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ABSTRACT – Purpose. The assessment of the clinical significance of chondroitin sulfate in patients with 
type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) for the detection of the relationship between 
chondroitin sulfate (CS) structure and disease. Methods. Healthy control (n=15), type 2 diabetic patients with 
normalbuminuria (n=12), and patients with microalbuminuria (n=13) were enrolled in the study. Total sulfated 
glycosaminoglycans (GAGs) concentration in the first morning urine was evaluated by 1,9-dimethylmethylene 
blue method and the composition was determined by agarose gel electrophoresis. Urinary chondroitin sulfate 
was quantified by a combination of treatment with specific lyase digestions and separation of products by 
SAX-HPLC. Results: GAGs concentration significantly increased in diabetic patients with microalbuminuria 
compared to diabetic patients with normalbuminuria. Qualitative analysis of urinary GAGs revealed the 
presence of chondroitin sulfate, heparan sulfate, and low-sulphated chondroitin sulphate-protein complex 
(LSC-PG). There was a decrease in CS and an increase in LSC-PG in the urine of patients with diabetes 
compared to healthy controls. Moreover, in diabetic patients, chondroitin sulfate contains more 6-sulfated 
disaccharide and less 4-sulfated disaccharide. There was a statistically significant difference in ratio of 6-
sulfated disaccharide to 4-sulfated disaccharide among the three groups. Conclusions: GAGs were 
significantly increased in diabetic patients with microalbuminuria. The levels of urinary GAGs, ratio of LSC-
PG/CS, as well as ratio of 6-sulfated to 4-sulfated disaccharides could be useful markers for diagnosis of 
patients with diabetic nephropathy. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
______________________________________________________________ 
 
INTRODUCTION 
 
Chondroitin sulfate (CS) belong to a unique class of 
molecules call glycosaminoglycans (GAGs), which 
also include heparan sulfate (HS), dermatan sulfate 
(DS), keratan sulfate and hyaluronic acid (1). These 
molecules are important parts of plasma membranes 
and extracellular matrix (ECM). In most cases, 
GAGs are attached to core proteins forming 
proteoglycans (PGs) (2), which play an important 
role in cell proliferation, differentiation, cell 
migration, organ morphogenesis, and bacterial/viral 
infections (3-5). 

CS is composed of disaccharide units 
[glucuronic acid (GlcA) (β1→3) N-acetyl-
galactosamine (GalNAc) (β1→4)]n which could be 
sulfated at different positions of GalNAc residues 
and/or uronic acid (6). The differences of the urinary 
CS, 4-sulfated/6-sulfated ratio and its related degree 

of sulfation, could be useful for monitoring the 
progression of the disorder, such as pseudoxanthoma 
elasticum (7) and bladder pain syndrome (8). 

Diabetic nephropathy (DN) is one of the most 
common diabetic complications characterized with 
ECM accumulation and glomerulosclerosis (9). 
Abnormal metabolism of PGs in the kidney has been 
reported to play an important role in the 
development of DN. Although HS constitutes 80-
90% of total sulfated GAGs in the kidney (10), and 
was considered as a major component in charge 
selectivity of the glomerular basement membrane 
(GBM) (11), there was no correlation between 
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alteration of glomerular HS structure and 
microalbuminuria in human diabetes and animal 
model of diabetes (12). Moreover, degradation of 
HS in the GBM did not result in proteinuria (13). 
However, CS has been found to be associates with 
an alternation of GBM in diabetic rats (14). In 
addition, diabetes resulted in structural alteration of 
CS in the kidney and altered their binding to 
extracellular matrix components (15). However, the 
structure of CS chains of DN patients during the 
disease progression has not been rigorously studied.  

Normal human urinary GAGs contain mainly 
CS, HS (16) and low-sulfated chondroitin sulfate 
(LSC) proteoglycan (LSC-PG) (17). The 
relationship of urinary GAGs with albuminuria has 
been investigated both in patients with type 1 and 
type 2 DM (18, 19). Some studies observed that 
GAGs could be useful biomarkers for diagnosis. 
However, there are no reports available with respect 
to investigation of the GAGs compositions and 
structure of CS/DS in the urine during DN 
development. Therefore, in the current study, we 
investigate whether GAGs compositions and 
modification of CS structure in urine might reflect 
development of DN and be used as a biomarker to 
predict renal outcomes in type 2 diabetic patients.  
 
