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ABSTRACT - Hysteresis loops are phenomena that sometimes are encountered in the analysis of 
pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When 
hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. 
Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a 
simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of 
metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve 
an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect 
can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured 
effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a 
number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional 
delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake 
into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use 
of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are 
discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative 
purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in 
direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches 
utilized to collapse and model hysteresis are detailed. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
__________________________________________________________________________________________ 
 
INTRODUCTION 
 
A central tenet of clinical pharmacotherapeutics is 
that there often exists a relationship between drug 
concentration and pharmacological and 
toxicological effects for drugs. The most common 
pharmacokinetic-pharmacodynamic (PK-PD) 
models assume that plasma concentration is in 
equilibrium and proportional with the effect site 
(biophase) concentration. In its simplest form a 
plasma drug concentration versus effect graph 
demonstrates a direct linear relationship between 
the two variables where effect is directly 
proportional to drug concentrations at the active site 
and this relationship is independent of time [1] 
(Figure 1a).Where equation 1 is: 

CSE   (1) 

E is the effect, C is the drug concentration and S is 
the slope parameter. This linear function model 
does not predict a maximum pharmacological effect 
(Emax). The relationship between drug concentration 
and pharmacological effect more often follows a 
sigmoidal Emax model (Hill equation) (Figure 1b). 
This simple mathematical relationship is based on 
receptor theory that defines the drug concentration 
effect relationship with two parameters Emax and 
EC50 (the concentration producing 50% of the 
maximum effect). It allows for differences in the 
shape of this relationship, where n is the number of 
molecules combining with each receptor molecule 
that affects the shape of the curve. The relationship 
between drug concentration at the receptor and the 
response is defined using equation 2.  
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E is the observed effect, Emax is the theoretical 
maximal effect that can be attained, C is the 
concentration, EC50 is the C value that produces an 
effect equivalent to 50% of the theoretical maximal 
effect and n is a slope factor parameter that 
determines the steepness of the curve. The time 
courses of drug effect and concentrations may not 
be completely superimposable. Time-dependent 
concentration-effect relationships exist with a time 
lag present between measurable effect and 
measurable concentration. In these cases, when 
pharmacodynamics and drug concentration data are 
connected in time series at a later point compared 
with a previous time point there is a discordance in 
the plasma concentration versus effect relationship 
with respect to time. Hence, the magnitude of 
pharmacological effect either increases or decreases 
at any given plasma drug concentration. The term 
“hysteresis” has been utilized to describe this time 
lag. The term “hysteresis” is derived from the Greek 
husterēsis or husteros meaning ‘shortcoming, to 
come late or to come behind’. Hysteresis is the 
dependence of a system on both its current and past 
environments. Figure 1c and d present the graphical 
evidence of a temporal relationship of dependence 
between the pharmacological effect and the drug 
plasma concentration. As the data modeling field in 
pharmaceutical science examining the concentration 
versus effect relationships and simulations has 
grown, there has been some debate regarding the 
terminology used to describe these phenomena 
when encountered. It has been suggested that 
instead of using the term clockwise hysteresis, the 
moniker “proteresis” should be employed. 
“Proteresis” is a term also derived from the Greek 
language with proteros meaning ‘former, before or 
to mark an earlier event’. Similarly, instead of 
stating that a “counter-clockwise” or “anti-
clockwise” hysteresis is present it was proposed to 
simply state the vernacular of ‘hysteresis’ to avoid 
redundancy [2]. However, the term ‘proteresis’ has 
not become the conventional lexicon and most 
studies in the literature still utilize the appellatives 
‘clockwise’ or ‘counter-clockwise’ hysteresis. For 
consistency and clarity in this review clockwise 
hysteresis will be used instead of proteresis, and 

counter-clockwise hysteresis instead of simply 
hysteresis or anti-clockwise hysteresis. 

In the counter-clockwise scenario (Figure 1 c) 
there is often non-instantaneous distribution of a 
drug to the effect site (biophase), as the drug 
appearance is delayed into the pharmacodynamic 
(PD) effect site at a slower rate than that in which it 
appears in plasma, this temporal delay in delivery 
results in a mismatch between declining 
concentrations and the response [3, 4]. When the 
biophase is not in the central compartment, it 
exhibits a counter-clockwise hysteresis loop when 
followed over time (Figure 1c). In this instance, 
there is a small effect at a given drug concentration; 
however, after some time has passed the same drug 
concentration gives rise to a greater measured effect 
than expected. Thus, the same drug concentration 
produces two different magnitudes of 
pharmacological effects depending on the temporal 
sequence in which the effect is measured. Counter-
clockwise hysteresis has been generally defined as 
the process in which effect increases with time for a 
given drug concentration [5]. These phenomena can 
be caused by uptake into an active site, cascade 
activity, active metabolites or sensitization (Table 
1) [5]. 

In the opposite scenario a hysteresis loop may 
also occur where a clockwise hysteresis loop is 
evident, for example if tolerance is developed to a 
drug such as an opioid (Figure 1d). Here it can be 
seen that the same plasma concentration has a 
greater effect early on in temporal sequence and 
that after some time the effect diminishes at the 
same plasma concentration. In the case of clockwise 
hysteresis the measured effect decreases with time. 
These phenomena can be mechanistically induced 
by active antagonistic metabolites, tolerance, 
learning effects, or feed-back regulation etc. (Table 
1) [5]. 

An analysis of the pharmaceutical literature 
using PubMed, EMBASE and Google Scholar 
searches indicates that there are many plausible 
mechanistic proposed reasons for explaining the 
findings of hysteresis loops in drug concentration 
versus effect plots (Tables 1-3). Situations that may 
lead to a clockwise hysteresis are the development 
of tolerance to a drug, antagonistic metabolites that 
are formed as the drug is metabolized, down-
regulation of receptors and feedback regulation [6]. 
Some potential causes for counter-clockwise-
hysteresis include distribution delay between the 
plasma and effect site, response delay, sensitization 
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of receptors, the formation and subsequent 
accumulation of active metabolites through drug 
metabolism as well as up regulation of receptors 
after ongoing exposure [6, 7]. Once this type of 
hysteresis loop relationship has been discovered 
further mathematical modeling, such as the effect 
compartmental modeling, or one of its many 
modifications such as indirect modeling, can be 
applied to the data to take into account lag times, 
formation of active metabolites or multiple receptor 
sites in order to mechanistically define and simplify 
the concentration-effect relationship [1]. 

As hysteresis loops become readily evident 
during attempts to correlate the pharmacokinetic 
(PK) measurement [concentration (C)] of a drug 
with its measured PD measurement [effect (E)], an 
accurate determination of the PD measurement  is 
critical.[8] In general, most of the clinical 
pharmacology study designs include in vivo PK and 
in vivo PD endpoint measurements; however, in the 
case of antibiotics or immunosuppressants it is 
common to have in vivo non-steady state dosing of 
drug, and the sampled matrix is used to determine 
in vitro PD effect, which can make the 
interpretation of hysteresis more straightforward. 
However, in early stages of drug 
discovery/development analytical assays are 
sometimes incapable of differentiating parent drug 
from its metabolite(s) and therefore would not be 
able to account for the presence/degree of in vivo 
pharmacological active metabolite(s) [8]. From the 
pharmacological and mechanistic point of view, 
counter-clockwise and clockwise hysteresis loops 
are a phenomenon that occurs under specific 
conditions, and the amount, activity and potency of 
parent and metabolite ratio is a key concept in the 
development and direction of a determined 
hysteresis. 

Counter-clockwise hysteresis loops in PK-PD 
relationships could be explained and defined [319] 
as a consequence of a number of factors illustrated 
below in Figure 2. 

 
Counter-clockwise Hysteresis 
1. Disequilibrium caused by a temporal 
displacement can occur because of rate limiting 
steps: 

Step A: Instantaneous equilibrium between C 
and effect site concentrations (Ce) is not attained, 
which results in a temporal displacement (between 
C and Ce), where C(t) in plasma and Ce in the effect 
site are not identical and C(t) > Ce.[8] 

Step B: The rate of change of Ce is much 
greater than the rates of pharmacological receptor 
activation/deactivation (R*). For instance the 
number of activated receptors (R*) is not reflective 
of Ce at time (t), resulting in a temporal 
displacement (between Ce > and R*).[8] 

Step C: The overall rate of conversion of signal 
transduction induced by R* to measured E is much 
less than the rate of change of R* so that E(t) is not 
equal to R*(t), resulting in temporal displacement 
between R* >and E. The concentration (C) of drug 
binding with a receptor (R) forms a transient (CR) 
drug-receptor complex and this altered complex is 
affected by the receptor association and dissociation 
on and off the receptor. Kd is the receptor 
dissociation rate constant and is equal to the ratio of 
Koff/Kon.  

2. Transformation of a drug or prodrug into 
a metabolite(s) with agonist actions (MPCA / 
MPPCA or MPNCA) are formed from the 
parent drug (D or E) and are included in the 
contribution of the combined measurement of 
E.  

Step D: Common Receptor-Common 
Transduction Mechanism MPCA or MPPCA is 
a competitive agonist or competitive partial 
agonist with lower intrinsic activity, for which 
it occupies the same receptor (R*) as the parent 
drug concentration [EmaxMPCA or Emax MPPCa 
is less than Emax(C)]  

Step E: Separate Receptor-Common 
Transduction Mechanism. Metabolite with non-
competitive agonist actions (MNCA) occupies 
a different receptor but the same effect is 
achieved through a similar mechanism. 

Step J: Separate Receptor Separate 
Transduction Mechanism MNCA is a non-
competitive agonist, for which a different 
pharmacological receptor (R2) is occupied but 
the same E achieved through a different 
mechanism.  

3. Step K: Changes in PD over time. PD has 
a distinct temporal component. For instance, up 
regulation of receptor response (R*) (Step K) 
(sensitization) when the EC50 might reduce 
over time. 

4. Indirect physiological mechanism of drug 
action with changes in PD over time. A 
biosensor process leads to a positive 
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modulation in production Kin or a negative 
change in degradation Kout of the biosignal may 
occur and be transduced (Step L) into an E. 

5. The measurement of C(t) is not specific and 
analysis should seek to measure the active 
component. 

A. Total (unbound and bound) drug analyzed is 
being measured over time rather than unbound 
concentration of drug being measured over time and 
time-dependent protein binding due to protein 
binding changes over time are occurring such that 
unbound pharmacologically active concentration 
reduces with time.[9] 

B. Total achiral (all enantiomers) drug 
concentration is being measured over time rather 
than enantiospecific concentration of a racemic 
drug through the use of non-stereospecific assays 
[10]. Stereospecific pharmacokinetics and 
pharmacodynamics are occurring leading to 1. 
Stereospecific disequilibirum 2. Stereospecific 
metabolism and/or 3. Stereospecific changes in PD 
occurring. 

a) Common Receptor-Common Transduction 
Mechanism Stereospecific Competitive 
Agonist/Partial Agonism. 

b) Separate Receptors-Common Transduction 
Mechanisms. One enantiomer with non-competitive 
agonist actions occupies a different receptor but the 
same effect is achieved through a similar 
mechanism. 

c) Separate Receptor Separate Transduction 
Mechanism. One enantiomer is a non-competitive 
agonist, for which a different pharmacological 
receptor (R2) is occupied but the same E achieved 
through a different mechanism.  

C. Total (parent drug + metabolites) 
concentration together are being measured by a 
non-specific  analytical assay (i.e. 
radioimmunoassay, radioactive assay, or high 
performance liquid chromatographic assay, etc.), 
which is non-specific for the parent drug such that 
an assumed E vs. C plot is in actuality an E vs. 
C+MPCA or E vs. C+MPPCA plot. 

5). A specific analytical assay has been 
developed to measure C, however, an unknown or 
unidentified agonist metabolite is adding to the E. 

 
Clockwise hysteresis 
Clockwise hysteresis loops in PK-PD relationships 
could be explained and defined as a consequence of 
a number of factors illustrated below in Figure 3. 

1. Disequilibrium caused by a temporal 
displacement that occurs because of a major rate 
limiting step: Step A: Disequilibrium occurs when 
Ce temporally precedes C(t). For instance, the rate of 
equilibration between arterial plasma concentrations 
(compartment delivering drug to effect site) and 
venous plasma concentrations (sampling 
compartment for drug concentration analysis) is 
significantly less between arterial concentrations 
and Ce such that C(t) is not equal to Ce(t), resulting in 
temporal displacement (between C(t) and Ce.)  

2. Metabolite(s) with antagonistic actions 
(MpCAn) are formed. Step D: Common Receptor-
Common Mechanism. MpCAn is a competitive 
antagonist with no intrinsic activity, for which the 
same receptor (R*) is occupied as the administered 
drug concentration but it lacks pharmacological 
activity [Emax(MANTCA)~0 <<<< Emax(C)] so that 
receptor blockade occurs.[8] 

Step G: Common Receptor-Common 
Transduction Mechanism. MPPA is a partial 
competitive agonist with low intrinsic activity, for 
which it occupies the same receptor (R*) as the 
parent drug concentration [Emax(MPOa) is less than 
Emax(C)]  

Step J: Separate Receptor-Separate Mechanism. 
MpCA is a non-competitive antagonist (reverse 
agonist), for which it interacts with a different 
receptor (R1) than the drug concentration 
administered and has opposing effects over the 
measured E(t). 

Step N. Changes in PD over time. PD has a 
measurable temporal component. For instance, with 
tolerance down regulation of receptors leads to EC50 
to increase and/or the Emax would decrease 
overtime. 

3. Indirect mechanism of drug action with 
changes in PD over time. A biosensor process leads 
to a negative modulation of production Kin or a 
positive increase in degradation in Kout of the 
biosignal may occur and be transduced (Step O) 
into E.  

