protein was found to be 
immunogenic against dengue2 virus in a mouse 
model (100). Hermida and co-workers (101) 
immunized Macaca fascicularis monkeys with 
two variants of these proteins [PD3 (insertion 
variant) and PD5 (fusion variant)] corresponding to 
serotype 2 of dengue disease. The results of this 
study confirmed the induction of immunity in a non-
human primate model by using Escherichia coli as 
the expression platform (101). In another 
development, Khanam and coworkers (102) 
developed a recombinant adenovirus capable of 
expressing the E domain III (EDIII) of DEN-2 and 
evaluated its potential as a dengue vaccine (102). 
This study also showed the induction of antibodies 
that specifically neutralized the infectivity of DEN-2 
virus (102). Furthermore, the dengue antigen-
specific antibody titers elicited by the fusion protein 
(Domain II of Mycobacterium tuberculosis (Mtb) 
heat shock protein 70 (HSP70), was covalently 
linked to a recently described synthetic dengue 
virus antigen), and successfully expressed in E. coli 
(103). A higher rate of anti-dengue antibodies were 
produced in mice than those induced by either the 
synthetic dengue antigen alone or a physical 
mixture of the dengue antigen plus Mtb HSP70 
domain II protein (103). A recombinant vaccine 
strain SL3261/pLT105 of attenuated aroA 
Salmonella enterica serovar Typhimurium SL3261 
strain expressing a secreted (DEN-2) non-structural 
NS1 and Yersinia pestis F1 (Caf1) fusion protein, 
rNS1:Caf1, was developed to test its immunological 
potential via a prime boost vaccine regimen (104). 
The addition of an antifungal antibiotic 
amphotericin B (AmB) to Salmonella vaccine 
further boosted the synergic effects of prime-boost 
vaccine regimen on the elicited NS1-specific serum 
IgG response and the protective efficacy (104). 
Therefore, this study clearly demonstrated the 
potential of amphotericin B (AmB) as an effective 
strategy for dengue vaccine development (104). 
Furthermore, a bacterial (E. coli) expression system 
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has been utilized to study the immunogenicity and 
protective capacity of a recombinant capsid protein 
from dengue-2 virus (105). The results of that study 
also demonstrated the protective capacity of the 
capsid protein of dengue virus indicating the 
existence of a protector mechanism totally 
independent of the antibodies (105). 

The immunomodulatory potential of refolded 
dengue (D4EIII) protein in combination with 
various adjuvants (Freund’s Complete adjuvant, 
Montanide ISA720, Alum) has been reported by 
Babu and coworkers (106). All the formulations 
resulted in high antibody titers that neutralized the 
virus entry in vitro (106). D4EIII, in combination 
with montanide ISA720 and Freund’s complete 
adjuvant, gave highest antibody endpoint titers 
followed by alum (106). Therefore, this study 
demonstrated the recombinant D4EIII protein 
expressed in E. coli induced neutralizing 
antibodies and cell-mediated immune response in 
immunized animals in combination with different 
adjuvants (106). On the other hand, Sim and co-
workers (107) noted that mucosal vaccines present 
several advantages over conventional vaccines, 
including their ease of administration and low cost 
(107). Their study showed that the antibody’s 
response depended on the route of administration 
and on the mouse strain inoculated (107). 

A simple and significant method for the 
expression of NS1 in E. coli has been demonstrated 
to develop monoclonal and bispecific antibodies for 
dengue point of care diagnostics (99). An E. coli 
codon-optimized synthetic full-length NS1 gene of 
dengue serotype 1 (DEN-1) was successfully 
cloned and expressed at very high levels as 
inclusion bodies (99). The rNS1 protein was used to 
immunize mice for hybridoma development (99). 
The polyclonal antiserum from animals immunized 
with this rNS1 protein was found to specifically 
reorganize the rNS1, thus demonstrating the 
immunogenic nature of the protein (99). The rNS1 
protein purified from E. coli could be useful for 
developing a sensitive serum diagnostic assay to 
monitor dengue outbreaks (99). Dengue NS1 
antigen testing is one of the important tools for the 
early diagnosis of dengue infection after the onset 
of fever (99). Commercially available dengue NS1 
antigen capture ELISA has been evaluated for the 
detection of NS1 from patients in different stages. It 
is therefore, an important antigen for rapid viral 
diagnosis (99, 108). 