MATERIALS AND METHODS 
 
Study design 
We conducted the study in accordance with the 
ethical principles of the Declaration of Helsinki, the 
Good Clinical Practice guidelines of the 
International Conference on Harmonization and 
local regulatory requirements. The study protocol 
was approved by the ethics committee of the 
hospital. 
 
Subjects: Patients were recruited (aged from 40 to 
75 years old) that suffered from type 2 diabetes 
mellitus over 5 years with normal kidney function or 
renal dysfunction. Those patients with other acute or 
chronic complications, malignant tumor, other 
nephropathy, infection, stress state, cardio function 
defined as NYHA class III and above or positive 
hepatitis B virus surface antigen were excluded. 
Total 25 qualified patients were then grouped in 
accordance with the degree of urinary albumin 
excretion (UAE) into DM with normoalbuminuria 
(<20µg/min) and DM with microalbuminuria (20-
200µg/min). Patients had been treated with oral 
hypoglycemic agents (sulfonylureas, metformin, 
and acarbose). Angiotensin converting enzyme 
(ACE) inhibitors and/or Ca++-channel blockers were 
used for hypertension treatment. HMG coenzyme A 

reductase inhibitors and statins were used in the 
regulation of blood lipids. Fifteen age and sex 
matched healthy volunteers were employed as 
control subjects. The demographic data and clinical 
characteristics of the study groups are summarized 
in Table 1. There were no significant differences in 
gender, age, body mass index (BMI) and diastolic 
blood pressure between healthy volunteers and 
patients. Systolic pressure values in DM with or 
without albuminuria group were within the normal 
range, but were significantly higher than that of 
healthy controls.  
 
Urinary specimens: First void of morning urine 
samples were collected from healthy volunteers and 
patients. The specimens were centrifuged at 3000 
rpm for 10 minutes and supernatants were stored at 
-80°C until assessment. Prior to assessment, the 
specimens were thawed and centrifuged. All urine 
specimens were assayed in a blinded manner to 
researchers. All patients had given their informed 
consent before the study. 
 
Laboratory methods: For each urinary sample, the 
creatinine concentration was measured by Jaffe’s 
method and other clinical parameters were 
determined by an automatic biochemistry analyzer. 
Serum levels of cholesterol, triglyceride, creatinine, 
high-density lipoprotein and low-density lipoprotein 
were measured using a CD-1600CS hematology 
analyzer (Abbott Labs, USA). Glycated hemoglobin 
(HbA1C) was measured by a turbidimetric inhibition 
immunoassay technique (Roche Diagnostics, USA).  
 
Extraction and purification of GAGs from 
human urine: GAGs were isolated from 10mL of 
urine using ion-exchange chromatography on 
DEAE-Sepharose Fast Flow (Amersham 
Biosciences, Uppsala, Sweden). After extensive 
washing of the column with the equilibrating buffer, 
the adsorbed material was eluted with 2M NaCl and 
0.02M Tris-HCl, pH 8.6. All of the hexuronate-
containing fractions were pooled and mixed with 
four volumes of ethanol at 4°C. The mixture was left 
overnight and GAGs were precipitated by 
centrifugation at 8,000 g for 15 min, washed twice 
with ethanol, and dried. 

After solubilization with water, total sulfated 
GAGs concentration were estimated by the 1,9-
dimethylmethylene blue (DMB) method (20) and the 
composition was determined by agarose gel 
electrophoresis in barium acetate/1,2-
diaminopropane buffer and sequentially stained with 
toluidine blue and Stains-All as reported in previous 
publication (21).
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Table 1. Clinical characteristics of the study groups. 

 Healthy controls Diabetes mellitus  
Normoalbuminuria Microalbuminuria 

N (male/female) 15(7/8) 12(5/7) 13(7/6) 
Age (years) 54.1±4.3 61.6±7.4 58.3±8.7 
Diabetes duration (years) -- 10.4±4.5 12.2±6.0 

BMI (kg/m2) 24.7±2.5 24.3±3.1 25.6±3.7 
Systolic pressure (mmHg) 115±14 134±12a 130±15a 
Diastolic pressure (mmHg) 77±9 80±8 80±9 
Fast blood glucose（mmol/L） 5.29±0.48 7.70±2.56 a 7.72±3.12 a 
HbA1C(%) 4.89+0.92 8.37±1.46 a 8.89±2.58 a 
Urinary albumin excretion (μg/min) ND 9.4±2.3 82.44±18.9  
Serum creatine (μmol/L) 86.47±9.75 82.22±19.20 89.03±23.80 
Urea nitrogen (mmol/L) 5.63±1.45 5.45±1.56 6.41±2.12 
Cholesterol (mmol/L) 5.23±1.03 5.15±0.81 5.27±1.01 
Triglyceride (mmol/L) 2.06±1.78 1.74±0.76 1.97±1.23 
High-density lipoprotein (mmol/L) 1.15±0.23 1.12±0.30 1.29±0.36 
Low-density lipoprotein (mmol/L) 3.17±0.88 3.20±0.61 3.12±0.82 

a Statistically significant when compared to healthy subjects group at p<0.01. 

