A Systematic Review of *in vitro* Studies Conducted on Effect of Herbal Products on Secretion of Insulin from Langerhans Islets

Ozra Tabatabaei-Malazy¹, Bagher Larijani¹, Mohammad Abdollahi¹,²

¹ Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
² Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran

Received, June 4, 2012; Revised, July 23, 2012; Accepted, July 24, 2012; Published July 27, 2012

ABSTRACT - Purpose: Diabetes mellitus is the most important health problem that its prevalence is increasing. Diabetes is characterized by defects in insulin secretion, insulin action or both. Recent studies provided evidences that loss of functional β-cell mass through apoptosis is central to the development of diabetes. The management of diabetes without any side effects is still a challenge to the medical system. Recently, there has been a special interest to herbal medicine in care and management of diabetes due to their natural origin and less side effects. The current systematic review focuses on main component of antidiabetic plants with directly effect on insulin secretion of pancreas. **Methods:** All *in vitro* studies which assessed the potential effect of, main components, multi herbal, whole plant, or extract of the plants directly on pancreatic insulin secretion published from 2001 to November 2011 were included. Exclusion criteria were clinical trial studies that did not assess insulin secretion, and review articles, or letters to the editor. **Results:** The majority of these studies showed that the improvement of β-cell function and insulin secretion is possible with antioxidant compounds. Suppression of oxidative stress, cytokine-induced impairment, suppression of nuclear factor κB a key regulator of endothelial activation, activation of uncoupling protein 2 (UCP2), insulin-like activity and increasing intracellular calcium, were among the most important indicated pathways. **Conclusions:** By considering the role of oxidative stress in pathogenesis of β-cell dysfunction, antioxidant compounds could be helpful in management of diabetes and its complications.

This article is open to **POST-PUBLICATION REVIEW**. Registered readers (see “For Readers”) may **comment** by clicking on ABSTRACT on the issue’s contents page.

INTRODUCTION

It is estimated that diabetes mellitus (DM) affects more than 366 million people worldwide and it is expected that the figure reach a staggering 552 million by 2030 (1). DM is a multifactorial disease characterized by chronic hyperglycemia due to defects in insulin secretion, insulin action or both, resulting from a deficit in β-cell mass (2, 3). Several mechanisms have been proposed for β-cell destruction, including damage from inflammatory cytokines, circulatory free fatty acids, and hyperglycemia (4, 5). The management of DM without any side effects is still a challenge to the medical system. Although, the synthetic products are widely used in clinical settings for more than 50 years, they are associated with various undesirable side effects such as hypoglycemia. In the last few years, there has been a growing interest to herbal medicine in care and management of diabetes both in developing and developed countries, due to their natural origin and less side effects (6-9).

Wide array of plants are demonstrated to have antidiabetic activity. Biological actions of these plants are related to chemical composition of the plant products. Herbal products that are rich in phenolic compounds, alkaloids, flavonoids, terpenoids, coumarins, and glycosides usually show positive effects (6). On the other hand, many conventional drugs for treatment of diabetes such as metformin are secretagogues and have plants origin (10). The World Health Organization expert committee on diabetes has listed as one of its recommendations that traditional medical plants as methods of treatment of diabetes should be further investigated (11).

Corresponding Author: Mohammad Abdollahi, Professor, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran. Email: Mohammad.Abdollahi@UToronto.ca
Insulin is the most important peptide hormone that is secreted from the islet β-cells of langerhans in response to hyperglycemia but in a complex process. The first step in this process is an increase in production of adenosine triphosphate (ATP) from adenosine diphosphate which leads to an increased ATP/ADP ratio in the cytoplasm with subsequent closing of ATP-sensitive potassium channels (12). Depolarization of plasma membrane could activate the voltage-dependent Ca^{2+} channels and hence Ca^{2+} influx. The increase in intracellular concentration of Ca^{2+} triggers the insulin secretion (13). These pathways can be exhibited in diabetes and results in abnormal pattern of insulin secretion (13). Some studies provided evidences that loss of functional β-cell mass through apoptosis is central to the development of both type 1 (14) and type 2 diabetes (15). Proliferation of islet β-cells is a very important component of β-cell adaptation to increased apoptosis and insulin resistance. Similarly by the strategy to induce β-cell proliferation and preserving functional β-cell mass, it would be possible to prevent the onset of diabetes (14, 16-20). Approaches to achieve this objective are stimulation of insulin secretion and inhibition of β-cell apoptosis (21).

Many medicinal plants modulate the expression, synthesis and degradation of insulin. Induction of insulin release is the main mechanism of action for some antidiabetic plants (22); however increase in islet number and size as well as producing the antioxidative effects could be accounted as anti-diabetic mechanism of action of some other herbal medicine (7). Besides, antidiabetic effects of these compounds, the other benefit of such insulin releasers are looked in islet transplantation which is the final step in management of diabetic type 1 and sometimes progressive type 2 patients. The bottle neck in the islets transplantation is to keep them survived and functional during isolation before transplantation. The belief is that direct treatment of insulin producing cells or pancreatic islets with different herbal products improves their viability and function. Therefore, this could be a novel approach for improving the outcome of islet transplantation. The current systematic review is a novel work that focused on main components of plants with antidiabetic effects acting directly on insulin secretion of pancreatic islet cells.