4. Counter regulatory feedback regulation (Step 
P). 

5. The measurement of C(t) is not-specific.  
A. Total (unbound and bound) drug measured is 

being measured over time rather than unbound free 
concentration of drug being measured over time and 
time-dependent protein binding  such as the protein 
binding changes over time are occurring such that 
unbound pharmacologically active concentration 
decreases with time [9].  
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Figure 1. (a) Representation of a linear relationship between plasma concentration of a drug and measured pharmacological 
effect (b) Representation of a Sigmoidal Emax model relationship between plasma concentration of a drug and measured 
pharmacological effect (c) Representation of counter-clockwise hysteresis between plasma concentration and measured 
pharmacological effect (d) Representation of clockwise hysteresis between plasma concentration and measured 
pharmacological effect. 

 

 
Figure 2. Factors Influencing Counter-clockwise Hysteresis  
Cp(t) = Plasma parent drug concentration, Ce(t) = “Effect site” concentration, R*(t) = Receptor site, E(t) = Effect, MPCA(t) = 
Metabolite(s) in plasma which are competitive agonists, MeCA(t) = Metabolite(s) in “Effect site” which are competitive 
agonists,  MPNCA(t) = Metabolite(s) in plasma which are competitive agonists /(MPPCA) partial agonists which have non-
competitive agonist action acting on a different receptor BUT same Effect, MeNCA(t) = Metabolite(s) in “Effect site” 
which are competitive agonists which have non-competitive agonist action acting on a different receptor BUT same Effect, 
R2 = Alternate receptor site (with same Effect). 

 
B. Total achiral (all enantiomers) drug 
concentration is being measured over time rather 
than enantiospecific concentration of a racemic 
drug through the use of non-stereospecific assays 
[10]. 

Stereospecific pharmacokinetics and 
pharmacodynamics are occurring leading to 1. 
Stereospecific Disequilibrium, 2. Stereospecific 
Metabolism and/or 3. Stereospecific Changes in PD 
occurring. A. Common Receptor-Common 
Mechanism Competitive Antagonism, where one 
enantiomer is active and the other has affinity but 
no activity. 

B. Total (parent drug + metabolites) concentration 
together are being measured by a non-specific  
analytical assay is being utilized (i.e. 
radioimmunoassay, radioactive assay, or high 
performance liquid chromatographic assay, etc.) 
that is non-specific for the parent drug such that an 
assumed E vs. C plot is in actuality an E vs. 
C+MpCAN or E vs. C+MpCA plot. 
A specific analytical assay has been developed to 
measure parent compound concentration, however, 
an unknown or unidentified antagonist metabolite is 
adding to the E. 
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Figure 3. Factors Influencing Clockwise Hysteresis  
Cp(t) = Plasma parent drug concentration, Ce(t) = “Effect site” concentration,R*(t) = Receptor site, E(t) = Effect, MpCAn(t) 
= Metabolite(s) in plasma which are competitive antagonists, MeCAn(t) = Metabolite(s) in “Effect site” which are 
competitive antagonists, MpCA(t) = Metabolite(s) in plasma which are competitive antagonists which have competitive 
agonist action acting on a different receptor BUT same Effect, MeCA(t) = Metabolite(s) in “Effect site” which are 
competitive antagonists which have competitive agonist action acting on a different receptor BUT same Effect, R1 = 
Alternate receptor site (with same but opposite Effect). 
 
 
Table 1. Mechanistic Explanations for Hysteresis 
Counter-clockwise Hysteresis Clockwise Hysteresis 
Sensitization (up regulation of receptors) Tolerance (down regulation “desensitation” of receptors) 
Input rate  Input rate 
Distribution delay  into the site of Effect Disequilibrium between arterial and venous concentrations 
 Active agonist metabolite Active antagonistic metabolite 
Indirect effect( positive input or negative output) Indirect effect ( negative input or positive output) 
Slow receptor kinetics Feedback regulation 
Time dependent protein binding  Time dependent protein binding 
Racemic drugs and  non-stereospecific assays  Racemic drugs and non-stereospecific assays 
 
 

The following overview of hysteresis loops 
aims to provide a comprehensive rather than 
exhaustive appraisal of the available pharmaceutical 
and biomedical literature in which hysteresis in 
either direction has been observed or studied.  The 
goal of this article is to provide the reader with a 
more comprehensive understanding of the 
mechanistic reasons underlying why these 
phenomena can occur, provide examples of which 
drugs and group of drugs have been reported to 
exhibit these characteristics  (Table 2 and 3), the 
effect that pharmaceutical formulation may have on 
the occurrence and change in direction of a 
hysteresis loop, and the main pharmacokinetic-

pharmacodynamic modeling approaches utilized to 
further understand hysteresis relationships. 
 
COUNTER-CLOCKWISE HYSTERESIS 
A counter-clockwise hysteresis loop may signify an 
increasing pharmacological effect compared with 
earlier temporal pharmacological effects obtained 
with the same plasma concentration of drug. There 
are a variety of examples in the literature that 
suggest this type of pharmacokinetic / 
pharmacodynamic relationship as demonstrated in 
Table 2 [11-79, 298-312, 318, and 327-329]. A 
counter-clockwise hysteresis may mechanistically 
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manifest due to a variety of underlying mechanisms 
as discussed below. 
 
Distribution Delay into Site of Effect 
Counter-clockwise hysteresis loops can occur 
because of a distribution delay between the 
systemic drug concentration and the time to reach 
the effect site. This is the most commonly 
encountered underlying mechanism responsible for 
the finding of a counter-clockwise hysteresis loop. 
Effect-concentration is time-dependent and an 
indirect link is made between the two variables. 

For example, a delay for a drug to be 
transported from the systemic circulation to its site 
of action to elicit a response has been reported for 
∆-9-tetrahydrocannabinol (THC) after intravenous, 
oral or smoking administration, and after various 
intravenous doses [107]. It was observed that 
counter-clockwise hysteresis was evident after 
intravenous and smoking administration because 
THC takes a finite time in order to equilibrate with 
one of its sites of action (brain). However, it was 
also observed that after oral administration no 
hysteresis loop was evident because more time was 
allowed for penetration into the brain [107]. In the 
case of intravenous and smoking administration, the 
time necessary to reach equilibrium was 
approximately 15 minutes (Figure 4a). Furthermore, 

it can be observed that the counter-clockwise 
hysteresis loop was evident after all the intravenous 
doses (Figure 4b), indicating that this phenomenon 
is both dose and route-independent [107]. It can be 
observed that the location and the protective 
barriers surrounding the active site, in this case the 
brain, plays a critical role in the occurrence of 
hysteresis. As the brain possesses multiple 
protective barriers such as the blood-brain barrier 
(BBB) it could be expected that a delay in reaching 
the site of action would occur. This type of 
hysteresis was also observed for morphine after 
subcutaneous administration (14 µmol/kg) to rats  
with renal failure in which counter-clockwise 
hysteresis was developed between anti-nociceptive 
activity and morphine plasma concentrations, which 
correlated with an equilibrium delay as the 
consequence of the ability of morphine to cross the 
BBB [58]. 

The organic nitrate isosorbide dinitrate (ISDN) 
exhibited counter-clockwise hysteresis after 
intravenous infusion (0.133 mg/min for 15 min) or 
sublingual (5 mg) administration (Figure 5) [44]. It 
was observed that the changes in standing systolic 
pressure were greater during the declining phase 
than in the ascending phase after IV and sublingual 
administration [44], this correlated with previous 
studies after oral administration [108].  

 
 
 

                      
 
Figure 4. Counter-clockwise hysteresis of ∆-9-tetrahydrocannabinol (THC) plasma concentrations versus self-reported 
subjective “High” effect (a) different routes of administration and (b) different dosages. Reprinted by permission from 
Macmillan Publishers Ltd: Clinical pharmacology and therapeutics, [107], copyright 1984. 

a  b



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 34 - 91, 2014 
 

 
 
41 

 
Figure 5. Relationship between plasma ISDN concentration and response after intravenous (●) and sublingual (○) dosing. 
Reprinted by permission from Macmillan Publishers Ltd: Clinical pharmacology and therapeutics, [44], copyright 1983. 
 
 
The proposed mechanism for this hysteresis was a 
delay in distribution to the active site in tissue, a 
delay in saturation at the receptor level because it is 
a non-instantaneous event, or contribution of 
vasoactive metabolites [109, 110] which are less 
active than parent drug [44]. However, the main 
factor responsible appears to be the delay in 
equilibrium between the plasma and the site of 
action [44].  
 
Slow Receptor Kinetics 
Drug receptor theory states that as drug 
concentration increases the occupancy of the 
receptor will increase rapidly at first but then it will 
progressively decrease as the receptors become 
occupied, and that the drug concentrations 
necessary to achieve maximal effect (Emax) can be 
many fold higher than that necessary to produce a 
50% response. [5]. However, not all drug receptor 
interactions can be described by an Emax model 
since there are limitations in the type of binding, 
regulation, type of receptors, and the use of 
surrogate sample-feasible biological matrices (i.e. 
blood) instead of the actual receptor binding site 
[5]. However, besides the limited access of drugs to 
the site of action the presence of slow receptor 
kinetics are recognized as one of the main causes of 
counter-clockwise hysteresis [111]. It has been 
reported that in the case of anti-psychotic drugs 
they need to traverse not only the BBB but also the 
transporters that reside in this barrier [12]. The rate 
at which drugs bind to the receptor (kon) and the rate 
at which it dissociates from a receptor (koff) 
determine the kinetics of a drug such as in the case 
of anti-psychotic drugs and their relationship with 

the dopamine D2 receptor [12]. For these types of 
drugs the kon values show low variability for various 
drugs, but the koff can vary within a 1000-fold range 
[112]. This switching movement has been evaluated 
by positron emission tomography (PET) studies in 
dopamine receptor occupancy after single oral 
administration of aripiprazole (2, 5, 10 or 30 mg) to 
healthy subjects, which reported that a high receptor 
occupancy was present after administration (lower 
arm of hysteresis), but low receptor occupancy was 
observed at later time points post-drug 
administration (upper arm of hysteresis) [12]. 

In the case of telmisartan, an angiotensin 
receptor antagonist, counter-clockwise hysteresis 
was observed between plasma concentration and 
angiotensin II response after oral administration 
(20, 40 or 80 mg) following an angiotensin II 
challenge [74]. It was determined that the hysteresis 
could be explained because of the tight binding and 
subsequent slow dissociation of telmisartan from 
the receptor (AT1) on the vascular smooth muscle 
cells [74], which was based on the 3H-telmisartan 
binding to rat lung AT1 receptors and slow 
dissociation (t1/2 = 5.9 h) from the binding sites 
[113]. Furthermore, the slow dissociation from the 
AT1 receptor can also contribute to the antagonism 
of telmisartan [74, 114]. Similarly, candesartan 
cilexetil and losartan after oral dosing exhibited 
counter-clockwise hysteresis after angiotensin II 
challenge in healthy subjects, and it was reported 
that candesartan exhibited a slower off-rate from the 
AT1 receptor than losartan [22]. However, the 
extent of insurmountable antagonistic activity [115-
117] or differences in distributional phenomena 
could also occur. The slow onset of the inhibitory 
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effect on blood pressure for candesartan  [23,118-
119]  could result in a longer than expected PD 
effect based on the plasma concentrations [22]. On 
the contrary, in the case of irbesartan the 
pharmacological effects in the renin-angiotensin 
system (RAS) are related to the blockade of AT1 
receptors by increasing the plasma angiotensin II 
and plasma renin activity for which an actual 
clockwise hysteresis was reported [92]. It was 
reported that the duration of the antagonism of AT1 
receptor for irbesartan would be longer than 
predicted using plasma concentrations [92] as 
demonstrated after single 150 mg PO for which the 
antagonism lasted for 2 days, which was much 
longer than valsartan and losartan [120]. 
 
Delayed or Modified Activity 
The pharmacological response of a drug is not only 
bound by the rate of binding to a specific receptor, 
but can also be related to a progressive series of 
stochastic events that could cause a modification or 
delay in pharmacological activity. [63]. For both 
regular and neutral protamine Hagedorn (NPH) 
insulin after a single subcutaneous injection of 10 U 
or 25 U, the time to reach maximum infusion rate of 
glucose infusion (Rmax), namely TRmax, occurs at a 
later time than tmax indicating a delay between 
maximum serum concentrations and the maximum 
PD effect. This delay was more obvious for regular 
insulin, and when the serum concentrations were 
correlated with glucose infusion rate (GIR) values, 
a counter-clockwise hysteresis loop was observed 
for both types of insulin. As the difference in delay 
between regular and NHP insulin is appreciable, the 
hysteresis loop was greater for regular insulin than 
NPH insulin [63]. 

In the case of molsidomine [a prodrug for the 
formation of nitric oxide (NO)] it first requires 
biotransformation (rapid hydrolysis) to its active 
metabolite SIN-1, which downstream will release 
NO [56]. It is because of this metabolic delay in the 
formation of NO from SIN-1 that counter-clockwise 
hysteresis has been reported in the change of 
diastolic diameter after a single oral dose (4 mg) of 
molsidomine to coronary artery disease (CAD) 
patients [121]. These findings correlated with a 
separate study in which finger pulse curve as a PD 
effect exhibited counter-clockwise hysteresis after 
administration of molsidomine (8 mg) to healthy 
subjects [122]. 
 
 

Active Agonist Metabolite 
As the existence of first pass metabolism occurs 
predominantly in the liver, the route of 
administration may play a critical role in the 
appearance of a hysteresis loop. Hysteresis is 
possible because a drug can be converted to an 
active metabolite that has a Cmax and a combined 
peak activity at a later time point compared to the 
parent drug [5]. For instance, midazolam exhibited 
a slower reaction time when administered orally 
compared to intravenous administration, and when 
the concentrations were combined (both oral and 
intravenous routes) a counter-clockwise hysteresis 
loop was evident. However, when the active 
metabolite α-hydroxy midazolam was analyzed, 
their combined concentrations gave similar reaction 
times regardless of the route of administration 
[123]. 