 
LSC-PG were identified by comparison with co-
migrating standard of urinary trypsin inhibitor 
(UTI). The gels were scanned and bands were 
analyzed by Image J program. 
 
Qualitative and quantitative evaluation of 
unsaturated CS disaccharides from GAGs: Ten 
microliters of urinary extract was incubated with 
25mU of chondroitinase ABC (Sigma-Aldrich, 
USA) at 37oC for 18 h in 50mmol/L Tris-HCl buffer 
(pH 8.0). The reactions were stopped by boiling for 
3 min. The disaccharide products of urinary CS were 
identified by strong-anion-exchange (SAX) HPLC 
as reported by others (8). Constituent disaccharides 
were identified by unsaturated disaccharides 
standard (Iduron Corporation, UK) and quantified 
by specific calibration curves. Charge density (the 
sulfate-to-carboxyl ratio) was calculated considering 
the presence and the percentage of carboxyl and 
sulfate groups for each disaccharide. 
 
STATISTICAL ANALYSIS 
 
Values are reported as mean±SD or median (range). 
One-way ANOVA was used to assess the difference 
between the study groups at p<0.05. 
 
RESULTS 
 
Effect of diabetes on basic parameters: As shown 
in Table 1, fasting blood glucose (FBG) levels in 
DM patients were significantly higher than that in 
healthy control. HbA1c (%) levels in patients with 
DM were higher than the normal range (4-6%), but 
there was no significant difference between patients 
with normoalbuminuria and with microalbuminuria. 

The serum concentrations of cholesterol, 
triglyceride, high-density lipoprotein and low-
density lipoprotein did not show significant 
difference between diabetic patients and healthy 
control.  
 
Effect of diabetes on total sulfated GAGs, HS and 
CS in the urine: GAGs excretions in healthy control 
and patients with normoalbuminuria and 
microalbuminuria were 1.05±0.62, 1.74±0.96, 
3.12±2.09µg/µmol creatinine, respectively (Fig 1). 
There  was  a     progressive     increase  in    GAGs 
excretion from healthy controls to patients with 
normoalbuminuria to patients with 
microalbuminuria. GAGs excretion in patients with 
microalbuminuria was significantly increased 
compared with that in healthy volunteers and 
patients with normoalbuminuria (p<0.05).  
 

 
Figure 1. Urine GAGs in healthy controls and diabetic 
patients. Data are presented as mean±SD. * indicates 
p<0.05 between DM with microalbuminuria and healthy 
control. # indicates p<0.05 between DM with 
microalbuminuria and DM with normoalbuminuria.  
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However, there was no significant difference of 
GAGs excretion between healthy volunteers and 
patients with normoalbuminuria. 

Urinary GAGs from healthy volunteers and 
patients are composed of CS, HS and LCS-PG as 
shown in Table 2 and Figure 2. Patients with 
microalbuminuria excreted less CS (23.61% versus 
36.79%) but more LSC-PG (36.70% versus 24.28%) 
compared to healthy subjects. The ratio of LSC-PG 
to CS was 0.67, 1.15, and 1.55 for healthy 
volunteers, patients with normoalbuminuria and 
patients with microalbuminuria, respectively. There 
was a statistically significant difference among the  
three groups. Urinary content of HS was 38.73%, 
41.96% and 40.69% for healthy control and patients 
with normoalbuminuria and microalbuminuria 
respectively. There was no statistically significant 
difference among these groups. 
 

 
Figure 2. Agarose gel electrophoresis stained with 
toluidine blue and Stains-All of GAGs extracted from 
10mL urine of healthy controls and diabetic patients. Lane 
1: chondroitin sulfate (CS) standard; lane 2: heparan 
sulfate (HS); lane 3: UTI, urinary trypsin inhibitor; lane 
4: GAGs extracted from healthy controls; lane 5: GAGs 
extracted from diabetic patients with normalbuminuria; 
lane 6: GAGs extracted from diabetic patients with 
microalbuminuria. 
 