METHODS

To obtain all related studies, Google Scholar, PubMed, Web of Science, and Scopus databases from 2001 to November 2011 were searched. The search terms used were as follows: “insulin secretion”, “insulin-secreting cell”, “insulin release”, “islet” and “herbal or natural product” and their synonym in Persian databases of IranMedex, and Magiran. We found many in vitro studies which focused on antidiabetic plants, but they did not assess the effect on insulin secretion. Therefore all available in vitro studies which assessed the potential effect of, main components, multi herbal, whole plant, or extract of the plants directly on insulin secretion of isolated islet cells (or insulin-secreting cell lines such as RIN, HIT, β-TC, MIN6, INS-1) of pancreas were included. Exclusion criteria were clinical trials that did not assess insulin secretion, and review articles, or letters to the editor. Thesis and other unpublished data were not included. The title and abstract of all of search results were examined to eliminate the duplication. Also, the reference lists of articles were reviewed for additional relevant studies.

RESULTS

The number of initial search results and included studies are shown in the Figure 1. Forty-nine articles were selected as our final research database (23-71). The summary of these studies are shown in Table 1. These studies showed that herbal products can increase insulin secretion by affecting different steps of this process. Suppression of oxidative stress, cytokine-induced impairment, suppression of nuclear factor κB (NF-κB); NF-κB is a key regulator of endothelial activation; uncoupling protein 2 (UCP2) activation, and increasing intracellular Ca^{2+}, are among the most important indicated pathways (23-72).

DISCUSSION

In vitro studies on insulin secretion

The majority of experimental studies published between 2001 and 2011 were carried out on rats or mice. In addition, the most frequently drugs used for induction of diabetes were streptozotocin (STZ) and alloxan.
It was established that these models are useful for study of multiple aspects of diabetes (73, 74). The cytotoxic action of these diabetogenic agents is mediated by reactive oxygen species (ROS) with some differences in their mechanism of action. By formation of superoxide radicals, alloxan can stimulate massive increase in cytosolic calcium concentration which leads to destruction of β-cells of pancreas (75). STZ enters the β-cell via glucose transporter 2 (GLUT2) and causes DNA alkylation. In addition, by activation of poly adenosine diphosphate ribosylation it causes nitric oxide (NO) release and necrosis of pancreatic β-cells (74).

Effect on insulin secretion by suppression of oxidative stress

We found that the potential antidiabetic activity of the published *in vitro* studies can affect different steps of insulin secretion. Because many of plants that were included in our study had more than a single active component, the observed hypoglycemic behaviors may be related to the combined synergistic actions. Some of them showed antidiabetic activity by improving oxidative metabolisms. *Broussonitia Kazinoki* (23), *Saururus Chinensis Baill* (24), *American Ginseng* (42), *Commiphora Mukul* (43), *Germinated Fenugreek* (51), *Rhizoma Coptidis* (57), and *Curcuma Longa* (58), *Pueraria Lobata* (62) are the examples of presence of antioxidant activity in the medicinal plants. Flavonoids *Rhizoma Coptidis* (57), and *Curcuma Longa* (58), *Pueraria Lobata* (62) posse hypoglycemic as well as antioxidant properties. Quercetin is an important flavonoid that increases insulin secretion by enhancing hepatic glucokinase activity (76) or changing intracellular calcium concentration (77). Quercetin in combination with apigenin and luteolin as flavonoids increased the viability of β-cells, insulin secretion, and cytokine-induce cytotoxicity resistance, and decreased NO-synthase (iNOS) and NF-κB activation (55). Flavonoids can also prevent cytokine-induced β-cell damage by declining NF-κB signaling (78-80). In addition, the flavonoids have phosphodiesterase...
Inhibitor (PDEI) activities (81). Another main plant compounds with PDEI activity are alkaloids, saponins, lignans, and coumarins. Some benefits of PDEI activity especially in diabetic patients include anti-inflammatory and antioxidant effects (81), and improvement of isolated islet cells function (82).

Genistein and soy isoflavonoids could significantly increase the insulin secretion by enhancing kcl-stimulated insulin secretion, increasing intracellular calcium concentration, and inhibiting extracellular signal-related kinase-1/2 (ERK-1/2), Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT) or NF-kB activation (32, 56). Activated ERK1/2 plays a pivotal role in environmentally-stimulated cellular responses, including cellular proliferation, growth, and differentiation. It is observed that genistein induces a rapid ERK1/2 phosphorylation, which may be necessary for growth factors to drive β-cell proliferation (83). Puerarin, an isoflavone, could increase insulin secretion by decreasing free radical production and increasing catalase (CAT) and superoxide dismutase (SOD) activities (62). Curcumin is a polyphenolic compound that is an inhibitor of NF-kB. Various biological activities for curcumin such as anti-inflammatory and antioxidant make it helpful in increasing area and numbers of islets and secretion of insulin (40, 58).

An association has been shown between oxidative stress and occurrence of several diseases, such as cardiovascular, diabetes, and metabolic syndrome (84-86). Oxidative stress is a phenomenon associated with the action of free radicals and reactive metabolites in the organism (87). It has been shown that both types of antioxidants, enzymatic (SOD, CAT, GPx) and non-enzymatic (vitamin C, vitamin E, zinc, uric acid and selenium), act against oxidants (87). Free radicals are derived from basic radical molecules such as superoxide anion radical or NO (88). When NO is produced by catalytic action of iNOS, it can cause a damage to proteins, lipids and DNA either directly or after reaction with superoxide (89). Taking together, it is evident that increased production of free radicals has a central role in development of diabetes complications (9). The NF-kB is activated by free fatty acids, inflammatory cytokines, and the receptor for advanced glycation end products (RAGE) (90-92). Studies in cultured endothelial cells and experimental animals have shown an association between activation of NF-kB, development of an inflammatory phenotype, insulin resistance, and impaired bioactivity of NO (93, 94). By considering the fact that there is a strong association between oxidative stress and diabetes, the use of antioxidants should be helpful for management of diabetes (95-99). In the recent years, the positive antioxidant effects of some antidiabetic herbal products are established. Some of these medicinal herbs include species of Satureja (100), Urtica (101), Teucrium (102). As islet cell transplantation procedure is faced with oxidative stress, some studies with herbal products are investigated to assess their antidiabetic effects on isolated islet cells and showed positive effects. These substances include Setarud (IMOD); a mixture of Rosa canina, Tanacetum vulgare and Urtica dioica comprising selenium and urea treated by pulsed electromagnetic field of high frequency (25), specific PDEIs; milrinon, rolipram, sildenafil (82), calcium channel blockers, autonomic nervous system blockers and free radical scavengers; nanoparticles of cerium (103).