Itraconazole (ITZ) is a chiral oral active triazole 
anti-fungal agent that has non-linear PK in rats and 
humans and dose-dependent first pass metabolism 
[124-127], and it is also metabolized by CYP3A to 
the major chiral metabolite hydroxyitraconazole 
(OH-ITZ) that has similar anti-fungal activity 
compared to ITZ [125, 128]. Counter-clockwise 
hysteresis was observed between the ITZ and OH-
ITZ concentrations entering the liver (expressed as 
an average of portal venous and aortic 
concentrations, assuming that the liver receives 
25% of total blood flow via the hepatic artery and 
75% via the portal vein) after duodenal infusion of 
ITZ (5 or 40 mg/kg) to chronically catheterized rats 
[46]. Once the change in hepatic availability (FH) 
versus ITZ concentrations were plotted over time, a 
counter-clockwise hysteresis loop was observed 
indicating an equilibration delay between ITZ and 
effect (FH) or another factor that would control FH 
such as the production of an active metabolite. The 
importance of metabolism was evident because of 
the lack of hysteresis and only a direct hyperbolic 
relationship between FH and OH-ITZ. This lack of 
hysteresis indicates that this metabolite or some 
other factor with a similar time course would be the 
key regulator of CYP3A inhibition and the hepatic 
availability (FH) of ITZ. Similar relationships were 
obtained at the 40 mg/kg dose [46]. However, 
although analytical assays were capable of 
measuring the parent compound and its metabolite, 
no stereospecific analysis was undertaken to 
delineate the importance of chirality of this racemic 
drug and the influence of stereoselective 
metabolism, which should be considered in the 
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interpretation of the mechanism underlying the 
hysteresis loop.  

The cholinesterase inhibitor eptastigmine was 
administered to healthy volunteers as a single oral 
dose (10, 20 or 30 mg), and counter-clockwise 
hysteresis was observed between plasma 
eptastigmine concentrations and both red blood cell 
acetyl-cholinesterase inhibition and plasma butyryl-
cholinesterase inhibition [32]. It was evident that 
eptastigmine is more effective and provides a longer 
duration in inhibition of cholinesterase in RBC 
(acetyl-cholinesterase) than in plasma (butyryl-
cholinesterase), which is similar to previous reports 
in young [129,130] and elderly subjects [131]. 
However, these previous  findings do not correlate 
with in vitro studies in which it has been reported 
that eptastigmine is more active on butyryl-
cholinesterase compared to acetyl-cholinesterase 
[132], which could be attributed to the formation of 
active metabolites such as 3'- and 5'-carboxylic acid 
derivatives and 3'-carboxylic acid-1-demethyl 
derivative [133]. Thus, the therapeutic drug 
monitoring should not be performed using the 
unchanged eptastigmine concentrations [32]. 
Furthermore, the observed counter-clockwise 
hysteresis in RBCs indicates that eptastigmine does 
not develop acute tolerance, which could be 
explained by the formation of active metabolites but 
also because eptastigmine slowly dissociates from 
acetyl-cholinesterase in RBCs [134]. The observed 
invertible character of the hysteresis loop in plasma 
butyryl-cholinesterase inhibition s suggests that 
eptastigmine reaches immediate equilibrium with 
the enzyme [32]. 

Furthermore, as presented by Gupta et al. [8] 
the potency of parent compound and the agonistic 
metabolite (MA) was estimated using generated 
plasma concentration-time and plasma 
concentration-effect curves. The degree of counter-
clockwise hysteresis increases as the agonistic 
metabolite accumulates [as elimination rate of the 
metabolite (kmo) decreases and is not formation rate 
limited]. Furthermore, the degree of hysteresis is 
also reflective of the potency of the parent 
compound and agonist metabolite MA since as the 
ratio of potency parent compound/agonist 
metabolite decreases in magnitude (potency of 
agonist metabolite increases), the degree of 
hysteresis will increase.  

Indirect Physiological Response 
Often drugs act via an indirect mechanism of action 
and the pharmacologic effect takes considerable 
time to become evident as concentrations of drug 
are decreasing. Response is governed by the 
stimulation or inhibition of factors which can 
modulate the response [320]. There are two indirect 
situations following drug administration where the 
response measured when related to drug 
concentrations will produce a counter-clockwise 
hysteresis. Counter-clockwise hysteresis occurs 
when input is stimulated (i.e. stimulating the release 
of an endogenous physiological factor) or the output 
is inhibited (inhibiting or degrading the release of 
an endogenous physiological factor). For example 
stimulation of insulin or prolactin leads to a 
counter-clockwise hysteresis and the inhibition of 
anticholinesterase or diuresis leads to a counter-
clockwise hysteresis [321-330] Terbutaline is a 
bronchodilator that increases cyclic AMP this in 
turn leads to bronchial smooth muscle dilation. 
Pyridostigmine and other agents inhibit 
cholinesterase preserving acetylcholine leading to 
an increase in muscular activity leading to a gain in 
muscular response. An indirect response can result 
in counter-clockwise hysteresis [321-323]. 
 
CLOCKWISE HYSTERESIS  
A clockwise hysteresis loop may signify a 
decreasing pharmacological effect compared with 
earlier temporal pharmacological effects obtained 
with the same drug concentration. There are a 
variety of examples in the literature that suggest this 
type of pharmacokinetic/ pharmacodynamic 
relationship as reported in Table 3 [80-102, 313-
317, and 330]. A clockwise hysteresis may 
mechanistically manifest due to a variety of 
underlying mechanisms as discussed below. 
 
Venous vs Arterial Blood Concentrations. 
Drug concentration is often measured in venous 
blood sampling sites and the site of effect 
equilibrates with arterial concentrations at different 
rates. When the effect site (i.e. the brain or heart, 
etc.) concentration at the receptor site (leading to 
drug effect) equilibrates faster with arterial 
concentration than forearm venous blood 
concentration, clockwise hysteresis may occur.  
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Figure 6. (a) Opioid effect plotted against arterial remifentanil concentration from a representative subject (subject 12). 
Note the counter-clockwise direction of the hysteresis loop. (b) Opioid effect plotted against venous remifentanil 
concentration from a representative subject (subject 12). Note the clockwise direction of the hysteresis loop. Reprinted by 
permission from Macmillan Publishers Ltd: Clinical pharmacology and therapeutics, [69], copyright 1999. 
 
 

In the case of the opioid remifentanil after IV 
infusion (3 µg/kg/min for 10 min), it was observed 
that as opioid concentration increases the spectral 
edge decreases in the form of counter-clockwise 
hysteresis as a result of an equilibrium  delay 
between arterial remifentanil concentration and the 
site of action (brain) (Figure 6a) [69] . However, a 
significant difference in arteriovenous 
concentrations in healthy subjects was reported and 
the direction of the hysteresis loop was reversed in 
venous drug concentrations (Figure 6b) and it was 
determined that the venous concentration lag behind 
the drug effect (clockwise hysteresis) [69]. It was 
suggested that the arterial drug concentration and 
effect site reach equilibration faster than the 
equilibration between arterial and venous 
concentration [69,103-106]. 

Tolerance (Down Regulation of Receptors) 
Tolerance is a time-dependent loss of intrinsic 
activity that can occur within the time course of a 
single dose, and is called acute tolerance or 
tachyphylaxis. In the case of pharmacodynamic 
tolerance intrinsic responsivity of the receptor 
diminishes over time. Many drugs present 
clockwise hysteresis due to tolerance because they 
present a reduced pharmacological effect at the 
same concentration than earlier leading to an 
increased effect [140-145]. After oral 
administration of the benzodiazepine diazepam 
(0.28 mg/kg) clockwise hysteresis was observed 
between tracking or digit-symbol substitution 
impairment and unbound diazepam concentrations 
relative to receptor occupancy [85]. Acute tolerance 

to the psychomotor effects of other benzodiazepines 
like alprazolam [146,147], midazolam [148], and 
triazolam [149] has been reported. However, it 
needs to be acknowledged that the actual 
mechanism of tolerance development to 
benzodiazepines is poorly understood [81]. There is 
no consensus delineating the actual mechanism but 
there are reports that consider that a decrease in 
binding potential and/or decrease in receptor 
functionality could explain the appearance of 
tolerance [150]. However, other mechanisms such 
as desensitization associated with receptor 
phosphorylation, uncoupling, and protein 
internalization or degradation have been proposed 
[151]. 

In the case of temazepam (30 mg oral dose), 
clockwise hysteresis was observed between plasma 
concentration and sedation score with or without the 
co-administration of aluminum hydroxide gel (30 
mL) in end-stage renal patients (Figure 7) [101]. 
The hysteresis loops were very similar with or 
without the co-administration of aluminum 
hydroxide gel, but the main difference was the 
presence of the lag time of 1 h when temazepam 
was administered alone, but it was concluded that 
aluminum hydroxide gel had no effect on the 
absorption of temazepam [101]. The clockwise 
hysteresis was attributed to tolerance [152], which 
could be a consequence because of a discrepancy 
between its effective t1/2 and receptor binding 
affinity [153]; however, psychological adaptation 
[154] and functional disturbance [155] can also play 
a role since sedation has some subjectivity in 

a  b 
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scoring, as a patient can force themselves to stay 
awake after an entire morning  of sleep or the 
opposite may occur [101]. 

Interestingly, when temazepam is administered 
as a racemate a clockwise hysteresis is evident in its 
sedation. It is likely that stereospecific 
pharmacokinetics and pharmacodynamics 
contribute to this relationship [9-10]. Use of a non-
stereospecific assay for a chiral drug could lead to 
an apparent clockwise hysteresis loop where this 
relationship might not be apparent if the 
stereospecific concentrations were measured. 

In the case of morphine after intragastric 
administration as a single dose (15 mg/kg) to rats, it 
was observed that clockwise hysteresis was evident 
between unconjugated and conjugated morphine 
concentrations and anti-thermal pain effect. It was 
proposed that the fast and short-lasting anti-thermal 
pain effect of unconjugated and conjugated 
morphine was due to tolerance [59]. Morphine 
administered as an IV bolus to rats caused less 
tolerance than IV infusions at two different rates, 
with tolerance stronger for the higher infusion rate 
[156]. Similarly when morphine was administered 
SC (14 µmol/kg) to rats tolerance (clockwise 
hysteresis) developed between antinociceptive 
activity and morphine brain concentrations in renal 
failure-induced rats, which has been suggested to 
most likely involve a post-opioid receptor 
transduction mechanism [58, 157]. 

In the case of diltiazem after a single oral dose 
(120 mg) to healthy subjects, clockwise hysteresis 
was observed in 4 out of 6 subjects (Figure 8) [86]. 
Significant effects on arteriovascular (AV) 

conduction were observed as expressed by the 
prolongation of PR interval, and because of the 
inverse relationship between PR interval and heart 
rate [158] diltiazem would decrease the heart rate in 
order to increase the PR interval [86]. Furthermore, 
acute tolerance has been reported for diltiazem after 
a single oral dose (180 mg) of sustained-release 
formulations to healthy subjects based on the 
observed clockwise hysteresis for PQ and PR 
interval prolongation [87]. However, previous 
reports indicated counter-clockwise hysteresis after 
a single IV administration of diltiazem [159-162], 
which could occur because a delay before 
equilibrium is reached between systemic and site of 
action concentrations, or the contribution of active 
metabolites [163]. But also because tolerance [164], 
arteriovenous differences during sampling [69, 165, 
166], or the presence of inhibitory metabolites with 
increasing metabolite-to-parent concentration ratio 
[164]. The arteriovenous equilibrium differences 
would result in time-dependence over short time 
intervals, but hysteresis occurred over an extended 
interval of many hours [86]. The metabolites N-
desmethyldiltiazem and desacetyldiltiazem [167-
169] are produced and have been reported to have 
equal or lower hemodynamic effects than parent 
drug  [170, 171]; however, it is unknown how 
active the unbound metabolites compete/react with 
the receptor active sites in contrast with diltiazem 
[86]. The proposed tolerance of diltiazem is not 
caused by compensating physiological mechanisms 
because a decrease in blood pressure would 
indirectly increase the heart rate; however, this does 
not appear to be evident [86].  

 

                
Figure 7. Relationship between mean plasma temazepam concentrations and the NRSS after TM (●) and TM + AHG (○). 
Reprinted by permission from Macmillan Publishers Ltd: Clinical pharmacology and therapeutics, [101], copyright 1985. 
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Figure 8. Plots of change in PR interval versus concentration of diltiazem for each of the six subjects over 24 hours. The 
direction of the arrows indicates the chronologic order of the concentrations. Reprinted by permission from Macmillan 
Publishers Ltd: Clinical pharmacology and therapeutics, [86], copyright 1989. 
 
 
Feedback Regulation 
Mammalian physiology has multiple feedback 
mechanisms to control various pathophysiological 
processes such as biochemical, nerve and enzymatic 
functions [5]. In the case of clockwise hysteresis 
these negative feedback mechanisms decrease the 
activity for the same concentration. For instance, 
when almitrine bismesylate (a respiratory stimulant)  

 
was infused (0.5 mg/kg) over 30 minutes to phase II 
chronic obstructive lung disease (COLD) patients, it 
was observed that almitrine concentrations 
increased to a plateau around 500 ng/mL at 30 
minutes but rapidly decreased after the infusion was 
over. Furthermore, oxygen levels (PaO2) reached a 
maximum around 15 minutes and rapidly declined 
exhibiting a clockwise hysteresis loop [172]. It has 
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also been reported that in the case of almitrine, the 
production of a feedback mechanism would be 
present at higher concentrations than 500 ng/mL 
[173]. Furthermore, the formation of almitrine 
inhibitory metabolites has also been proposed as a 
mechanism, but these have been isolated and 
synthesized and reported to have poor uptake by the 
carotid body and have little activity in rats [174]. 
However, studies in cats have reported that 
almitrine stimulates the carotid body under the 
feedback mechanism of the automatic sympathetic 
ganglioglomerular nerve (GGN) and on a lesser 
intensity by the contralateral carotid nerve (CCN) 
[175]. 
 