Effect of diabetes on disaccharides composition of 
CS in the urine: Urinary CS from healthy and 
patients were digested with chondroitin lyase, and 
unsaturated disaccharide products were analyzed as 
shown in Figure 3. Profile of non-sulfated 
disaccharide (∆Di-0s), and monosulfated 
disaccharides, C-6 position of the galactosamine unit 
(∆Di-6s) and C-4 position of the galactosamine unit 
(∆Di-4s) in healthy and patients was shown in Table 
3. Except for the decrease in ∆Di-6s in patients, ∆Di-
0s and ∆Di-4s were all increased in patients with 
either normoalbuminuria or microalbuminuria. 

These changes in the percentages of urinary CS 
disaccharides are indicative of a different kind of 
polysaccharide amongst the groups, in particular for 
a greater charge density. There were no significant 
differences amongst these groups. However, when 
ratio of ∆Di-6s to ∆Di-4s was calculated, there was 
a progressive increase in ∆Di-6s/∆Di-4s from 
healthy to patients with normoalbuminuria to 
patients with microalbuminuria (0.69 to 1.21 to 1.78, 
respectively). The differences were statistically 
significant amongst these groups. 
 
DISCUSSION 
 
GAGs are important components of GBM in the 
kidney. Therefore, urinary GAGs and their 
metabolites have been investigated in different 
kidney diseases (19, 22, 23).The present study 
demonstrated that urinary GAGs consist of CS, HS 
and LSC-PG. Compared with healthy control, 
urinary CS in patients with diabetics was relatively 
low compared to urinary LSC-PG. Thus, the ratio of 
LSC-PG/CS is quite different among these groups. 
Therefore, the ratio of LSC-PG/CS could be used as 
a diagnostic marker for diabetic nephropathy. It was 
reported that CS proportion is above 2/3 in the 
urinary GAGs and decreased with age (16, 24). LSC-
PG occurs in blood and urine as the major 
chondroitin sulphate PG (25). It is an acidic 
glycoprotein composed of a core protein of 143 
amino acids and two carbohydrate side chains: an 
oligosaccharide and a GAG chain consisting of a 
relatively low-sulfated chondroitin 4-sulfate chain 
(26-28). In urine, its concentration is very low in 
normal health controls and increases in 
inflammatory diseases, malignant diseases, 
pregnancy, post-surgical states and immune disease 
(23, 29-31). De Muro et al reported the ratio of LSC-
PG/CS increased in DM condition (32), which are 
consistent with results in our current study. 
However, they did not report the condition of LCS-
PG/CS in patients with nephropathy. 

In the present investigation, we investigated the 
modifications of CS in urine from patients with 
diabetic nephropathy for the first time. The finding 
of CS unsaturated disaccharides such as ∆Di-0s, 
∆Di-6s and ∆Di-4s in urine of healthy controls have 
been reported previously (7, 33), which are 
consistent with our findings in healthy controls. 
However, there is no report on these structural 
modifications of CS in diabetic patients. The profile 
of CS unsaturated disaccharides in diabetic patients 
with normoalbuminuria and microalbuminuria 
exhibited a quite different pattern from that of 
healthy controls. 
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Table 2. The relative concentrations of GAGs compositions obtained from the urine of healthy control, DM patients. 
 Healthy controls Diabetes mellitus  

Normoalbuminuria Microalbuminuria 
CS% 36.79 (31.91-

40.01) 
26.99 (16.09-38.76) 23.61 (15.66-44.18)a 

HS% 38.73 (32.89-
43.96) 

41.96 (35.35-48.48) 40.69 (32.04-47.76) 

LSC-PG% 24.48 (13.87-
29.54) 

31.05 (19.66-38.74) 36.70 (26.78-44.89)a 

LSC-
PG/CS 

0.67 (0.38-0.82) 1.15 (0.41-1.15)a 1.55 (0.51-1.62)b,c 

Results are given as median (range). a Statistically significant when compared to healthy subjects group at p<0.05. b 
Statistically significant when compared to healthy subjects group at p<0.01. c Statistically significant when compared to 
DM patients with normoalbuminuria group at p<0.05. 
 
 
Table 3. Relative percentages of nonsulfated (∆Di-0s), 6-sulfated (∆Di-6s) and 4-sulfated (∆Di-4s) disaccharides for CS 
from diabetic patients and healthy subjects. 