Effect on insulin secretion by insulin like activity

Adipose tissue enhances lipotoxicity by increasing intracellular lipid levels and also insulin resistance (104). So, adipose tissue as a key link between obesity and diabetes was assessed for the effects of natural products on glucose uptake. On the other hand, the classic target tissues of insulin which include hepatocytes, adipose tissue and skeletal muscle play important roles in homeostasis of glucose upon glucose uptake. Sarcopoterium Spinosum (31), Rooibos (33), Nigella Sativa L (36), Cichorium Intybus (48), Momordica Charantia (63) are the examples of natural products with insulin-like effects. This effect is attributed to some of antidiabetic compounds such as chlorogenic acid and caffeic acid (48). Chlorogenic acid by inhibiting glucose-6-phosphatase (G6P) in microsomes of liver suppresses gluconeogenesis and glycolysis and consequently reduces the hyperglycemia. In addition, G6P inhibition leads to increase glucose transport and its utilization. Finally it can stimulate insulin secretion through increased production of ATP (105).

Effect on insulin secretion through increasing viability and proliferation of β-cells

It is well established that replacing β-cells by islet transplantation has the potential to cure type 1 DM
and on the other hand the efficacy of islet transplantation depends upon number and state of functional islet cells (106). Apoptosis affects the initial stage of islet transplantation which yields non-functional cells. Human pancreas contains an average one million islet cells (107) and in a good isolation process, a total of 500,000 islets with more than 80% viability can be obtained. Since the viability of islets is affected by numerous factors in the early or late period of post transplantation (108), isolated procedure would be given lower yield (109, 110). Thus, islet yield and its post-transplant survival remain major issues. During initial stage of islet transplantation, islet cells are avascular and suspected to hypoxic ischemia condition which is produced by oxidative stress (96). Astragalus Membranaceus Bge (38), Codonopsis Pilosula Nannf (38), Lycium Chinense Mill (38), Green Tea (48), Coptidis Rhizoma (65) are natural products with suppression effect on apoptosis. Some medicinal plants such as Nigella Sativa L (36) can increase insulin secretion by including proliferation of islet cells. In our study, we found other antidiabetic plants that show their effects by increasing islet cell viability. Sarcopoterium Spinosum (31), Cornus Officinalis Sieb. et Zucc (39), Germinated Fenugreek (51), Rhizoma Coptidis (57), Curcuma Longa (58) are the examples of plants with this effect. All of these plants have antioxidant effects and the observed antidiabetic effects may be related to combination of these mechanisms.

Effect on insulin secretion through ATP/ADP ratio and intracellular Ca\(^{2+}\) concentration

There are other mechanisms that have direct effects on insulin secretion (111, 112). These mechanisms are ATP/ADP ratio and intracellular Ca\(^{2+}\) concentration which have been described previously (12, 13). The examples of the natural products with these effects are as follows: Angelica Hirsutiflora (34), Stevia Rebaudiana Bertoni (37, 66), Korean Red Ginseng (41), Asparagus Racemosus (53), Ocimum Sanctum (60), and Gardenia Jasmine Ides Ellis (64).

Effect on insulin secretion through inhibition UCP2

UCP2 as a mitochondrial carrier protein is expressed in islets of pancreas and has negative effect on glucose-stimulated insulin secretion (113). Animal (114, 115) and human (116, 117) studies have shown that increased UCP2 expression in islets can lead to β-cell dysfunction and development of type 2 diabetes mellitus. Thus, UCP2 deficiency can prevent β-cell dysfunction. The KYQRF formula (28) which is a combination of several medicinal plants, and Gardenia Jasmine Ides Ellis (64) markedly suppresses UCP2.

In this review, however, we had some limitations. We focused and included only the studies with in vitro analysis. Unfortunately, in vitro studies do not reflect all the aspect of in vivo application of new treatments, as most in vitro models consider single cell types, metabolic pathway or enzyme involvement. This greatly reduces the possibility of identifying the antidiabetic plant extracts or compounds (118). Another disadvantage of in vitro studies is that only acute or immediate effects are measured, whilst effects that may only appear after chronic exposure to the antidiabetic compounds are overlooked (118). Hence, there is need to carry out in vivo studies on these antidiabetic plants.

The major mode of action of medicinal plants with antidiabetic activity is to increase insulin secretion. Some mechanisms of actions were related to their effects on the activity of pancreatic β-cells or the insulin-like activity of the plant extracts, or directly stimulation of insulin secretion or suppression of oxidative stress. All of these actions may be responsible for the reduction and or abolition of diabetic complications. As many of the studied plants showed more than one effective mechanism in increasing islet insulin secretion, the observed hypoglycemic behaviors may be due to a combination of synergistic mechanisms. However, the benefits of antioxidants in management of diabetes could not be ignored (119). Future investigations should focus on antioxidant mixtures as an appropriate formula for management of diabetes.

ACKNOWLEDGEMENT

This paper is the outcome of an in-house study with no external financial support.

REFERENCES

27. Patil SB, Ghadyale VA, Taklikar SS, Kulkarni CR, Arvindekar AU. Insulin secretagogue, alpha-

68. Hoa NK, Phan DV, Thuan ND, Ostenson CG. Insulin secretion is stimulated by ethanol extract of Anemarrhena asphodeloides in isolated islet of healthy Wistar and diabetic Goto-Kakizaki Rats. Exp Clin Endocrinol Diabetes 2004; 112: 520-525.

72. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus:

95. Ranjbar S, Larijani B, Abdollahi M. Recent update on animal and human evidences of promising

Table 1. In vitro studies in assessment of herbal and natural products on insulin secretion of pancreatic islets

<table>
<thead>
<tr>
<th>Herbal/components</th>
<th>Substance/dose</th>
<th>Sample</th>
<th>Study design</th>
<th>Duration</th>
<th>Outcomes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broussonitiakazinoki / flavonol, flavan, diphenyl propane</td>
<td>Isoprenylated flavan (Kazinol U) / 30, 60 µm</td>
<td>Non-diabetic rat</td>
<td>Pretreated RINm5F cells and isolated islet cells with/without the substance and then treated with cytokines</td>
<td>48 h</td>
<td>Dose-dependent increase in viability of RINm5F cells, decrease in NO production, and iNOS expression, marked suppression of NF-κB, decrease in H₂O₂ production, effective prevention of caspase activation and PARP cleavage, dose-dependent recovery of cytokine-impaired insulin secretion close to that of the control</td>
<td>(23)</td>
</tr>
<tr>
<td>Saururus Chinensis baill. (saururaceae) /-------</td>
<td>Lignan (phytoestrogen) /20, 40µm</td>
<td>Non-diabetic rat</td>
<td>Pretreated RINm5F cells and isolated islet cells with/without the substance and then treated with cytokines</td>
<td>48 h</td>
<td>Dose-dependent increase in viability of RINm5F cells, dose-dependent decrease in NO production, and iNOS expression, marked suppression of NF-κB, decrease in JAK/STAT, dose-dependent recovery of cytokine-impaired GSIS close to that of the control</td>
<td>(24)</td>
</tr>
<tr>
<td>Rosa canina, Tanacetum vulgare, Urtica dioica / multi herbal</td>
<td>Galactolipid, flavonoid, selenium, urea/0, 1, 1, 10, 100, 1000 ppm</td>
<td>Non-diabetic rat</td>
<td>Incubated isolated islet cells with/without different concentrations of the substances</td>
<td>24 h</td>
<td>Increased viability maximum at 1 ppm, increase in basal insulin secretion and GSIS at 0. 1 ppm, marginal increase in basal insulin secretion and GSIS at 1 ppm, decrease in basal insulin secretion and GSIS at10, 100, 1000 ppm, decrease in ROS at 0. 1 µm</td>
<td>(25)</td>
</tr>
<tr>
<td>Citrus medica L. cv Diamante /flavonoid, flavanone</td>
<td>Plant extract/1-24 mg/ml</td>
<td>Non-diabetic mouse</td>
<td>Incubated MIN6 cells with/without plant extract</td>
<td>3 h</td>
<td>Suppression of α-amylase and α-glucosidase vs. acarbose, dose-dependent increase in GSIS</td>
<td>(26)</td>
</tr>
<tr>
<td>Myristica fragrans (M. F), Parmelia perlata (P. P), Illicium verum (I. V), Trachyspermum copticum (T. C), Myristica</td>
<td>Gallic acid, flavonoid/100, 200 mg/kg of each plant</td>
<td>Diabetic (T2DM) rat</td>
<td>Incubated isolated islet cells with/without the substances vs. 1. 6 mg/kg BW gliclazide as positive control, or non-diabetics,</td>
<td>24 h</td>
<td>Dose-dependent increase in insulin secretion by M. F, T. C, M. M, increase in antioxidants activity vs. ascorbic acid as positive control, increase in α-glucosidase inhibitor in P. P, M. M, M. F, T. C vs. positive</td>
<td>(27)</td>
</tr>
<tr>
<td>Plant/Herbal</td>
<td>Description</td>
<td>Treatment</td>
<td>Control</td>
<td>Duration</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Malabarica (M. M)</td>
<td>Multi-herbal</td>
<td>Diabetic (T2DM) rats</td>
<td>Control</td>
<td>48 h</td>
<td>Increased viability in high dose vs. rosiglitazone, increase in GSIS at middle dose of KYQRF vs. rosiglitazone, marked suppression of UCP2 and sulfonylurea receptor 1 with all doses of KYQRF and rosiglitazone vs. control</td>
<td></td>
</tr>
<tr>
<td>Bauhinia variegata</td>
<td>Fatty acid, protein, terpene, alkaloid, steroid, flavonoid</td>
<td>Incubated INS-1 cells with different concentration of KYQRF vs. control or 10µmol/l of rosiglitazone</td>
<td>Dose-dependent increase in GSIS by EE and R vs. DMSO, increase in GSIS by EE vs. R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acorus calamus L. (AC)</td>
<td>α- and β-asarone, eugenol</td>
<td>Incubated HIT-T15 cells with different concentration of AC or one of its four fractions vs. glimepiride or negative control</td>
<td>Increase in insulin secretion in AC(6.25, 12.5 µg/ml), and ACE (6.25, 12.5, 25 µg/ml) vs. negative control close to that of the glimepiride, dose-dependent inhibition of α-glucosidase activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcopoterium spinosum (SS)</td>
<td>Triterpenoid, catechin, epicatechin</td>
<td>Incubated RINm cells, L6 myotubes, 3T3-L1 adipocytes and AML-12 hepatocytes with/without SSE</td>
<td>Increase in basal insulin secretion in RINm at 0.1 mg/ml of SSE, increase in glucose/forskolin-induced insulin secretion in RINm at 0.001, 0.01, 0.1 mg/ml of SSE vs. control, increase in viability, suppression of lipolysis in adipocytes, induce glucose uptake in adipocytes, hepatocytes and myotubes, increase in glycogen synthesis in myotubes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soy</td>
<td>Isoflavone</td>
<td>Freshly isolated islet cells with/without the substance vs. similar doses of vehicle</td>
<td>Dose-dependent increase in GSIS independent of PTK, marginal effect on basal or high-glucose stimulated ATP production, increase in sodium pyruvate-stimulated insulin secretion, dose-dependent increase in KCl-stimulated insulin secretion vs. induced high glucose or pyruvate, potentiation of glucose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Plant Extracts/Derivatives/Active Ingredients</td>
<td>Cell Types/Treatments</td>
<td>Timeframe</td>
<td>Outcome/Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------------</td>
<td>-----------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rooibos (Aspalathus Linearis)</td>
<td>Flavonoid (Aspalathin) /1-100 µM</td>