Active Antagonistic Metabolite 
The occurrence of antagonistic metabolites is rare in 
the pharmacokinetic-pharmacodynamic literature. 
Typically metabolite concentrations are lower than 
parent drug in humans, and generally metabolites 
are more polar and less active than parent and may 
go unnoticed. However, if an antagonistic 
metabolite is present and with sufficient potency, 
the parent drug would appear to be less effective 
and could have a shorter activity [5]. This has been 
reported for oxyphenylbutazone affecting the 
elimination of phenylbutazone [176], 5-hydroxy-
pentobarbital and pentobarbital [177], and 
hydroxydiphenylhydantoin and hydantoin [178]. 
Clearly, the greater the potency of the antagonistic 
metabolite relative to the parent compound, and the 
slower the elimination rate constant relative to the 
parent drug, the larger the hysteresis loop [8]. 
 
Indirect Physiological Response 
Often drugs act in an indirect mechanism of action 
and the pharmacologic effect takes considerable 
time to become evident and response is governed by 
the stimulation or inhibition of factors that modulate 
the response [320]. There are two situations 
following drug administration where the response 
measured when related to drug concentrations will 
produce a clockwise hysteresis. Clockwise 
hysteresis occurs when input is inhibited or the 
output is stimulated. For example, acid secretion is 
inhibited by H2-receptor antagonists, and the 
formation of angiotensin II is inhibited by 
angiotensin converting enzyme inhibitors and 
certain anticoagulants such as warfarin that inhibit 
prothrombin complex activity, methylprednisone 
and other corticoids that inhibit cortisol. Similarly, 
diuretics such as furosemide may stimulate 

secretion of electrolytes into urine, and warfarin 
inhibits coagulation through prothrombin complex 
activity. In these situations we would readily expect 
the appearance of clockwise hysteresis if an effect 
versus concentration relationship is plotted [321-
323]. 
 
INPUT RATE: PHARMACEUTICAL 
FORMULATION EFFECTS AND THE 
DIRECTION OF HYSTERESIS LOOPS 
As various formulation efforts are designed to 
provide a desired therapeutic profile, variations in 
pharmacokinetics and pharmacodynamics are 
common. Thus, by altering the formulation in which 
a drug is prepared and thereby altering its input rate 
may also affect the direction of the hysteresis loop 
at various steps in the process (Figures 2 and 3). For 
instance, the loop diuretic bumetanide (1 mg) was 
administered orally to healthy subjects as tablets 
and as retarded capsules (containing sustained 
release granules) [20]. In the case of the tablet 
formulation a counter-clockwise hysteresis was 
present and it was determined that this was caused 
due to the time lag between plasma concentration 
and diuretic effect because bumetanide acts directly 
in the renal tubule or because of variations in 
absorption rate from the GI tract [20]. However, in 
the case of the bumetanide retarded capsules a 
clockwise hysteresis was evident in the relationship 
between urinary excretion rate and urine flow rate. 
In this case the urine flow rate maximum was 
achieved before the plasma Cmax or maximum of 
urinary excretion in the case of bumetanide [20]. 
Similar results were obtained with furosemide 
(another loop diuretic) for which minimal counter-
clockwise hysteresis was observed for plain tablets 
(Furix®) while controlled release formulations 
(Furix Retard® and Lasix Retard®) exhibited clear 
clockwise hysteresis when the diuretic effect versus 
furosemide excretion rate were correlated [38]. The 
occurrence of the counter-clockwise hysteresis 
indicated that after the administration of the plain 
tablet there was a minimal delay of the effect 
related to furosemide excretion rate. However, in 
the case of the clockwise hysteresis of the two 
controlled release formulations, tolerance and 
upregulation of the biosignal of the Na-Cl-K 
transporter protein may be the main mechanism of 
action responsible for the effect [38]. These results 
were parallel to the ones observed in a similar study 
where a regular tablet and a retarded furosemide 
capsules were administered to healthy subjects [39]. 
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Therefore, the higher diuretic effect (related to the 
amount of excreted furosemide) could have been 
the result of the slower output of drug from the 
controlled release formulations compared to the 
plain tablet, indicating that the diuretic response is 
independent of intrinsic activity and maximum 
response [135]. 

Another relevant example includes 
lisdexamphetamine mesylate (prodrug that gets 
metabolized to D-amphetamine and L-lysine) and 
immediate-release (IR) D-amphetamine when it was 
administered intraperitoneally (IP) to rats at 
equivalent doses (1.5 mg/kg D-amphetamine base) 
[28]. Counter-clockwise hysteresis between D-
amphetamine (from lisdexamfetamine and IR D-
amphetamine) plasma concentrations and striatal 
dopamine efflux was evident [28]. The counter-
clockwise hysteresis was evident because the 
magnitude of the increase in extracellular dopamine 
was greater when the concentrations of D-
amphetamine were decreasing instead of increasing. 
When the D-amphetamine plasma concentrations 
were related with the locomotor activity, it was 
observed that lisdexamfetamine (1.5 or 5.0 mg/kg 
IP) presented counter-clockwise hysteresis, whereas 
there was no hysteresis for IR D-amphetamine, 
demonstrating the important effect of formulation in 
the PK-PD relationship. Hysteresis was also 
analyzed between the striatal extraneuronal 
dopamine concentration and locomotor activity 
[28]. In this case counter-clockwise hysteresis was 
evident for lisdexamphetamine; however, in the 
case of IR D-amphetamine clockwise hysteresis 
was observed because there was a greater locomotor 
response during the ascending portion of the 
dopamine concentration profile [28]. 

The observed differences in pharmacokinetics 
and hysteresis between lisdexamphetamine and IR 
D-amphetamine could be explained because the 
prodrug lisdexamphetamine is hydrolyzed by red 
blood cells and by a rate-limited enzymatic reaction 
to D-amphetamine [136]. This would cause a more 
sustained gradual release of D-amphetamine 
compared to the IR formulation causing a more 
prolonged and sustained efficacy [137-139]. The 
counter-clockwise hysteresis observed was linked 
with the requirement of D-amphetamine to cross the 
blood-brain barrier in order to enter the striatal 
nerve terminals before releasing dopamine to 
produce locomotor activity (functional outcome) 
[28]. Therefore, lisdexamphetamine would be a 

lesser stimulant than an equivalent dose of IR D-
amphetamine. However, lisdexamphetamine offers 
a later, more gradual and more sustained increase of 
striatal dopamine compared to a rapid achieving but 
rapidly declining effect for IR D-amphetamine [28].  

The calcium sensitizer levosimendan when 
administered as a single dose via different routes: 
IV infusion (2 mg for 5 min), slow-release tablet 
(SR, 2 mg), conventional tablet (CT, 2 mg) or 
conventional capsule (CC, 2 mg) to healthy humans 
exhibited counter-clockwise hysteresis in all the 
formulations for the electromechanical systole 
corrected for heart rate (QS2i) (Figure 9) [49]. It 
was observed that the SR formulation resulted in 
lower concentrations and generally weaker effects 
compared to the other formulations. The observed 
hysteresis was proposed to occur because of an 
equilibration delay that reflects the time that the 
drug is required to distribute from the plasma to its 
site of action (heart) and the difference between 
formulations may be due to the physiological 
barriers and physicochemical properties of the 
actual formulations that would render different 
absorption and distribution profiles [49]. 
Furthermore, counter-clockwise hysteresis in QS2i 
has also been reported in severe congestive heart 
failure patients after IV infusion (0.2 μg/kg/min for 
6 hours) or oral dose (2 mg), for which also the fact 
that levosimendan has inotropic and vasodilatory 
effects could contribute to development of 
hysteresis [48]. It is evident that in all cases the later 
effect is higher at 0 ng/mL than before the study 
commenced. These is exactly what would be 
predicted if you have a specific assay for the parent 
drug and have an active metabolite that is not 
detected or accounted for. More recent literature has 
demonstrated  that levosimendan has two active 
metabolites OR-1896 and OR-1855 that have mean 
elimination half-lives of 72.6 and 81.3 hours, 
respectively, compared to the elimination half-life 
of parent drug that ranges between 1.1 to 1.4 hours 
[324].   
 
Theoretical and Practical Considerations: 
Clockwise and Counter-clockwise Hysteresis and 
the Importance of Specific Measurement of 
Concentration 
Total (drug concentration + metabolites) together 
can be measured by a non-specific analytical assay 
method.
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Figure 9. The concentration-effect loops for QS2i after single doses of 2 mg of levosimendan as an intravenous (n = 10) 
and three different oral formulations (n = 8) in healthy subjects. The levosimendan concentrations and corresponding QS2i 
values are plotted in the graph and the points are connected in time order. Reprinted by permission from Dustri-Verlag: 
International Journal of Clinical Pharmacology and Therapeutics, [49], copyright 1998. 
 
 
This would most often occur with the use of a 
radioimmunoassay, or by measuring radiolabelled 
drug in early pharmaceutical development. Using 
non-specific methods of analysis, drug 
concentration and concentration of metabolite 
would be measured simultaneously and could be 
plotted together versus effect. As presented in 
simulations by Gupta et al. [8] the potency of the 
parent compound and the generated agonistic 
metabolite (MA) were estimated using generated 
plasma concentration-time and plasma 
concentration-effect curves. Different derived 
equations were used to describe parent and MA PK, 
and  plasma concentration-effect profiles using PD 
models in which the effect was considered a linear 
function of parent and MA (equation 3) [8].  
 

MAMAPAR CPCPE   (3) 
 

where, PPAR is the pharmacological potency of the 
parent compound and PMA is the pharmacological 
potency of the metabolite. A competitive agonist 
Emax model was developed using equation 4 [8] 
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E vs. C plot is in actuality an E vs. C+CMA in these 
instances (Figure 10). When the parent compound 
and metabolite are equipotent no hysteresis was 
observed (PPAR/PMA ratio = 1 or EC50/EC50MA) 
(Figure 10a) Clockwise hysteresis was present 
when C > MA in potency (Figure 10 b) and 
counter-clockwise hysteresis was reflective of MA 
> C in potency (Figure 10c). Similar findings were 
demonstrated and applicable using Equation 3. 
Therefore, the potency of the metabolite relative to 
parent compound is the key to the hysteresis and its 
direction, and it needs to be considered that non-
specific analytical assays such as RIA or achiral 
analytical methods in PK-PD studies could cause 
interpretational problems but also warrants the need 
to identify all of the active metabolites or 
stereoisomeric forms.  
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Figure 10. Plot of observed effect (E) vs. unbound plasma concentration (C + CMA) for parent compound and agonistic 
metabolite (MA). The pharmacodynamics of parent compound and MA are described by a linear model (Equation 3), and 
where, for MA pharmacokinetics, kmo = 0.05 and PPAR = 1: collapsed hysteresis with PMA = 1 (a), clockwise hysteresis with 
PMA = 0.33 (b) and counter-clockwise hysteresis with PMA = 3 (c). Reprinted by permission from Springer Science and 
Business Media: Pharmaceutical Research, [8], copyright 1993. 
 
 
What is apparent is that if using a non-specific 
method of analysis (Figure 11b), a direct linear 
relationship could be interpreted between 
concentration and effect (Figure 1a, Figure 11b), 
however employing a specific method of analysis 
(Figure 11a) demonstrates the existence of a 
counter-clockwise hysteresis loop. Likewise, a 
clockwise hysteresis loop could be incorrectly 
assigned to a situation where a counter-clockwise 
hysteresis is occurring (Figure 10a and Figure 11a). 
Finally, a larger counter-clockwise hysteresis may 
be evident (Figure 10c) than if a specific method of 
concentration analysis utilized (Figure 11a). 

 
Figure 11. (a) Plot of observed effect (E) vs. unbound 
plasma concentration for parent compound (C) showing 
counter-clockwise hysteresis. The pharmacodynamics of 
parent compound and agonist metabolite (MA) are 
described by a linear model, with PPAR = PMA = 1 and kmo 
= 0.05. (b) Plot of observed effect (E) vs. unbound 
plasma concentration (C + CMA) for parent compound 
and MA showing collapsed hysteresis, where the 

pharmacokinetic-pharmacodynamic model is as in a. 
Reprinted by permission from Springer Science and 
Business Media: Pharmaceutical Research, [8], copyright 
1993. 
 
Time-Dependent Protein Binding 
In a simulation study the time-dependent protein 
binding can occur as a consequence of a time 
dependent decrease in protein concentration in 
serum, by displacement of a metabolite. When 
pharmacological effect was plotted versus total drug 
concentration in serum counter-clockwise hysteresis 
was evident; however, when concentration of free 
drug in serum, which was correlated with 
pharmacological effect, was plotted no hysteresis 
was evident [9]. Time-dependent protein binding 
that can occur as a consequence of an increase in 
protein concentration in serum can lead to a 
decrease in free fraction of drug. When 
pharmacological effect was plotted versus total drug 
concentration in serum (i.e. free and bound drug) 
clockwise hysteresis was evident; however, when 
concentration of free drug in serum was correlated 
with pharmacological effect no hysteresis was 
evident [9]. Despite these theoretical simulations 
and modeling no examples of studies in the 
literature demonstrating this phenomenon are 
apparent to date. 
 
Racemic Drug and Chirality 
The utility of using non-stereoselective assay 
methodology for measuring concentration of a 
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racemic drug can lead to interpretation errors in the 
concentration versus pharmacological effects 
correlation and the assignment of a hysteresis loop 
[10, 179]. Indeed as stated by Ariens 30 years ago 
[297] an analytical assay that does not measure the 
enantiomers of a racemic drug and attempts to 
relate total concentrations to effect without 
stereochemical knowledge is “highly sophisticated 
scientific nonsense”. However, many examples 
from studies in both Tables 2 and 3 continue to 
produce this achiral scientific gibberish. After oral 
administration when enantiomers differ 
substantially in total body clearance and when an 
active enantiomer has lower clearance, counter-
clockwise hysteresis was evident between plasma 
concentration of total drug and its pharmacological 
effect. The active enantiomer would constitute a 
greater proportion of the total concentration as time 
progresses. In addition, when the Vd of an active 
enantiomer is larger than the inactive enantiomer 
and a different half-life of the enantiomers ensues, 
the proportion of the active enantiomer in the total 
concentration would be higher over time. In the 
case of zero-order absorption, which could be 
possible when enantiomers are orally absorbed and 
transported via carriers, and when the Ka of the 
active enantiomer is less than that of the inactive 
enantiomer hysteresis was evident. The implications 
of chirality on pharmacodynamics modeling were 
also simulated when enantiomers acted as 
competitive agonists, partial agonists, competitive 
agonists, enantiomers may also have affinity and 
activity and intrinsic activity at separate receptors, 
separate transduction mechanisms or affinity and 
intrinsic activity at separate receptors but with a 
common transduction mechanism. When the more 
active enantiomer had higher clearance or a smaller 
volume of distribution plots of pharmacological 
effect versus non-stereospecific plasma 
concentration produced anti-clockwise hysteresis 
loops [179]. 