Khanam and co-workers (109) successfully 
produced a tetravalent vaccine against dengue 
disease by mixing four monovalent vaccine 
components (109). This  vector induced effective 
immune responses and virus-neutralizing 
antibodies specific to each of the four dengue virus 
serotypes (DENVs) in mice (109). Interestingly, 
anti-AdV5 antibodies did not suppress the 
induction of DENV-specific neutralizing 
antibodies (109). Therefore, it could be an 
alternative approach for the development of a 
single component tetravalent vaccine that 
bypasses the complexities inherent in the 
currently adopted four-in-one physical mixture 
approach (109). Very recently, Block and co-
workers (110) evaluated the high yield insect cell 
expression, neutralizing and enhancing antibody 
response to E domain III (dIII) proteins of dengue 
virus in which serotype-specific neutralizing 
determinants were concentrated (110). Therefore, 
vaccine strategies directed to DENV-dIII-targeted 
neutralizing antibody production remain attractive 
(110). In another development, Brandler and co-
workers (111) evaluated for the first time a new 
strategy based on the expression of a single 
minimal tetravalent DV antigen by a single 
replicating viral vector derived from pediatric live-
attenuated measles vaccine (MV) (111). That 
study reports the successful induction of 
neutralizing antibodies against DENVs (111). 
Hence, this study concluded the possibility of a 
combined measles-dengue vaccine, which might 
be feasible to immunize infants against both 
diseases (111). In another study by Batra and co-
workers (112), biotinylated chimeric dengue 
antigens have been used to exploit the high 
affinity of the biotin–streptavidin interaction for 
the detection of anti-dengue antibodies (112). On 
the other hand, Ramanathan and co-workers (113) 
highlighted two major problems in the 
development of a dengue vaccine: failure of a 
neutralization effect and the unequal presentation 
of antigens against DENVs (113). This study also 
revealed the problems of allergic or varying 
levels of immune responses against dengue in 
different patients (113). These problems have led 
many to consider the effectiveness of PDVAs and 
also DNA vaccines as a potential platform for the 
development of a dengue vaccine. Therefore, a 
PDVA against dengue would be immunogenic 
and offer protection from the disease. The ability 
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to induce neutralizing antibodies against DENVs 
disease with a single immunogen is a significant 
advantage. 
 
RELEVANCE OF PLANT-DERIVED VACCINE 
AGAINST DENGUE 
 
Despite decades of efforts, no licensed vaccine for 
dengue disease is currently available on the world 
market (84, 113, 114). Vaccine development would 
be a major concern because dengue virus infections 
have led to the death of many people and now it is a 
major economic issue, especially in developing 
countries (84, 114, 115). The development of a 
dengue virus vaccine is difficult, because every 
serotype provides life-long immunity, but infection 
with a heterologus virus enhances the disease 
severity (113, 114, 115). This phenomenon is called 
antibody-dependent enhancement (ADE), and 
occurs often in children born to dengue-immune 
mothers (114). A tetravalent vaccine with low 
reactogenicity would be an effective choice of 
treatment (113, 114, 115). Several groups attempted 
to develop a vaccine, including live attenuated 
viruses, chimeric viruses, recombinant subunit 
antigens, vector-based vaccines and DNA vaccines. 
The Dengue E glycoprotein has been produced in 
several heterologous expression systems such as E. 
coli (116, 117), Pichia pastoris (118, 119), and 
baculovirus (120) with appropriate yields of the 
antigenic and immunogenic dengue 2E protein. 
However, the expression level of the full length or 
ectodomain of the dengue 2E protein is low in 
mammalian or insect cells or the expressed protein 
is easily degraded (115). In addition, the existing 
expression systems have failed to show antibody 
neutralizing activity against DEN-2. To explore 
alternative expression systems, it is necessary to 
evaluate the production of dengue antigenic protein 
in plant cell culture and in transgenic plants. 
Recently a gene fragment encoding domain III of 
the dengue 2 envelope protein (D2EIII) was 
successfully expressed in a model plant system 
Nicotiana benthamiana using a Tobacco mosaic 
virus (TMV)-based transient expression system 
(121-123). The intramuscular immunization of mice 
with D2EIII induced the production of the 
antibodies against dengue (121-123). The induced 
antibodies demonstrated neutralizing activity 
against DEN-2 (121, 122). The results indicate that 
the plant system produces the dengue virus antigen, 

which possesses appropriate antigenicity and 
immunogenicity (121, 122). Therefore, transgenic 
plants demonstrate the feasibility of using PDVs to 
prevent infection by the dengue virus (121, 122). 