<td>Diabetic (T2DM) mouse, L6 myotubes</td>
<td>75 h</td>
<td>Dose-dependent increase in glucose uptake by L6 myotubes with maximum effect at 10 µM, increase in GSIS in RIN-m5F at 100 µM (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angelica hirsutiflora</td>
<td>Plant extract/ 50-150 µg/ml</td>
<td>Non-diabetic mouse, non-diabetic human</td>
<td>24 h</td>
<td>Dose-dependent increase in GSIS by all cell types, increase in extracellular Ca²⁺ at 150 µg/ml by HIT-T15, increase in intracellular Ca²⁺ by HIT-T15 and islets of human, increase in phosphorylation of ERK ½ at 150 µg/ml by HIT-T15 cells (34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teucrium polium (TP)</td>
<td>TP/ 0.01, 0.1 mg/mL with/without 1 mM sodium molybdate or sodium orthovanadate</td>
<td>Non-diabetic rat</td>
<td>1 h</td>
<td>Increase in insulin secretion with combination therapy (35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigella sativa L (NS)</td>
<td>Crude ethanol extract/ 200 µg/ml</td>
<td>Non-diabetic rat</td>
<td>18 h</td>
<td>Increase in GSIS, increase in β-cell proliferation vs. vehicle, increase in basal glucose uptake in muscle cell and adipocytes, increase in triglyceride accumulation in pre-adipocytes vs. rosiglitazone (36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevia rebaudiana Bertoni (SrB)</td>
<td>Steviol, diterpenic carboxylic alcohol, four molecules of D-glucose (Rebaudioside A) /10⁻¹³ – 10⁻⁷ M</td>
<td>Non-diabetic mouse</td>
<td>24 h</td>
<td>Dose-, glucose- and Ca²⁺ dependent increase in insulin secretion, increase in ATP/ADP ratio without change in intracellular cAMP level, glucose-dependent decrease in KATP sensitive channel conduction (37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus membranaceus Bge, Codonopsis pilosula Nannf, Lycium chinense Mill.</td>
<td>Water extract (linoleic acid, astragaloside IV) / 0.78-100 µg/ml</td>
<td>Non-diabetic rat</td>
<td>24 h</td>
<td>Increase in viability maximum at 25 μg/ml, decrease in apoptosis at 25 μg/ml, dose-dependent decrease in iNOS until 25 μg/ml, decrease in expression of apoptosis-related proteins (38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus officinalis Sieb.</td>
<td>Methanol extract,</td>
<td>Non-</td>
<td>48 h</td>
<td>Increase in viability in BRIN-BD11, potent (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound/Plant/Extract</td>
<td>Concentration/Condition</td>
<td>Species</td>
<td>Treatment/Response</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etZucc./ursolic acid, oleanolic acid, loganin, phenolic compounds</td>
<td>Fraction/25 mg/ml</td>
<td>Diabetic rat</td>
<td>Cytokine or STZ-treated BRIN-BD11 cells with/without the substances</td>
<td>Insulin mimic activity on PEPCK expression, increase in GSIS, increase in total cell mass of H4IE or BRIN-BD11 with fraction starting from 12.5 or 6.125 µg/ml, protection ofBRIN-BD11 against toxicity from cytokines or STZ starting from 12.5 or 6.25 µg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcumin/10 µm/L</td>
<td>Non-diabetic rat</td>
<td>Cryopreservation of cultured isolated islet cells with/without curcumin</td>
<td>Increase in viability, increase in insulin secretion vs. non-treated but similar to fresh isolated islets, decrease in ROS vs. non treatment non-treated, increase in level of Hsp70 and HO-1 (40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean red ginseng/ginsenoside, acidic polysaccharide, protein, phenolic</td>
<td>Ginsenoside/0.05-1.0 mg/ml</td>
<td>Non-diabetic rat</td>
<td>Cultured isolated islet cells with ginsenoside</td>
<td>Insulinotropic effect dependent on influx of Ca²⁺ and KATP channel blockade but independent of glucose (41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American ginseng berry/ginsenoside, saponin, flavonoid, triterpenoid</td>
<td>Berry extract and ginsenosid Re/0.1, 0.5, 1.0 mg/ml of berry extract, 0.05, 0.1 mg/ml of ginsenosid Re</td>
<td>Non-diabetic, unknown species</td>
<td>Incubated MIN-6 cells with/without the substances and assess their response to H₂O₂</td>
<td>Decrease in oxidant injury in acute and chronic conditions, dose-dependent increase in insulin secretion (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commiphoramukul/</td>
<td>Cis- and trans-guggulsterone/12.5, 25 µM</td>
<td>Non-diabetic rat</td>
<td>Pretreatment cultured islet cells with/without guggulsterone and then treatment with cytokines</td>
<td>Decrease in cytokine-mediated cytotoxicity, decrease in NO and PGE2 production, decrease in iNOS, decrease in COX-2 mRNA and protein expression, decrease in JAK/STAT activation, decrease in NF-κB activation, decrease in down regulation of SOCS-3, restoration of insulin secretion on islet cell close to that of control (43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypericum perforatum (St. John’swort) (SJW)/naphthodianthron, phloroglucinol, melatonin, flavonoid, phenolic acid</td>
<td>SJW extract or hyperforine (HPF)/25 µg/different concentrations for different assay</td>
<td>Non-diabetic rat, non-diabetic human</td>
<td>Incubated INS-1 E cells and isolated islet cells with cytokine and with/without SJW or HPF</td>
<td>Suppression of cytokine-impaired in GSIS at 25 µg/ml SJW or 1 µM HPF, dose-dependent decrease in apoptosis at 6.25-50 µg/ml SJW or 0.5-3 µg/ml HPF, dose-dependent decrease in iNOS at 10-100 µg/ml SJW or 0.25-2 µM HPF, decrease in cytokine-induced STAT-1 at 10-50 µg/ml SJW or 2 µM HPF, dose-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Description</td>
<td>Concentration</td>
<td>Animal Type</td>
<td>Treatment</td>
<td>Duration</td>
<td>Effect</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Rehmanniae radix, Ginseng radix, Scutellariae radix</td>