When a racemic drug’s active enantiomer has a 
higher total body clearance a clockwise hysteresis 
describes the relationship between total 
concentration and pharmacological effect as the 
active enantiomer would be a lower proportion of 
the total concentration over time. In addition, when 
the volume of distribution of active enantiomer is 
smaller than the inactive enantiomer and a different 
half-life of the enantiomers ensues, the proportion 
of the active enantiomer in the total concentration 
would be lower over time. In the case of zero-order 

absorption which could be possible when 
enantiomers are orally absorbed and transported via 
carriers and when the Ka of the active enantiomer is 
greater than that of the inactive enantiomer 
hysteresis was evident. 

Many studies identifying hysteresis using 
racemic drugs (i.e. Tables 2 and 3) and that have 
utilized non-stereospecific assays may therefore 
require further evaluation of their underlying 
mechanisms. The implications of chirality on 
pharmacodynamics modeling extended the 
importance of pharmacodynamics to the hysteresis 
relationship [179]. There are a variety of possible 
pharmacological interactions between enantiomers 
that were evaluated through the use of simulation of 
the pharmacological effect-time profile and 
ultimately clockwise hysteresis was also evident. 
Enantiomers may act as competitive agonists, 
partial agonists or competitive antagonists. 
Enantiomers may also have affinity and activity and 
intrinsic activity at separate receptors, separate 
transduction mechanisms or affinity and intrinsic 
activity at separate receptors but with a common 
transduction mechanism. In cases where the more 
active enantiomer had higher clearance and a 
smaller volume of distribution, plots of 
pharmacological effect versus non-stereospecific 
plasma concentration produced clockwise hysteresis 
loops. The plots outlined in Figures 10 and 11 are 
also applicable to achiral analysis of total 
enantiomers of a racemate [8,10, 179]. Depending 
on both the pharmacokinetic and pharmacodynamic 
behaviours of the enantiomers, the less active 
enantiomer may significantly affect the observed 
effect and therefore the reliability of any hysteresis 
loop obtained with the use of suspected achiral 
concentration data. All of the eight different 
clockwise hysteresis examples that use racemic 
drugs in Table 3 may be similar to Figure 10b but 
could in fact produce counter-clockwise hysteresis 
if stereospecificity was considered in the analysis. 
 
PHARMACOKINETIC-
PHARMACODYNAMIC (PK-PD) MODELING 
The general assumption is that drug in the surrogate 
biological matrix, such as plasma, and the drug at 
the biophase are at equilibrium [5]. However, this 
assumption may not be correct because the drug 
concentrations change as a result of the innate 
pharmacokinetics of the drug, and the 
pharmacodynamics could also change 
independently or in an opposite direction to the 
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drug concentration. Various approaches for 
simultaneous PK-PD modeling have been explored 
[180], including compartmental models [181], 
system dynamics models [182], distributed log 
analysis [183], or numerical deconvolution [184]. 
All of these approaches have advantages and 
disadvantages due to the complexity of the inherited 
mathematical equations utilized.[185, 325-326]. 
 
 

Effect Compartment Model  
The most commonly used PK-PD model is the 
effect compartment model (Figure 12), which 
assumes that the active site compartment receives a 
negligible amount of drug and has a negligible 
volume [4, 164, 186-189].  
 
 
 
 

 

Figure 12. Effect Compartment Model 

This approach has now been implemented in 
various modeling software with the so called non-
parametric or parametric link model [190].The use 
of an effect compartment model has been widely 
used to collapse the hysteresis loop, which is 
generally performed by linking it to the PK model 

as it was originally proposed by Segre [191] and by 
Galeassi et al. [192], and later elaborated and 
described by Holford and Sheiner [164] and by 
Sheiner et al. [3]. The effect compartment model 
has been described by equation 5. 
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where, Ce is the effect compartment concentration, 
KA is the absorption rate constant, K is the 
elimination rate constant, K21 is the transference rate 
constant from the peripheral to the central 
compartment, Vd/F is the volume of distribution 
corrected by the bioavailability of the oral dose D, α 
and β are the hybrid rate constants corresponding to 
the initial and terminal slope factors, respectively, 
and Ke0 is the constant of the disappearance of the 
effect [29, 164]. 

The main assumption necessary to make the 
hysteresis loop collapse is that the effect depends on 
the drug concentration in an effect compartment 
rather than in the systemic compartment. 

Furthermore, the effect is correlated to Ce by the 
sigmoidal Emax PD model using equation 6 [29].  
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where, E is the observed effect, Emax is the 
theoretical maximal effect that can be attained, Ce is 
the effect-compartment concentration, EC50 is the 
Ce value that produces an effect equivalent to 50% 
of the theoretical maximal effect and h is a 
parameter that determines the steepness of the 
curve. 
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The fitting procedures then can be performed 
using a PK/PD modeling software. The effect 
compartment model has been applied to the 
observed counter-clockwise hysteresis between 
diclofenac blood concentrations and functional 
index (FI) recovery after oral diclofenac 
administration to male Wistar rats (Figure 13a) 
[29]. This hysteresis loop has been previously 
reported to be due to the formation of active 
metabolites; however, diclofenac metabolites do not 
exhibit anti-nociceptive activity [193, 194] and 
local administration of diclofenac causes an anti-
inflammatory effect [195]. Another proposed 
mechanism of action was a cascade of physiological 
events [196] because the anti-nociceptive effect of 
diclofenac is an indirect response from the 
inhibition of prostaglandin synthesis [197]; 
however, it has been reported that diclofenac has a 
rapid pharmacodynamic effect when administered 
locally [195] indicating that once it reaches the site 
of action it has a rapid pharmacological response 

without delay. Therefore, the lag in anti-nociceptive 
effect onset occurs because there is a slow 
equilibrium kinetics between blood concentration in 
the central and effect compartment [29]. The use of 
the effect compartment model results in the collapse 
of the hysteresis loop (Figure 13b), because the 
derived effect data exhibited good fit as a function 
of the estimated Ce [29]. 
 
Tolerance Model: Incorporation of the 
Hypothetical Non-Competitive Antagonist  
A tolerance model was developed by Prochet et al. 
[199] in which a hypothetical non-competitive 
antagonist is included to represent the factor driving 
tolerance (Figure 14), and this has been applied to 
diltiazem [86], clonidine [25], ephedrine [200], and 
morphine [41]. This model can describe tolerance 
based on competitive or non-competitive inhibition 
of response by down-regulation of receptors or by a 
metabolite [86].  

      
 

                             
 
Figure 13. (a) Relationship between the measured blood concentration of diclofenac and the observed anti-nociceptive 
effect expressed as FI recovery after oral administration of a 10 mg/kg sodium diclofenac dose to rats that were injected 
with uric acid in the right hind knee. (b) Relationship between the observed anti-nociceptive effect, measured as FI 
recovery, and calculated effect-compartment Diclofenac concentrations corresponding to PO administration of 0.56, 1, 1.8, 
3.2, 5.6 and 10 mg/kg of sodium diclofenac. Reprinted by permission from American Society for Pharmacology and 
Experimental Therapeutics: The Journal of pharmacology and experimental therapeutics, [29], copyright 1997. 
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Figure 14. Tolerance Model 

 
 
where, E is the measured PR interval, E0 is the 
baseline PR interval, C is the drug plasma 
concentration, S is the slope of the linear 
relationship between effect and concentration in the 
absence of antagonist, Cant is the concentration of 
the hypothetical antagonist, and Cant50 is the 
concentration of hypothetical antagonist resulting in 
50% inhibition of effect. Hypothetical antagonist 
concentration units are those of steady-state drug 
concentrations [86]. 

In the case diltiazem after a single oral dose 
(120 mg) to healthy subjects, the same model was 
not only applied to parent drug but also to the 
metabolites N-desmethyldiltiazem and 
desacetyldiltiazem. The best fit of the various 
options tested was obtained with the incorporation 
of the hypothetical non-competitive antagonist 
rather than the use of any of the metabolite 
concentration (Figure 15) [86]. Panel B is the best 
fit. The 400- 800 min times demonstrate a lack of 
weighting. 
 

Indirect Physiological Response Turnover 
Model. 
As the pharmaceutical industry has diversified from 
small molecules into administration of proteins and 
peptides we have seen effects that are more 
discordant in time and production or degradation of 
a mediator that is often responsible for drug action. 
[321-330]  As the mechanism of action of many 
drugs involves protein synthesis, a drug may affect 
the net response measured by altering either then 
Kin or Kout that will evoke the response measured 
(Figure 16). Indirect models allow for a later Tmax 
with larger doses of drug. Of course partial 
inhibition or synergism can be adapted, circadian 
variation accounted and cascade models could be 

developed and transduction effects incorporated 
into these models. As many xenobiotics act 
indirectly through physiological and biochemical 
mediators and enzymes there is broad applicability 
of this approach. Jusko has pioneered the work in 
turnover model systems by pointing out that four 
main mechanisms are involved in stimulating or 
inhibiting production of the biosignal that is 
measured as the effect, or inhibiting or stimulating 
its removal [321-323].These models can be further 
extended by adding more transit compartments 
which are similar to steps in the transduction of the 
progression of the measured effect.  
 
DISCUSSION 
 
The appearance of hysteresis loops in PK-PD 
analysis indicates that the relationship between drug 
concentration and the effect being measured is not 
direct but has an inherent time delay and 
disequilibrium. As hysteresis depends on both 
pharmacokinetics and pharmacodynamics including 
all the innate factors affecting either of them this 
has a critical role in the appearance, direction, 
magnitude and collapse of a hysteresis loop. Some 
of these factors include the equilibrium / 
disequilibrium between sampled PK concentration 
and effect site concentration, rate of 
pharmacological receptor activation/deactivation, 
rate of signal transduction at the receptor level, 
presence of agonist or antagonist active metabolites, 
upregulation/downregulation of pharmacological 
response, rate of equilibration between arterial 
plasma concentrations (compartment delivering 
drug to effect site) and venous plasma 
concentrations (sampling compartment for 
concentration analysis), among others. 
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Figure 15. Plots of PR interval versus time for subject 5 showing the results of pharmacodynamic fitting procedures. A, Fit 
to linear pharmacodynamic model assuming no tolerance. B, Fit to model of acute tolerance that incorporates the effect of a 
hypothetical antagonist. C, Fit to model of acute tolerance, assuming N-desmethyldiltiazem is an antagonist. D. Fit to 
model of acute tolerance, assuming desacetyldiltiazem is an antagonist. Reprinted by permission from Macmillan 
Publishers Ltd: Clinical pharmacology and therapeutics, [86], copyright 1989. 
 

 
Figure 16. Indirect Response Turnover Model 

 
 
In addition, the study design can play a major role 
since the availability of a specific analytical method 
plays a critical role in the ability to detect the 
pharmacologically relevant analyte (parent vs. 
metabolite, or racemate vs. enantiomer). Also, it is 
critical to understand the nature of the activity of a 
metabolite (namely agonist or antagonist) because 
generally an agonist metabolite would aid in the 

development of a counter-clockwise hysteresis, 
while an antagonist metabolite would do the same 
for clockwise hysteresis loops.  

It can be observed that hysteresis loops are 
present for a wide range of drugs and the 
mechanism of action (MOA) sometimes overlap 
between each other. In the case of clockwise 
hysteresis the most common MOA is tolerance, 
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which is a constant concern in the therapeutic use of 
benzodiazepines, opioids and CNS drugs. However, 
tolerance has also been reported for loop diuretics 
and nitrates. Feedback mechanisms can also play a 
critical role in hysteresis because they control 
various physiological processes and it has been 
reported that they can also decrease the 
pharmacological effect for the same drug 
concentrations, which could cause inhibition and/or 
depletion at the terminal/receptor level [93, 201, 
202]. Another factor to consider is drug and effect 
location and the protective barriers surrounding the 
active site such as the brain. As the brain possesses 
a protective blood-brain barrier (BBB) it would be 
expected that a delay in reaching the site of action 
would occur. Another factor that may be neglected 
in PK-PD interpretation is the potential differences 
in arteriovenous concentrations of a drug, because 
arterial blood delivers the drug to the effect site and 
venous blood is typically the sampled matrix. This 
for instance has been observed for thiopental in 
which concentrations were higher in the arterial 
samples during infusion but became comparable to 
venous samples after the infusion, and at the time of 
adding the pharmacodynamics component (EEG 
frequency reduction by spectral edge analysis), it 
was observed that the hysteresis loop was evident 
for arterial but not for venous blood [165].   

The current ability to measure receptor binding 
using positron emission tomography (PET) or an 
equivalent technology can help us understand better 
the rate at which drugs bind to the receptor (kon) and 
the rate at which it dissociates from a receptor (koff) 
to determine the kinetics of drugs such as anti-
psychotics, in which the kon values show low 
variability, but the koff can vary within a 1000-fold 
range [112]. This interplay is critical  because with 
the help of PET the dopamine receptor occupancy 
after single oral administration of aripiprazole was 
evaluated. It was observed that high receptor 
occupancy was present after the administration 
(lower arm of hysteresis) but low receptor 
occupancy was observed at later time points post 
drug administration (upper arm of hysteresis) [12]. 