 Healthy controls Diabetes mellitus  
Normoalbuminuria Microalbuminuria 

∆Di-0s, % 48.9% (23.9%-
60.3%) 

37.32% (23.1%-48.7%) 34.7% (19.7%-44.5%) 

∆Di-6s, % 21.0% (9.4%-41.8%) 41.4 (27.1%-52.8%) 39.5% (31.3%-49.7%) 
∆Di-4s, % 30.1% (16.6-37.3%) 21.3 (16.4%-59.8%) 25.6 %(10.7%-43.8%) 
∆Di-6s/∆Di-4s 0.69 (0.31-1.12) 1.21 (0.98-1.68)a 1.78 (1.02-3.01)a,b 
Charge density 0.51 (0.33-0.71) 0.63 (0.47-0.91) 0.65 (0.44-0.93) 

Results are given as median (range). a Statistically significant when compared to healthy subjects group at p<0.05. b 
Statistically significant when compared to DM patients with normoalbuminuria group at p<0.05 

 
There were more monosulfated disaccharide units 
and a lower percentage of non-sulfated disaccharide 
units. Moreover, the structural modifications 
generate CS that is sulfated to a greater extent in 
position 6 than in position 4 compared with healthy 
subjects. To date, there is little information available 
about CS unsaturated disaccharides in the kidney of 
diabetic patients. For example, Joladarashi and 
coworkers observed that percentage of CS/DS 
sulfation was reduced in diabetic rats (15). In 
addition, abnormal structures of urinary CS were 
determined in pseudoxanthoma elasticum patients 
(7) and the data are in agreement with those 
described with abnormal GAGs isolated from skin 
lesions of pseudoxanthoma elasticum patients. 
These results indicate that abnormal urinary CS 
might reflect abnormalities of CS-PG in pathological 
organs. 

CS chains have been considered to participate 
only in structural stabilization and attracted less 
attention until recently, which indicates an important 
biological function. Sugar backbones of CS can 
mainly be sulfated at C2 position of uronic acid 
residues and/or at C4 and/or C6 positions of GalNAc 
residues to form various disaccharides. In addition to 
these ordinary units, non-sulfated GlcA-GalNAc 

(Di-0s) and rare disulfated D-unit [GlcA(2S)-
GalNAc(6S)] (2S stands for 2-O-sulfate) and E-unit 
[GlcA-GalNAc(4S, 6S)] are often found in small 
proportions in mammals (34). Particular functional 
structures formed by combinations of these various 
disaccharide units may participate in specific 
binding to bioactive molecules (35) and hence may 
greatly influence overall functions of these 
molecules (36). For example, several CS-PGs have 
been characterized in the kidney such as neural/glial 
cell 2 (NG2)(37). NG2 is a high molecular weight 
and integral membrane chondroitin sulfate 
proteoglycan, which can be associated with collagen 
XV, leprecan and bamacan. Moreover, members of 
small leucine-rich proteoglycans such as decorin and 
biglycan also contained mixed CS/DS chains. 
Decorin and biglycan could bind type I collagen and 
TGF-β; therefore, they can inhibit TGF-β signal 
transduction and modulate fibrogenesis (38, 39). 
Alternation of CS/DS structures in the kidney 
resulted in a decreased binding toward type IV 
collagen and laminin, and in an increased binding to 
fibronectin in STZ induced diabetic rats (15). 

In conclusion, our observation of total sulfated 
GAGs in urine of diabetic patients is consistent with 
previous reports. However, the profile of GAGs and  
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Figure 3. HPLC separation of unsaturated nonsulfated and variously sulfated disaccharides of CS after treatment with 
chondroitinase ABC. Unsaturated disaccharides of CS from normal urine (A), unsaturated disaccharides of CS from DM 
with normoalbuminuria patients urine (B), unsaturated disaccharides of CS from DM with macroalbuminuria patients 
urine (C). ∆Di-0s represents HexA-GalNAc; ∆Di-4s represents ∆HexA-GalNAc(4-OSO3); ∆Di-6s represents ∆HexA-
GalNAc(6-OSO3). 
 
 
CS modification in urine of healthy and patients with 
diabetic nephropathy has never been investigated. 
Therefore, ratios of LSC-PG/CS and ∆Di-6s/∆Di-4s 
in the urine of patients with diabetic nephropathy 
could be used as diagnostic markers for diabetic 
nephropathy or markers for follow-up of a therapy. 
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