<td>Unknown/50 µg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated isolated islet cells with vehicle or each herbal extract or 2.5 nM exendin-4 as positive control</td>
<td>24 h</td>
<td>Increase in GSIS by plants but lower than level achieved with exendin-4, increase in IRS2, PDX-1 and GK mRNA, promote β-cell proliferation, increase in viability, insulinotropic agent like exendin-4 (45)</td>
<td></td>
</tr>
<tr>
<td>Oleaeuropaea/ oleic acid, phenolic constituents, squalene</td>
<td>Unknown/0.01, 0.05, 0.1, 1 mg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated isolated islet cells with/without the substance</td>
<td>0.5 h</td>
<td>Increase in basal insulin secretion at 0.05 mg/ml, marginal increase in GSIS (46)</td>
<td></td>
</tr>
<tr>
<td>Unknown/......</td>
<td>Plant-derived triterpenoid (Oleanolic acid)/30, 50 µM vs. 100, 200 µM tolbutamide, or 50 nm exendin-4</td>
<td>Non-diabetic rat</td>
<td>Incubated INS-1 cells and isolated islet cells with/without the substance</td>
<td>1 h</td>
<td>Increased basal insulin secretion and GSIS in INS-1 at maximum 50 µM vs. tolbutamide but similar to exendin-4, increase in insulin secretion in GSIS at 30 µM, increase in total cellular insulin protein, increase in mRNA level, increase in glucagon and somatostatin, no effect on intracellular Ca^{2+} (47)</td>
<td></td>
</tr>
<tr>
<td>Cichorium intybus/ phenolic compound, aesculetin, aesculin, cichorin, glycoside</td>
<td>Mono-cafeoyl ester (CGA) and dicaffeoyl ester (CRA)/10, 50, 100 µg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated INS-1E cells and islet cells with glucose and with/without CRA or CGA</td>
<td>1.5 h</td>
<td>Increase in insulin-induced glucose uptake at 100 µg/ml CRA or CGA and in presence of insulin, increase in GSIS at 10, 50 µg/ml CRA or CGA in INS-1E, increase in GSIS at 50 µg/ml CRA or CGA in islet cells (48)</td>
<td></td>
</tr>
<tr>
<td>Rhizoma coptidis/ alkaloid, non-alkaloid</td>
<td>Isoquinoline alkaloid (Berberine)/1, 3, 10, 30 µmol/l</td>
<td>Non-diabetic rat</td>
<td>Incubated isolated islet cells with different concentration of the substance vs. 1 µmol/l glibenclamide or without them</td>
<td>24 h</td>
<td>Dose-dependent increase in GSIS vs. control except at 30 µmol/l, increase in viability, increase in GK activity at 3, 10, 30 µmol/l vs. glibenclamide or control, cytotoxicity on islet cells at 30 µmol/l, dose-dependent up regulation of HNF4-α mRNA expression with maximum effect at 10 µmol/l vs. glibenclamide or control (49)</td>
<td></td>
</tr>
<tr>
<td>Unknown/......</td>
<td>Polyphenol (Resveratrol)/3-100 µmol/l</td>
<td>Non-diabetic mouse</td>
<td>Incubated isolated MIN6 cells, Hit-T15 cells, and RIN-m5F cells with/without the substances vs. 30, 100 µmol/l</td>
<td>1 h</td>
<td>Dose-dependent suppression of ATP-sensitive K^+ channel vs. control, suppression of voltage-gated K^+ channel vs. control at concentration higher than 30 µmol/l, increase in insulin secretion in all doses in RIN-m5F and Hit-T15 (50)</td>
<td></td>
</tr>
<tr>
<td>Germinated fenugreek (Trigonella foenum-graecum)/ phenolic, flavonoid</td>
<td>Powder of plant (S1), boiled aqueous extract (S2), soxhlet fractions (petroleum ether (E1), chloroform (E2), methanol (E3), aqueous soxhlet extract (E4))/ doses of S1, or S2: 2.5, 5, 10%, doses of others: 0.5, 2.5, 5%</td>
<td>Non-diabetic mouse</td>
<td>Incubated isolated islet cells with/without the substances</td>
<td>48 h</td>
<td>Increase in GSIS and basal insulin secretion, increase in viability, decrease in MDA, protein carbonyls, ROS in STZ treated, highest antioxidant activity in E3, highest protection against lipid peroxidation in E3, marginal change in uric acid or glutathione, decrease in GR, SOD and increase in CAT, GPx in STZ treated (51)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Desmodium gangeticum (GD)/flavones, isoflavonoid glycoside</td>
<td>DG extract/0.25-2 mg/ml</td>
<td>Diabetic (T2DM) rat</td>
<td>Incubated MIN6 cells with 2mM glucose and with/without DG</td>
<td>1.5 h</td>
<td>Dose-dependent increase in insulin secretion (52)</td>
<td></td>
</tr>
<tr>
<td>Asparagus racemosus/ flavonoid, amino acid, oligosaccharide, steroidal saponin</td>
<td>Dried root (ethanol extract), or plant fractions (hexane, ethyl acetate, butanol, chloroform, aqueous fraction)/ 8, 40, 200, 1000, 5000 µg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated isolated clonal BRIN-BD11 cells, islet cells, and perfused pancreas with/without the substances</td>
<td>1 h</td>
<td>Increase in basal and GSIS in islet cells with all substances except aqueous fraction, increase in basal and GSIS in perfused pancreas with all substances except butanol and aqueous fraction, increase in basal and GSIS in BRIN-BD11 with all substances except heaxane for basal insulin and ethyl acetate for GSIS, Ca²⁺-dependent increase in insulin secretion in BRIN-BD11 with all substances except ethyl acetate and butanol fractions (53)</td>
<td></td>
</tr>
<tr>
<td>Green tea/flavonoid, catechin, epicatechin</td>
<td>Epigallocatechin-3-gallate (EGCG)/36, 72, 360 µm/l</td>
<td>Non-diabetic rat</td>
<td>Cultured isolated islet cells under normal or hypoxia/reoxygenation (H/R) condition with/without EGCG</td>
<td>48 h</td>
<td>Dose-dependent decrease in apoptosis, decrease in LDH, protection against decline of insulin secretion (54)</td>
<td></td>
</tr>
<tr>
<td>Plant natural products/flavonoid</td>
<td>Quercetin, apigenin, luteolin/25, 50 µM</td>
<td>Non-diabetic rat</td>
<td>Incubated pretreated RINm5F cells with cytokine with/without the substances</td>
<td>48 h</td>
<td>Dose-dependent increase in viability, suppression of cytokine-mediated cytotoxicity, decrease in NO production and iNOS expression, dose-dependent decrease in (55)</td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Genus Name</td>