The relevance of using different pharmaceutical 
formulations and routes of administrations has been 
presented to illustrate the need to be considered in 
order to achieve the desired therapeutic profile. For 
instance, bumetanide as a tablet exhibited counter-
clockwise hysteresis because a time lag between 
plasma concentration and diuretic effect is evident 
since the drug acts directly in the renal tubule or 

because of variations in absorption rate from the GI 
tract. However, in the case of the retarded capsules 
a clockwise hysteresis was present because the 
maximum urine flow rate was achieved before the 
plasma Cmax or before the maximum of urinary 
excretion [20]. Thus, it can be clearly observed that 
the pharmaceutical formulation may change the 
pharmacodynamics of a drug. However, the change 
from one formulation to another does not follow a 
constant pattern in the direction of occurrence of a 
hysteresis loop as this is dependent on the drug 
itself and the actual effect site. Other drug delivery 
formulation approaches have centered on the 
modification of the lipophilicity of a drug and 
having a closer delivery to the site of action in order 
to try to circumvent biological barriers. For 
instance, morphine and fentanyl were formulated 
into a pressurized olfactory delivery (POD) device. 
Clockwise hysteresis was observed after POD 
administration of both morphine and fentanyl, but 
counter-clockwise hysteresis was observed after 
nasal drops and IP administration of morphine, 
while no clear hysteresis after nasal drops and IP 
administration of fentanyl [57]. These observed 
differences could be attributed to significant 
differences in hydrophobicity and ability to 
penetrate the BBB, which not only affected the 
systemic plasma concentrations but also the 
delivery to the nasal olfactory epithelium.  

With the relevance that hysteresis loops have, 
various modeling approached have been proposed 
to collapse hysteresis and allow for adequate PK 
and PD estimates, and the most commonly used 
model remains the effect compartment model, 
which assumes that the active site compartment 
receives a negligible amount of drug and has 
negligible volume [4, 164, 186-189]. However, 
variation of this model such as the tolerance model 
has also been implemented [102] where a tolerance 
(use of a linear PD model) and pseudo-tolerance 
(use of an effect compartment model) PK-PD model 
were evaluated for different drugs [104, 105, 203]. 
Also as proposed by Gupta et al. [8], the potency of 
the metabolite relative to parent compound is the 
key to the hysteresis and its direction, and it needs 
to be considered that non-specific analytical assays 
such as RIA or achiral analytical methods in PK-PD 
studies could cause interpretational problems but 
also warrants the need to identify all of the active 
metabolites and enantiomers.  

Ultimately it can be seen that the presence of a 
hysteresis loop provides guidance on how to model 
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pharmacokinetic-pharmacodynamic relationship of 
a particular drug, it allows the pharmaceutical 
scientist to design studies more appropriately when 
arteriovenous drug versus venous concentration 
differences are large and to provide a more rational 
basis for dosage individualization. A very clear 
example is the case of piritramide, for which it is 
recommended that it should be initially 
administered as an intravenous bolus of at least 5 
mg to circumvent its pronounced hysteresis [96]. 

  
CONCLUSIONS 
 
The linking of pharmacokinetics and 
pharmacodynamics is taking on greater relevance 
because of the necessity to understand the 
concentration-time profiles of drugs and the need 
for the ability to determine dosing regimens that 
will achieve the necessary concentrations for 
optimal efficacy. These complex relationships have 
allowed us to be able to detect hysteresis loops and 
to begin to understand the various mechanisms of 
action, metabolic and rate limiting steps that cause 
them. It can be observed that there are various 
modeling alternatives to collapsing hysteresis loops 
when determining PK and PD estimates. Special 
attention needs to be placed on the study design 
with the various caveats that could arise from the 
selection of PD estimates as well as the selection of 
formulation and route of administration. Inter-
disciplinary approaches are warranted to aid in the 
further understanding of hysteresis loops to help us 
develop drugs with a clearer understanding of their 
complicated pharmacokinetic-pharmacodynamic 
interactions and behaviours. 
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Table 2. Counter-clockwise Hysteresis 

Drug name 
Drug /Class 
(Indication) 

Population / 
species studied 
(comorbidities) 

Route of 
Administration 

Proposed mechanism 
Effect(s) 

measured 
Site of  drug 

concentration measure 
Reference 

Alpha-human atrial 
natriuretic peptide 

Peptide drug Rats 
6-12 µg/kg iv infusion 

over 60 min 

Site of action, for 
diuretic effect, must be 
in a tissue or site other 
than the blood vessels. 

Diuretic effect 
(%) 

Plasma concentration 
(ng/mL) α-hANP 

[11] 

Aripiprazole 
Atypical 

antipsychotic 
18 humans 
(healthy) 

2, 5, 10, 30mg single 
po doses 

Limited access to the 
site of action due to the 
brain-blood barrier and 
transporters molecules 

on the barrier 

Dopamine 
receptor 

occupancy 
(%) 

Plasma concentration 
(ng/mL) of aripiprazole 

[12] 

Astragaloside IV 

Anti-inflammatory 
and 

immunoregulatory 
(Traditional 

Chinese Medicine) 

Rats 

20 mg/kg 
Astragaloside IV , 

Atractylenolide I 2.165 
mg/kg and 116.9 
mg/kg Prim-O-

glucosylcimifugin  via 
intragastric lavage 

Disequilibrium between 
effect site and central 

compartment 

 Spleen cell 
growth rate 

Plasma concentration 
(ng/mL) 

[13] 

(+/-)  
Atenolol 

Beta-1 Selective 
Beta-Blocker 

10 rats 
Immediate release 

pellets 16 mg/kg po 
single dose 

Disequilibrium between 
effect site and central 

compartment 

Change in 
Systolic blood 

pressure 
(mmHg) 

Atenolol concentration 
(µg/mL) 

[14]* 
 

Atracurium 
Neuromuscular 
blocking agent 

10 humans 
(critically ill 
with acute 
respiratory 

distress) 

1 mg/kg iv bolus 
followed by 1mg/kg/hr 

for 72 hrs 

Lag time between 
concentration and 

effect, effect may not 
begin until 80% of 

receptors are occupied 

Train of four 
count as index 
of therapeutic 

effect 

Plasma atracurium 
concentration (µg/mL) 

[15] 

Azithromycin 
Macrolide 
antibiotic 

Rats 
40, 100 mg/kg/h iv 

over 90 min 

Delayed distribution in 
the effect site, 

potassium channels on 
ventricular myocytes 

Change in QT 
interval 
(msec) 

Plasma concentration of 
azithromycin  (µg/mL) 

[16] 

(+/-)  
Baclofen 

Skeletal muscle 
relaxant 

Mice 
1-3 mg/kg 

intraperitoneally 
2- compartment open 

model of effect 

Antinocicepti
ve effect 
(% MPE) 

Baclofen blood 
concentration (µg/mL) 

[17] 

Befloxatone 

Reversible and 
selective MAO 

inhibitor 
 
 

12 humans 
(healthy) 

5 mg po twice daily or 
10 mg po once daily 

Compartment effect or 
an indirect response 

% of DHPG 
decrease from 

baseline 

Plasma concentration of 
befloxatone (ng/ml) 

[298] 

Benidipine 
Dihydropyridine 
calcium channel 

blocker 
Rats 1 mg/kg po 

Effect-compartment 
model 

Change in 
blood 

pressure (%) 

Plasma concentration of 
benidipine (ng/mL) 

[18] 
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Bromocriptine Dopamine agonist Rats 2.5, 10 mg/kg ip 

Equilibration delay 
between concentrations 

in the brain and 
concentration in plasma 

Number of 
rotations 
(/15min) 

Plasma bromocriptine 
concentration (ng/mL) 

[19] 

Bumetanide Loop Diuretic 
3 humans 
(healthy) 

1 mg  IR tablet po Absorption rate 
Urine flow 
rate (ml/h) 

Plasma concentration of 
bumetanide (ng/ml) 

[20]* 

Bunazosin Alpha-1 blocker 

9 humans (renal 
insufficiency) 

11 humans 
(healthy) 

3 mg po (single dose) 

Delay in the 
equilibration between 

the plasma 
concentration and 

concentration at the 
effect site 

ΔSBP 
(mmHg) 
ΔDBP 

(mmHg) 
ΔHR (bpm) 

Plasma bunazosin 
concentration (ng/mL) 

[21] 

(+/-) 
Buprenorphine 

Opioid analgesic 4 Rats 
8 µg/kg iv over 20 

seconds 

Kinetics of target site 
distribution and 

receptor 
association/dissociation 

kinetics 

Change in 
latency in 

cerebellum, 
the rest of 
brain, and 
specific 

binding site 
(sec) 

Concentration of 
buprenorphine (ng/mL) 

[22] 

(+/-) Candesartan 
Angiotensin II 

receptor blocker 
12 humans 
(healthy) 

8 mg po 

Distributional delay 
between the 

concentrations in 
plasma and effect site 

Pharmacodyn
amics (areas 

under the 
effect time 

profile:  DR-
1) 

Pharmacokinetics 
(concentration 

equivalents: nKi) 
[22] 

(+/-) Candesartan 
Angiotensin II 

receptor blocker 
12 humans 
(healthy) 

4, 8, 16 mg po (single 
doses) 

Slow off-rate of 
candesartan from the 

receptor site 
Diastolic BP 

Plasma concentration of 
candesartan (ng/mL) 

[23] 

Cibenzoline 
Class I 

antiarrhythmic 
agent 

6 humans 
(healthy) 

100 mg iv over 20 
minutes 

Lag between drug 
concentration and effect 

QRS 
prolongation 
(% increase 

from baseline) 

Cibenzoline plasma 
concentration (ng/mL) 

[24] 

Clarithromycin 
Macrolide 
antibiotic 

Rats 
6.6, 21.6, 43.2 mg/kg/h 

iv over 90 min 

 
 
 

Delayed distribution in 
the effect site, 

potassium channels on 
ventricular myocytes 

 
 
 
 

Change in QT 
interval 
(msec) 

Plasma concentration of 
clarithromycin (µg/mL) 

[16] 



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 34 - 91, 2014 
 

 
 
75 

Clonidine 
Alpha2- adrenergic 

agonist 
10 humans 
(healthy) 

200 µg po 
Delay between drug 
receptor binding and 

observed effects 

Rm threshold 
(mA) 

 
MAP 

(mmHg) 
 

Clonidine concentration 
(ng/mL) 

[25] 

Cocaine Drug of abuse 7 humans 
Smoked doses (10, 20, 

and 40 mg) 

Lag between blood 
concentration and effect 

due to drug being 
transported through 
tissues in the effect 

compartment 

Heart rate 
mean change 
(BPM) and 

pupil diameter 
mean changr 

(mm) 

Plasma cocaine 
concentration (ng/ml) 

[299]* 

Cocaine Drug of abuse 
9 humans 
(healthy) 

Smoked dose (12.5, 25, 
and 50 mg) and i.v. 
doses (8, 16, 32 mg) 

Rapid distribution of 
drug to the brain 

Mean change 
in systolic and 

diastolic 
pressure 

(BPM) and 
ratings of 

stimulated, 
high or drug 

liking 

Arterial plasma cocaine 
concentration (ng/ml) 

[300]* 

Cyclosporin A 

Calcineurin 
Inhibitor 

Immunosuppressan
t 

Rats 
Sandimmune single 

injection 1 and 
10mg/mL 

Delay in distribution of 
the drug to effect site 

Calcineurin 
inhibition (%) 

Cyclosporin A 
concentration (ng/mL) 

[26] 

Cysteamine 
Cysteine depleting 

agent 

11 humans 
(nephropathic 

cystinosis) 

Varied for each person, 
QID 

Lag time between drug 
concentration and effect 

White blood 
cell cysteine 
concentration 

(nmol ½ 
cysteine per 
mg protein) 

Mean cysteamine 
concentration (µM) 

[27] 

D-amphetamine Stimulant 22 rats 
1.5 mg/kg  

D-amfetamine base IR 

Delay of drug crossing 
the BBB and entering 

the striatal nerve 
terminals before 

releassing dopamine to 
produce the functional 

outcome 

Striatal 
dopamine 

concentration 
(% of 

baseline) and 
Locomotor 

activity 

Plasma amphetamine 
(ng/mL) 

[28]* 

[D-
Penicillamine2,5]en
kephalin (DPDPE) 

Opioid 
pentapeptide 

Mice [FVB and 
mdr1a(2/2)] 

10 mg/kg i.v. 

The site of action in 
both strains was 

pharmacologically 
distinct from the central 

compartment 
 

Antinocicepti
on (% MPR) 

Dose normalized blood 
concentration (ng/ml per 

mg/kg) 
[329] 
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Diazepam Benzodiazepine 
12 humans 
(healthy) 

0.1 mg/kg and 0.2 
mg/kg iv infusion (four 

separate occasions) 
None described 

Digital 
Symbol 

Substitution 
Test Score 
(number 
correct) 

Plasma concentration of 
Diazepam (ng/ml) 

[301]* 

Diazepam Benzodiazepine 
3 humans 
(healthy) 

15, 30, and 50 mg  iv 
infusion at 10 mg/min 

Disequilibrium 
between plasma and 
effect compartment 

EEG drug 
effect (uV) 

Plasma concentration of 
Diazepam (ng/ml) 

[302]* 

Diclofenac 
Non-steroidal anti-
inflammatory agent 

30 rats 
0.56, 1, 1.8, 3.2, 5.6, 

10 mg/kg po 

Slow equilibrium 
kinetics between 

diclofenac 
concentration in the 

central and effect 
compartments 

Functionality 
index (%) 
(observed 

antinociceptiv
e effect) 

Blood concentration of 
diclofenac (ng/mL) 

[29] 

Diclofenac 
Non-steroidal anti-
inflammatory agent 

20 humans 
(healthy) 

50 mg and 100 mg 
Diclofenac-Na 
effervescent po 

Time delay between the 
plasma concentrations 
of diclofenac and the 

effect versus time 
profiles 

Analgesic 
effects using 

an 
experimental 
human pain 

model 

Blood concentration of 
diclofenac (ng/mL) 

[30] 

Dofetilide 
Antiarrhythmic 

agent 
10 humans 
(healthy) 

0.5 mg iv infusion over 
30 min 

Delay of drug 
penetration to the active 

site 
QTc (ms) 

Plasma concentration of 
dofetilide (ng/mL) 

[31] 

Eptastigmine 
Acetyl-

cholinesterase 
inhibitor 

8 humans 
(healthy) 