Saejung and co-workers (121) reported the 
successful induction of anti-dengue virus antibody 
as well as an anti-D2EIII antibody production in 
mice by utilizing the N. benthamiana-recombinant 
TocJ, a TMV-based viral vector, as a bioreactor 
system to produce the D2EIII protein (121). The 
yield of purified D2EIII protein was 0.28% of total 
soluble protein TSP (121). The high expression 
level of D2EIII was achieved by a combination of 
several factors, including targeting the protein to 
the endoplasmic reticulum (ER) by the signal 
peptide and 5′ UTR (121). During the study 
conducted by Saejung and co-workers (121), it was 
also noticed that the higher the level of anti-dengue 
virus antibody, the higher the neutralizing antibody 
activity in the sera of immunized mice, which was 
directly correlated with the anti-dengue virus 
antibody level and the neutralizing antibody activity 
of the immunized mouse antisera (121). The level 
of induction of immunized-mouse antisera to the 
dengue virus antigen was low (121). A low level of 
anti-dengue virus antibody induction might be due 
to the small antigenic fragments resulting in 
insufficient induction of high antibody production, 
even though an adjuvant was used in the 
experiment (121). No antibody induction was 
detected when mice were immunized with plant-
produced D2EIII protein without adjuvant (121). 
Immunized mice induced neutralizing antibodies, 
with plant-produced D2EIII protein with Titer Max 
Gold adjuvant many times and for a long period 
(121). Therefore, vaccine development should focus 
on high-level induction of neutralizing antibodies 
(121). Furthermore, the titer of the neutralizing 
antibody induced by the plant-produced D2EIII 
protein was not high, but was quite promising 
(121). The neutralizing antibody titer can be 
increased by changing the antigen dose, route of 
immunization, or by using other adjuvants (121). 
The advantage of using TocJ-TMV as an expression 
system are a high yield of a foreign protein up to 
10% of TSP in infected leaves, a short time 
required for protein expression, and low toxicity 
(121). In another study by Kim and co-workers 
(122), the plant-produced domain III of dengue 
virus E glycoprotein (EIII) was between 0.13 and 
0.25% of the total soluble protein in transgenic N. 
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tabacum L. cv. ‘MD609’ under the control of the 
35S promoter (122). This study demonstrated the 
feasibility of using plant-based vaccines to prevent 
infection by the dengue virus (122). A truncated 
version of dengue virus envelope glycoprotein (E-
protein) was designed and expressed alone and co-
expressed with dengue virus structural proteins 
(122). The recombinant proteins were produced in 
N. benthamiana plants and were reactive with the 
anti-E antibody (123). The fusion was reactive with 
both anti-E and anti-HB core antibodies (123). 
Some studies have shown that Flavivirus envelope 
glycoprotein produced in different expression 
systems undergoes proteolytic degradation (124). 
However, Martínez and co-workers (123) reported 
the absence of any discernible low MW protein 
when expressed in an N. benthamiana system, 
indicating that there are no plant proteolytic 
degradation events (123). They also demonstrated 
that the dengue virus envelope glycoprotein (E-
protein) truncated version with a KDEL retention 
signal or co-expressed with other structural proteins 
in plants was not subjected to such a degradation 
process (123). The level of protein accumulation 
was estimated and expressed protein equalled 0.6 
mg/g FW leaf at 7 dpi, CMEt at 0.5 mg/g FW leaf 
at 10 dpi and HB core-dengue virus envelope 
glycoprotein (E-protein) at 0.4 mg/g FW leaf at 7 
dpi (123). Furthermore, the production of domain 
III of the DEN-2 envelope protein in tobacco plants 
using a TMV transient expression system is safe for 
humans and the environment (123). N. benthamiana 
is a non-food crop in which foreign proteins are 
subsequently purified or processed to yield 
desirable products (34, 42, 121-123). 
 