<td>Concentration</td>
<td>Cell Type</td>
<td>Treatment</td>
<td>Time</td>
<td>Effect</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Soybean/ isoflavone</td>
<td>Genistein/</td>
<td>5, 10, 20, 40 µM</td>
<td>Non-diabetic rat</td>
<td>Incubated cultured β-cells and RINm5F cells with/without genistein and then treated with cytokine</td>
<td>48 h</td>
<td>Dose-dependent increase in viability, dose-dependent decrease in cytokine-induced NO production and iNOS expression, suppression of ERK-1/2 and JAK/STAT activation, decrease in NF-κB activation, suppression of MAPK pathway, dose-dependent preservation of GSIS</td>
</tr>
<tr>
<td>Rhizoma Coptidis/ alkaloid, non-alkaloid</td>
<td>Plant extract/</td>
<td>5, 10, 20, 50 µg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated RINm5F cells and isolated islet cells with/without the substance and then treated with cytokine</td>
<td>48 h</td>
<td>Increased viability, decrease in NO production and iNOS expression, suppression of NF-κB activation, dose-dependent preservation of GSIS</td>
</tr>
<tr>
<td>Curcuma longa (Turmeric)/ curcuminoid, volatile oil sugar, protein, resin</td>
<td>Curcumin/</td>
<td>10 µM vs. vehicle</td>
<td>Non-diabetic mouse</td>
<td>Incubated isolated islet cells with curcumin and then treated with STZ</td>
<td>24 h</td>
<td>Dose-dependent increase in viability, dose-dependent suppression of STZ-induced β-cell dysfunction, decrease in activated PARP, increase in cu/zn SOD and decrease in MDA, decrease in peroxynitrite and STZ generation of NO, increase in insulin secretion</td>
</tr>
<tr>
<td>Terminaliachebula Retz. (TC)/gallic acid, luteolin, tannic acid, chebulinic acid</td>
<td>Aqueous extract of TC / 200 µl (2 mg/ml) for Diabetic (T2DM) rat</td>
<td>Incubated islet cells with/without aqueous extract of TC vs. tolbutamide</td>
<td>2 h</td>
<td>Increase in insulin release vs. untreated diabetics and higher than tolbutamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum sanctum/ oleanolic acid, ursolic acid, rosmarinic acid, eugenol, carvacrol, linalool, β-caryophyllene, β-elemene, β-caryophyllene, germacrene D</td>
<td>Ethanol extract, aqueous, butanol, ethylacetate fractions/ dose of perfustation 1 mg/min, dose for clonal β-cells 8-5000 µg/ml</td>
<td>Non-diabetic rat</td>
<td>Incubated perfused pancreas, isolated islet cells and clonal BRIN-BD11 cells with/without different concentration of the substances</td>
<td>1 h</td>
<td>Increase in insulin secretion by all fractions except hexane and chloroform, increase in intracellular Ca2+ in clonal cells by all substances, decrease in viability at doses higher than 5000 µg/ml, increase in insulin secretion at doses higher than 5000 µg/ml by chloroform and hexane partition but concomitant decrease in viability</td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>Extract/Preparation</td>
<td>Condition/Effect</td>
<td>Time</td>
<td>Result/Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugenia jambolana</td>
<td>Water and ethanol extract/50, 100, 200 mg/kg of each extract or 25 mg/kg of water extract</td>
<td>Diabetic (T2DM) rabbit, incubated isolated islet cells with/without fraction-III</td>
<td>1 h</td>
<td>Increase in release of insulin vs. non-treated diabetics or control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pueraria lobata</td>
<td>Puerarin/10, 50, 100 µM vs. control or 500 µM H$_2$O$_2$</td>
<td>Non-diabetic rat, cultured isolated islet cells under normal or H$_2$O$_2$ stress conditions with/without puerarin</td>
<td>48 h</td>
<td>Marginal protection against viability loss from H$_2$O$_2$ toxicity, suppression of apoptosis at 50, 100 µM, dose-dependent increase in basal insulin secretion and GSIS at 100 µM vs. H$_2$O$_2$, dose-dependent decrease in ROS, dose-dependent increase in CAT at 100 µM and SOD at 50, 100 µM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momordica charantia</td>
<td>Protein extract of fruit/10 µg/ml</td>
<td>Diabetic (T2DM) rat, perfused islet cells, incubated C$_2$C$_12$ myocytes and 3T3-L1 adipocytes with/without the substance</td>
<td>18 h</td>
<td>Increase in insulin secretion, increase in glucose uptake in myocytes, increase in glucose uptake in adipocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardenia jasminoides Ellis</td>
<td>Glycoside (genipin)/50 nM, 0.5, 5 µM</td>
<td>Non-diabetic mouse, incubated isolated islet cells with/without the substance</td>
<td>48 h</td>
<td>Suppression of UCP2-mediated proton leak in isolated mitochondrial, increase in mitochondrial membrane potential, and ATP level concomitant close KATP channels in WT vs. UCP2-deficient, increase in basal insulin secretion at 0.5, 5 µM in WT, improvement in obesity induced GSIS impairment, dependent effects to iUCP2, suppression of UCP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coptidis Rhizoma</td>
<td>Plant extract (CRE)/10, 20, 50 µg/ml</td>
<td>Non-diabetic rat, pretreatment RINm5F cells with CRE then treated with 0.1 mM S-nitroso-N-acetylpenicillamine (SNAP) vs. control or SNAP without CRE</td>
<td>24 h</td>
<td>Suppression of apoptosis and necrosis, suppression of potential disruption of mitochondrial membrane, no effect on SNAP-induced NO production, retain in insulin secretion capacity in islets treated IL-1β at 10, 50 µg/ml CRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevia rebaudiana</td>
<td>Rebaudioside A/10$^{-16}$-10$^{-6}$mol/l</td>
<td>Non-diabetic mouse, incubated isolated islet cells with/without the substance</td>
<td>140 Min</td>
<td>Ca$^{2+}$- and glucose dose-dependent increase in insulin secretion at 10$^{-14}$ -10$^{-6}$mol/l vs. control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Teucrium polium/flavonoid, diterpene derivative, fatty acid ester, steroid