10, 20, 30mg po single 
dose 

Formation of active 
metabolites and/or a 

slow association to and 
dissociation from the 
enzyme in red blood 

cells 

Average 
plasma 

cholinesterase 
inhibition (%) 
Average RBC 
cholinesterase 
inhibition (%) 

Average eptastigmine 
plasma level (ng/mL) 

[32] 

Escitalopram 
Selective serotonin 
reuptake inhibitor 

Mice 
1 mg/kg single sub cut 

injection 
Slow permeation over 
the blood-brain barrier 

5-HTP Score 
Escitalopram serum 

concentration (ng/mL) 
[33] 

Fantofarone Calcium antagonist 
6 humans 
(healthy) 

100 mg and 300 mg po 
single dose 

Effect compartment 

PR Interval 
duration (ms) 
and Brachial 
Artery Flow 

(%) 

Fantofarone SR 33671 
Concentration (ng/ml) 

[303] 

(+/-)  
Felodipine  

Calcium channel 
blocker 

 18 humans (4 
healthy and 14 
with impared 

renal function) 

10 mg felodipine orally 
as steady state 

Slow equilibrium 
between drug and 

receptor 
 

Effect of 
Diastolic 

Blood 
Pressure (% 
reduction) 

 

Plasma Concentration 
(nmol/l) 

[34] 
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Fenretinide Synthetic retinoid  
50 children with 
neuroblastoma 

100-4000 mg/m2 po 
daily for 28 days 

Presence of an effect 
compartment (possibly 

the liver) 

Percentage 
reduction in 
retinol levels 

Fenretinide (µM) [35] 

(+/-) Fexofenadine H1-antagonist 
6 humans 
(healthy) 

60 mg po tablet 

Equilibration delay 
between the plasma 

concentration and effect 
site compartment 

QTc interval 
in 

milliseconds 

Fexofenadine 
concentration (ng/mL) 

[36] 

(+/-) Flurbiprofen 
Non-steroidal anti-
inflammatory agent 

8 rats 
10 mg/kg gastric 

intubation sustained 
release granules 

Intestinal permeability 
changes by the 

sustained release 
formulation is not only 

due to systemic 
availability of the 

NSAID since it may be 
also resulted from 

continuous exposure of 
the intestinal tract to the 

drug 

Change in 
intestinal 

permeability 

S-Flurbiprofen 
concentration (µg/mL) 

[37] 

Furosemide Loop diuretic 
26 humans 
(healthy) 

60 mg tablet po Delay of effect 
Diuresis 

(mL/min) 
Furosemide excretion rate 

(µg/min) 
[38]* 

Furosemide Loop diuretic 
4 humans 
(healthy) 

40 mg IR tablet po 

Inhibition of the 
reabsorption of sodium 
and chloride at Loop of 
Henle was delayed due 

to fast absorption 
resulting in rapid 

excretion 

Diuretic rate 
(ml/h) 

Excretion rate of 
furosemide (mg/h) 

[39]* 

Furosemide Loop diuretic 

11 humans, 
Middle Eastern 
Arabs (healthy) 

12 humans, 
Asian (healthy) 

40 mg tab po single 
dose 

Delay in drug action/ 
delay in equilibrium 

Furosemide 
excretion rate 

Plasma concentration of 
furosemide 

[40]* 
 

Furosemide Loop diuretic 
8 humans 
(healthy) 

10 mg iv infusion over 
10 minutes 

Delay between 
excretion rate and the 

diuretic effect 

Diuresis 
(mL/min) and 

Natiuresis 
(mmol/min) 

Furosemide excretion rate 
(µg/min) 

[41]* 

Indomethacin 
Non-steroidal anti-
inflammatory agent 

6 rats 
10 and 20 mg/kg po 

doses 
Effect-compartment 

model 

Mean urinary 
51Cr-EDTA 
excretion 

Indomethacin plasma 
concentration (mg/L) 

[42] 

Insulin (Regular 
and NPH) 

Peptide hormone 
16 humans 
(healthy) 

10 Units regular insulin 
given subcutaneously 

or 25 Units NPH given 
subcutaneously as 

single dose  

Delay between serum 
insulin concentrations 

and effect 

Glucose 
Infusion Rate 
(mmol/min) 

Insulin serum 
concentration (pmol/L) 

[304] 
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(+/-) 
Irbesartan 

Angiotensin II 
Receptor Blocker 

36 humans 
150 or 300 mg tablet 

po single dose 

Vasodilatory effect of 
irbesartan on the AT1 

receptor (effect 
compartment model) 

DBP (mmHg) 
SBP (mmHg) 

Plasma drug 
concentration of 

irbesartan (µg/mL) 
[43] 

(+/-) 
Irbesartan 

Angiotensin II 
Receptor Blocker 

10 dogs 
2 mg/kg or 5 mg/kg po 

dose (2 treatments 3 
weeks apart) 

Time needed for the 
drug distribution from 

the central 
compartment to AT1 

receptors 

Inhibitory 
effect on SBP 

(mmHg) 

Plasma drug 
concentration of 

irbesartan (ng/mL) 
[305]* 

Isosorbide dinitrate Antianginal agent 
11 humans 

(coronary artery 
disease) 

2 mg iv over 15 min, 
5 mg sublingual tablet 

Changes in blood 
pressure response lag 

behind changes in 
plasma Isosorbide 

dinitrate concentration 

Percent 
change in 
standing 
systolic 
pressure 

Plasma isosorbide 
dinitrate concentration 

(ng/mL) 
[44] 

(+/-) 
Isradipine 

Dihydropyridine 
Calcium channel 

blocker 

10 humans 
(healthy) 

1 mg iv infusion 
5 mg po solution 

5 mg tablet 
10 mg slow release 

formulation 

Possible active 
metabolite 

DBP fall 
(mmHg) 

Concentration of 
isradipine (ng/mL) 

[45] 

(+/-) Itraconazole Antifungal agent Rats 
5 & 40 mg/kg 5 min 

infusion 

Factors other than 
itraconazole determine 
the time course for the 
inhibition of CYP3A 

Hepatic 
availability 

Itraconazole concentration 
(µM) 

 
[46] 

Lafutidine 
H2-receptor 
antagonist 

5 humans 
(healthy) 

10 mg po tablet 

Equilibration delay 
between the plasma 

concentration and effect 
site 

Δ pH after 
postprandial 

dose 

Lafutidine plasma 
concentration (ng/mL) 

[47] 

Levosimendan Calcium sensitizer 
29 humans 
(congestive 

heart failure) 

0.2 µg/kg/min 6 hr 
continuous infusion or 
2 mg single po dose 

Delay of drug 
distribution to its 

cardiac site of action 

QS2i mean 
change (ms) 
sBP mean 

change 
(mmHg) 

dBP mean 
change 

(mmHg) 
HR mean 
changes 
(bpm) 

Levosimendan (ng/mL) [48] 

Levosimendan Calcium sensitizer  
10 humans 
(healthy) 

2 mg iv, tablet, 
capsule, SR tablet 

(single doses) 

 
Takes time for the drug 

to distribute from 
plasma to its cardiac 

site of action 
 

Δ QS2i (ms) 
Plasma concentrations of 

levosimendan 
[49] 
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Lignocaine 
(Lidocaine) 

Anesthetic 5 sheep 
50 mg, 75 mg and 

100mg iv bolus 

Lack of pseudo 
equilibrium between 

the drug concentrations 
in the blood and at the 

receptor sites 
responsible for drug 

action in the 
myocardium 

Percentage 
decreases of 
myocardial 
contractility 

Atrial lignocaine 
concentrations (µg/mL) in 

arterial blood and 
coronary sinus blood 

[50] 

Lisdexamfetamine 
Stimulant 

 
22 rats 

1.5 mg/kg ip D-
amphetamine base 

5 mg/kg ip D-
amphetamine base 

None described 

Striatal 
dopamine 

concentration 
(% of 

baseline) and 
locomotor 

activity 

Plasma amphetamine 
(ng/mL) 

Dopamine concentration 
in the striatum (% of 

baseline) 

[28]* 

(+/-) Lorazepam Benzodiazepine 
6 humans 
(healthy) 

0.057 mg/kg solution 
single oral dose 

The site of action of 
lorazepam is kinetically 

distinguishable from 
the plasma 

compartment and there 
is a distinct time lag 
between changes in 

plasma concentration 
and changes in CNS 

effects 

Subcritical 
tracking, sway 
open and digit 

symbol 
substitution 

Plasma lorazepam 
concentration (ng/mL) 

[51] 

(+/-) Lorazepam Benzodiazepine 
9 humans 
(healthy) 

2 mg bolus iv loading 
dose followed by a 2 

µg/kg/hr infusion for 4 
hrs 

Delay in equilibration 
of lorazepam between 
plasma and the site of 
pharmacodynamics 
action in the brain 

Percent beta 
EEG 

amplitude 
(change over 

baseline) 

Plasma lorazepam 
concentration (ng/mL) 

[52] 

Losartan 
Angiotensin II 

receptor blocker 
12 humans 
(healthy) 

50 mg po 

Distributional delay 
between the 

concentrations in 
plasma and effect site 

Pharmacodyn
amics (areas 

under the 
effect time 

profile:  DR-
1) 

Pharmacokinetics 
(concentration 

equivalents: nKi) 
[22] 

(+/-) Meperidine Opioid analgesic Sheep 
100 mg iv dose over 1 

second 
None described 

Contractility  
(% reduction) 

 
 

Concentrations of 
meperidine in 

myocardium and coronary 
sinus blood (mg/L) 

 
 

[53]* 
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Metformin 
Biguanide anti-
hyperglycemic 

22 humans 
(healthy) 

500 mg po 

Time delay between the 
change in plasma 

concentration and the 
drug effects 

Change % for 
baseline in 

plasma 
glucose 

concentration 

Plasma concentration of 
metformin (µg/mL) 

[54] 

Metocurine 
Neuromuscular 
blocking agent 

15 dogs 
5 pigs 

Brief, constant rate 
infusion 

Equilibration delay 
between drug 

concentration in the 
plasma and drug 

concentration at the site 
of effect 

% NM 
blockade 

Plasma metocurine 
(µg/mL) 

[55] 

Midazolam Benzodiazepine 
8 humans 
(healthy) 

0.1 mg/kg constant rate 
iv infusion for 1 min 

Equilibration effect-site 
delay 

Change in 
%SB 

Plasma midazolam 
concentration 

[52] 

Midazolam Benzodiazepine 
12 humans 
(healthy) 

0.03 mg/kg and 0.07 
mg/kg iv infusion (four 

separate occasions) 

Lag time to onset of 
peak effect 

Digital 
Symbol 

Substitution 
Test Score 
(number 
correct) 

Plasma concentration of 
Midazolam (ng/ml) 

[301] 

Midazolam Benzodiazepine 
3 humans 
(healthy) 

7.5, 15, and 25 mg  iv 
infusion at 5 mg/min 

Disequilibrium 
between plasma and 
effect compartment 

EEG drug 
effect (uV) 

Plasma concentration of 
Midazolam (ng/ml) 

[302] 

Molsidomine Vasodialator 
11 humans 

(CAD) 
4 mg po (single dose) Active metabolite 

Decrease in 
end-diastolic 

diameter 

Plasma concentration of 
molsidomine (µg/mL) 

[56] 

(+/-)  
Morphine 

Opioid analgesic Rats 

2.5 mg/kg 
Intraperitoneal 

 
2.5 mg/kg 
Nose drops 

Direct nose-to-CNS 
drug transport 
mechanisim 

Analgesic 
effect 

(%MPE) 
Morphine (ng/ml) [57]* 

(+/-) 
Morphine 

Opioid analgesic Rats 
14.0 mmol/kg 

morphine 

Delay of polar 
morphine crossing the 

BBB 

% Anti-
nociceptive 

response 
(using tail 

flick method) 

Plasma morphine 
(µmol/L) and Brain 
morphine (nmol/g), 

[58]* 

(+/-) 
Morphine 

Opioid analgesic Rats 

15 mg/kg morphine 
through intragastric 

administration (single 
dose) 

Disequilibrium between 
biophase and plasma 

compartments 

%MPE on 
MPR 

(mechanical 
pain response) 

 
 

Concentration of blood 
morphine (µg/L), 

concentration of CSF 
morphine (µg/L), both 

conjugated and 
unconjugated 

 

[59]* 
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Morphine Opioid analgesic Rats 
10 minute i.v. infusion 

at 4 mg/kg 
Effect compartment 

EEG 
amplitude 0.5-
4.5 Hz (V) 

Morphine blood 
concentration (ng/ml) 

[328]* 

Naproxen 
Non-steroidal anti-
inflammatory agent 

Rats (induced 
hepatitis) 

6 mg/kg po (single 
dose) 

Slow transport of 
naproxen from 

circulation to its site of 
action 

Protection 
(%) 

Plasma concentration of 
naproxen (µg/mL) 

[60] 

Nitroglycerin Vasodilator 
6 humans 
(healthy) 

10, 20, 40 µg/min iv 
infusions 

End product inhibition 
or saturable binding of 
nitroglycerin to blood 

vessels 

Nitroglycerin 
Css (ng/mL) 

Infusion rate (µg/min) [61] 

Nitroglycerin Vasodilator 4 dogs 
10, 20, 50, 70  µg/min 

iv infusion 
Active metabolites 

Systolic blood 
pressure 
decreases 
(mmHg) 

Nitroglycerin 
concentration (ng/mL) 

[62] 

NPH insulin 
Intermediate acting 

insulin 
6 humans 
(healthy) 

25 U single 
subcutaneous dose 

Delay between serum 
insulin concentrations 

and effect 

Glucose 
infusion rate 
(mmol/min) 

Measured serum 
concentration (pmol/L) 

[63] 

Pancuronium 
Neuromuscular 
blocking agent 

11 humans 
(undergoing 

elective 
surgery) 

2 or 4 µg/kg/min by 
i.v. infusion  

Effect compartment 

Degree of 
neuromuscula

r paralysis 
(%) 

Plasma concentration 
(µg/mL) 

[307]* 

Paroxetine 
Selective serotonin 
reuptake inhibitor 

Mice 
0.27 mg/kg single sub 

cut injection 
Slow permeation over 
the blood-brain barrier 

5-HTP Score 
Paroxetine serum 

concentration (ng/mL) 
[33] 

(+/-) Penbutolol Beta-blocker 
7 humans 
(healthy) 

40 mg po film-coated 
tablets 

Active metabolite 
formation 

Standardized 
antagonist 

concentration 
in plasma 
(IAN/KIAN) 

Standardized penbutolol 
concentration in plasma 

(Cpen/Kip) 
[64] 

Perindoprilat 
Perindopril (ACEI) 
active metabolite 

10 humans 
(CHF) 

4 mg po (single dose) Effect compartment 

Plasma 
converting 

enzyme 
activity 

(PCEA) and 
brachial 
vascular 

resistance 
(BVR) 

Plasma concentrations of 
perindoprilat (ng/ml) 

[310] 

Pimobendan Vasodilator 
8 humans 
(healthy) 

7.5 mg po 
5 mg iv 

Effect-compartment 
model 

 
 

% of maximal 
decrease in 

LVESD 
 

Pimobendan in plasma 
(ng/mL) 

[65] 



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 34 - 91, 2014 
 

 
 
82 

Pinacidil Vasodilator  
12 humans 
(healthy) 

25 mg tablet or capsule 
po once daily for 1 

week 
Time lag to equilibrium 

Mean HR 
(beats/min) 
Mean ΔHR 
(beats/min) 
Mean DBP 
(mm Hg) 

Mean ΔDBO 
(mm Hg) 

Mean extrapolated CP 
(ng/mL) 

[66] 

Pregabalin 
Analgesic/ 

anticonvulsant 
Rats 6mg/kg po Not active metabolite 

% protection 
MES 

Pregabalin ECF 
concentration (ng/mL) 

[67] 

Propofol General anesthetic Sheep 
100 mg iv infusion 

over 2 min 

Disequilibrium due to 
organ drug uptake 

following rapid drug 
administration. 