DENDRITIC CELL TARGETING STRATEGIES 
FOR DENGUE 
 
Dendritic cells (DCs) have been identified as the 
most specialized and potent antigen presenting cells 
capable of initiating and directing immune 
responses following infection (125-133). Wang and 
co-workers (131, 132) developed a bifunctional 
fusion protein (bsmAb) that can bind any class of 
biotinylated antigen proteins, peptides, 
carbohydrates, gangliosides and even naked DNA 
and target them to a DEC-205 receptor molecule 
which is expressed on DCs (131). In another study, 
biologically active plant-derived medicines have 
been identified with DC-modulating properties 

(133). Plant-derived medicines play an important 
role as immunomodulators of DCs for the 
maintenance of human health (133). In many 
infectious and cancerous situations, priming 
immune responses to a single antigen may not be 
sufficient for effective immune responses (131, 
132). Therefore, a universal DC-targeting vehicle 
such as bispecific or bifunctional antibody (bsMAb 
or bfMAb, respectively) that can bind to a mixture 
of biotinylated plant-derived antigens would be the 
best approach to elicit the immune response against 
dengue (82, 131, 132,134, 135, 136, 137-146). 
Therefore, PDVA presentation by DC targeting 
might play an important role in eliciting a good 
immune response with efficient neutralizing 
antibodies against dengue. 
 
LIMITATIONS OF PDVAS 
 
PDVAs have many challenges. The major 
limitation of this system is the relatively low 
protein yield, protein degradation and incorrect 
post-translational modifications of protein (3, 15, 
22). Recently, these issues have been addressed by 
improving the protein expression levels in plants by 
some important steps by using ER retention signal 
sequences like KDEL and HDEL, by the use of a 
proper promoter, choice of vectors, methods of 
transformation, and codon optimization (22). 
Development of codon-optimized genes for plants 
during expression studies has improved protein 
yields up to 200 mg/g FW of tobacco tissue. 
Recently, the yield of purified dengue 2E III protein 
was 0.28% total soluble protein (TSP). This high 
expression level was achieved by a combination of 
several factors viz. by inserting the plant signal 
peptide at the N-terminal end, and C-terminal ER 
retention sequence for plants (121). Expression of 
protein in the ER has drastically reduced the 
degradation of expressed protein (antigen) and 
resulted in a higher yield of protein accumulation 
(12, 15, 22). Gene silencing issues are another 
major problem during the expression of vaccine 
antigenic proteins in transgenic plants. This is 
resolved by the use of Agrobacterium, which tends 
to result in fewer copies of transgenes than biolistic 
transformation (15, 22, 43). Biosafety, risk 
assessment, and public acceptance of transgenic 
plants producing vaccine antigens are other issues. 
These issues have been widely discussed by other 
researchers and are beyond the scope of this review 
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paper. Furthermore, cross contamination of 
transgenic plants with other food crops was 
resolved by applying containment approach 
technology, thus limiting the environmental 
exposure of transgenic products (15, 22). The slow 
growth of plants under in vitro conditions has also 
hindered the commercialization of PDVAs. This is 
particularly related to the regeneration of transgenic 
plants under in vitro conditions. This issue is solved 
by the manipulation of media, growth conditions 
and plant growth regulator concentration to develop 
a reproducible plant tissue culture protocol before 
considering the right candidate for genetic 
transformation. 
 
CONCLUDING REMARKS 
 
Production of a vaccine antigen against dengue, an 
infectious disease, is one of the serious problems 
due to many issues. There are many disadvantages 
associated with the traditional production of 
vaccine antigens. This situation has forced many 
scientists throughout the world for the production 
of PDVA against many human infectious diseases 
including dengue. Recently many private 
companies and government agencies throughout 
world have also joined hands and funded many 
projects on the PDVAs in order to meet current 
demands of the immunization programmes 
particularly in the developing countries. DC 
targeting approach using PDVA may play an 
important role. This would help in the early diagnostic 
tests in the patients suffering from dengue infection. 
On the other hand, in many instances, plants will 
replace the traditional mammalian system as a cost 
effective vaccine production system against dengue. 
This would also save of money in developing 
countries because of high budget of health care 
programmes. Therefore, the plants seem to be a 
superior expression system, and plant 
biotechnology has a bright future. 
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