| Crude extract/0.001-1 mg of plant leaf powder/ml of the culture medium | Diabetic (T2DM) rat | Incubated isolated islet cells with/without the substance | 32 h | Dose-dependent increase in basal insulin secretion |

Anemarrhena asphodeloides/glycoside, saponin, polysaccharide, norlignan

| Plant ethanol extract (TH2)/2, 4, 8 mg/ml | Diabetic (T2DM) rat | Incubated or perfused isolated islet cells with/without the substances | 24 h | Increased basal insulin secretion and GSIS at all doses and by all cell types |

Gynostemma pentaphyllum/saponin (gypenosid)

| Gypenosid (phanoside)/7.8, 15.6, 31.3, 62.5, 125, 250, 500 μM | Non-diabetic rat | Incubated isolated islet cells with phanoside vs. control or 2 μm glibenclamide | 24 h | Dose-dependent increase in basal insulin secretion and GSIS at all doses over 50 μU insulin/islet/h |

Nigella sativa (black cumin)/alkaloid, saponin, fixed oil, essential oil, protein

| Different fractions: defatted fraction (HR II), acidic and neutral compounds (HR III), basic compounds (HR IV)/0.01, 0.1, 1, 5 mg/ml | Non-diabetic rat | Incubated isolated islet cells with/without the substances | 2 h | Dose-dependent increase in GSIS at 0.1-5 mg/ml of HR II and HR IV vs. control, increase in GSIS at 5 mg/ml HR III vs. control |

Urtica dioica/lectin, polysaccharide, steroid, caffeic malic acid

| Different plant fractions of aqueous extract/1 ml | Non-diabetic rat | Incubated isolated islet cells with/without the substance | 2 h | Increase in basal insulin secretion and GSIS at highest dose of fraction 1 |

Keys: T2DM, type 2 diabetes mellitus; NO, nitric oxide; iNOS, inducible form of NO synthase; NF-κB, nuclear factor kB; PARP, poly ADP-ribose polymerase-1; JAK/STAT, Janus kinase /signal transducer and activator of transcription pathway; GSIS, glucose stimulated insulin secretion; ROS, reactive oxygen species; BW, body weight; UCP2, uncoupling protein 2; DMSO, dimethyl sulfoxide; PTK, protein tyrosine kinase; ATP, adenosine triphosphate; BG, blood glucose; ERK ½, extracellular signal-related kinase-1/2; ADP, adenosine diphosphate; KATP, potassium channel adenosine triphosphate; STZ, streptozotocin; PEPCK, phosphor enolpyruvate carboxy kinase; Hsp 70, heat shock protein 70; HO-1, hemeoxygenase-1; PGE2, prostaglandin E2; COX-2, cyclooxygenase-2; Socs-3, suppressor of cytokine signaling-3; IRS2, insulin receptor substrate-2; PDX-1, pancreas duodenum homeobox-1; GK, glucokinase; HNF4α, hepatic nuclear factor 4 alpha; MDA, malondialdehyde; GR, glutathione reductase; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; LDH, lactate dehydrogenase; MAPK, mitogen-activated protein kinase; SNAP, S-nitroso-N-acetylpenicillamine.