Depth of 
anesthesia (% 

baseline) 
 

CBF 
(mL/min) 

Arterial concentrations 
(µg/mL) 

Sagittal sinus 
concentrations (µg/mL) 
Arterial concentrations 

(µg/mL) 

[68]* 

(+/-) Propranolol Beta-blocker 6 humans 
3 x 20 mg PL po tablet 
or 60 mg LA po tablet 

Two distinct beta-
adrenoceptor binding 
sites on the surface 

membrane which differ 
in lipophilic 

characteristics 

Beta-blocking 
activity (%R) 

Plasma propranolol 
concentration (µg/mL) 

[304]* 

(+/-) Quinine Antimalarial 
6 humans 
(healthy) 

15 mg/kg po dose and 
15 mg/kg iv infusion 
administered over 6 

hours 

None described 
Hearing 

threshold shift 
(dB) 

Quinine plasma 
concentration (µmol/L) 

[309] 

(R)-3-[1-(2,6-
Dichloro-3-fluoro-
phenyl)-ethoxy]-5-
(1-piperidin-4-yl-
1H-pyrazol-4-yl)-
pyridin-2-ylamine 

(PF02341066) 

ATP-competitive 
small molecule 

inhibitor of cMet 
receptor tyrosine 

kinase 

Mice (GTL16 
gastric 

carcinoma or 
U87MG 

glioblastoma 
xenografts) 

Oral administration of 
8.5, 17, and 34 mg/kg;  

3.13, 6.25, 12.5, 25, 
and 50 mg/kg; and 

3.13, 6.25, 12.5, 25, 
and 50 mg/kg 

Slow distribution to 
tumors 

cMet 
phosphorylati
on response 

Plasma concentration of 
PF02341066 (ng/ml) 

[327] 

Ranitidine 
H2-receptor 
antagonist 

41 humans 
(renal 

impairment) 

Single 50 mg and 25 
mg iv doses  

Effect compartment Gastric pH 
Serum ranitidine 

concentration (ng/ml) 
[310] 

 

Regular insulin Peptide hormone 
10 humans 
(healthy) 

10 U single 
subcutaneous dose 

Delay between serum 
insulin concentrations 

and effect 

Glucose 
infusion rate 
(mmol/min) 

Measured serum 
concentration (pmol/L) 

[63] 

Remifentanil Opioid analgesic 
10 humans 
(healthy) 

3 µg/kg/min for 10 
minutes 

Equilibrium delay 
between arterial opioid 

concentration and 
concentration at the site 

of drug effect (brain) 

Spectral Edge 
(Hz) 

(opioid effect) 

Arterial remifentanil 
concentration (ng/mL) 

[69]* 
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Risperidone 
Antipsychotic 

agent 
9 humans 
(healthy) 

1 mg po (single dose) 

Drug moves from the 
plasma to the effect 

compartment after time 
delay 

EEG effect 
Plasma concentration of 

risperidone (ng/mL) 
[70] 

Roxithromycin 
Macrolide 
antibiotic 

Rats 
20, 40 mg/kg/h iv over 

90 min 

Delayed distribution in 
the effect site, 

potassium channels on 
ventricular myocytes 

Change in QT 
interval 
(msec) 

Plasma concentration of 
roxithromycin (µg/mL) 

[16] 

Sertraline 
Selective serotonin 
reuptake inhibitor 

Mice 
2.2 mg/kg single sub 

cut injection 
Slow permeation over 
the blood-brain barrier 

5-HTP Score 
Sertraline serum 

concentration (ng/mL) 
[33] 

Sevoflurane General anesthetic 
21 Humans 
(healthy) 

Inhalation initially at 
1% then increased by 
1% to a max of 8%. 
Then decrease to 1% 

Delay of drug 
concentration at the 

effect site 

QTc interval 
(m sec) 

End-tidal sevoflurane 
concentration (%) 

[71] 

Sinemet 
Anti-parkinson’s 

agent 
11 humans 

(Parkinson’s) 
Carbidopa 25mg/L-
DOPA 100mg po 

Takes time for L-
DOPA to distribute to 

the central nervous 
system 

Taps per 60 
seconds 

Levodopa (µg/mL) [72] 

Tacrolimus 
Calcineurin 

Inhibitor 
 

Rats 
Prograf single injection 

0.1 and 5mg/mL 
Delay in distribution of 
the drug to effect site 

Calcineurin 
inhibition (%) 

Tacrolimus concentration 
(ng/mL) 

[26] 

Tacrolimus 
Calcineurin 

inhibitor 
5 guinea pigs 

0.01 or 0.1 mg/hr/kg iv 
infusion 

The delay in 
distribution from blood 

to the ventricle 

Change in 
QTc (msec) 

Plasma tacrolimus 
concentration (ng/mL) 

Whole blood tacrolimus 
(ng/mL) 

[73] 

Telmisartan 
Angiotensin II 

receptor blocker 
48 humans 
(healthy) 

20, 40, 80mg po 

Delay and longer 
persistence of effect 
than expected, slow 

dissociation from the 
receptor 

Inhibition (%) 
Plasma concentration of 

telmisartan (mg/L) 
[74] 

Terfentanil 
Opioid analgesic 
(investigational) 

14 humans 
(healthy) 

4 µg /kg/min for a 
maximum of 30 
minutes or until 
maximum EEG 

changes occurred 
(adjusted by 

investigators) 

Effect compartment 
Spectral edge 

(95%) Hz 
Plasma terfentanil 

concentration (ng/ml) 
[318] 

Tesofensine active 
metabolite (M1) 

 serotonin–
noradrenaline–

dopamine reuptake 
inhibitor 

228 mice 
0.3 to 20 mg/kg iv and 

po 

 
 

Distribution of the 
molecules between the 
plasma and the central 

nervous system 
 

Inhibition (%) 
Tesofinsine plasma 

concentration (ng/mL) 
[75] 
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(+/-) Thiopental 
General anesthetic 

Barbiturate 
4 sheep 750 mg iv over 2 min 

Presence of effect 
compartment 

Maximum 
rate of change 

of left 
ventricular 
pressure (% 
reduction 

from baseline) 

Thiopental concentrations 
of arterial (µg/mL) and 
coronary sinus (µg/mL) 

[76] 

Tinzaparin 
Low molecular 
weight heparin 

6 dogs 4 mg/kg sC 
Delay in systemic 

availability 

Anti-factor 
Xa activity 

(IU/mL) 
(biological 

effect) 

Plasma concentration of 
heparin material 

[77] 

Triazolam Benzodiazepine 
10 humans 
(healthy) 

1 mg solution po 
(single dose) 

The site of action of 
triazolam is kinetically 
distinguishable from 

the plasma 
compartment and 

contains a distinct time 
lag between changes in 

the plasma 
concentration and 

changes in CNS effect 

Subcritical 
tracking, body 
sway and digit 

symbol 
substitution 

Plasma triazolam (ng/mL) [78] 

Trimoprostil 
Prostaglandin E2 

analog 
dogs 

250µg po capsule 
500µg po capsule 
250µg po solution 

Delay in equilibrium 
between plasma 

concentrations and 
concentrations at the 

site of action 

Mean % 
inhibition of 
gastric acid 
secretion 

Mean trimoprostil plasma 
concentrations (ng/mL) 

[79] 
 
 

(+/-) Verapamil 
Calcium channel 

blocker 
22 humans 
(healthy) 

Single dose i.v. 
infusion (0.15 – 0.22 

mg/kg) 

Time lag between 
plasma verapamil 
concentrations and 

maximal drug effect on 
AV conduction 

Change in PR 
interval (ms) 

Plasma verapamil 
concentration (ng/ml) 

[311] 

Zabiciprilat 
Zabicipril (ACEI) 
active metabolite 

6 humans 
(healthy) 

0.5 and 2.5 mg po 
zabicipril 

Effect compartment 

Plasma 
converting 

enzyme 
activity 

(PCEA) and 
brachial/femo
ral artery flow  

(BAF, FAF 
ml/min) 

Zabiciprilat plasma 
concentration (ng/ml) 

[312] 

+/- Indicates Racemic Drug with Enantiomers 

* Indicates Drug listed in both Table 2 and 3 
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Table 3. Clockwise Hysteresis 

Drug name 
Drug Class 
(Indication) 

Population / 
species studied 
(Comorbidities) 

Route of 
Administration 

Proposed 
mechanism(s) 

Effect(s) 
measured 

Site of  drug 
concentration measure 

Reference 

Alprazolam Benzodiazepine 
21 humans 
(healthy) 

10 mg SR po Tolerance 

Mean 
percentage of 
decrement in 
Digit-symbol 
substitution 
test scores 
(sedation 
scores) 

Venous blood samples 
from antecubital vein 

Mean alprazolam 
concentration 

[80] 
 

Alprazolam Benzodiazepine 
24 humans 
(healthy) 

2 mg po (two single 
doses 15 days apart) 

Tolerance 

Relative B-1 
activity (%), 
relative alpha 
activity (%), 
total number 
of responses, 

correct 
number of 
responses, 

activity (mm), 
drowsiness 

(mm) 

Alprazolam plasma 
concentration (ng/ml) 

[81] 

Amitriptyline 
Tricyclic anti-

depressant 
24 humans 
(healthy) 

75 mg po controlled 
drug delivery or IR 

tablets 

Tolerance and 
distributional 
characteristics 

Change in dry 
mouth from 

baseline 
(VAS), 

change in 
drowsiness 

from baseline 
(VAS) 

Amitriptyline plasma 
concentration (ng/mL) 

[82] 

(+/- ) 
Apomorphine 

Non-selective 
Dopamine Agonist 

10 humans 
(advanced 
Parkinson's 

disease with end 
of dose 

fluctuations) 

0.5,1,2,4 mg subcut 
Tolerance 

Redistribution from 
effect site 

CURS 
(Columbia 
University 

Rating Scale) 

Apomorphine (pMol/ml) [83] 

(+/-)  
Atenolol 

Beta-1 Selective 
Beta-Blocker 

10 rats 
Sustained release 

pellets 16mg/kg po 
single dose 

 
Tolerance induced by 

desensitization or 
production of regulatory 

substances 
 

Change in 
Systolic blood 

pressure 
(mmHg) 

Atenolol concentration 
(µg/mL) 

[14]* 
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Befloxatone 
Selective 

monoamine oxidase 
A inhibitor 

12 humans 
(healthy) 

5 mg capsules  bid po 
or 

10 mg capsules once 
daily po 

Compartment effect or 
an indirect response 

% of DHPG 
decrease from 

baseline 

Befloxatone concentration 
(ng/ml) 

[84] 

Bumetanide Loop Diuretic 
3 humans 
(healthy) 

1mg SR capsules po Tolerance 
Urine flow 
rate (ml/hr) 

Plasma concentration of 
bumetanide (ng/ml), 

urinary excretion rate of 
bumetanide (µg/h) 

[20]* 

Bumetanide Loop Diuretic 
3 humans 
(healthy) 

1 mg IR tablet po Tolerance 
Urine flow 
rate (ml/h) 

Urinary excretion rate of 
bumetanide (µg/h) 

[20]* 

Cocaine 
Anesthetic/Drug of 

abuse 
7 humans 

Smoked doses (10, 20, 
and 40 mg) 

Tolerance (acute) 

Mean change 
in systolic and 

diastolic 
pressure 
(mmHg)  

Plasma cocaine 
concentration (ng/ml) 

[299]* 

Cocaine Drug of abuse 
9 humans 
(healthy) 

Smoked dose (12.5, 
25, and 50 mg) and i.v. 

doses (8, 16, 32 mg) 

Rapid distribution of 
drug to the brain 

Mean change 
in systolic and 

diastolic 
pressure 

(BPM) and 
ratings of 

stimulated, 
high or drug 

liking 

Venous plasma cocaine 
concentration (ng/ml) 

[300]* 

Cyclohexylamine 
Sympathomimetic 

amine 
Rats 

30 or 60 mg/kg iv 
infused  over 20 min 

or 30, 60, or 120 
mg/kg infused over 40 

min 

Tolerance (acute) 

Mean Arterial 
Blood 

Pressure 
(mmHg) 

Plasma Cyclohexylamine 
(µg/ml) 

[323] 

Cyclohexylamine 
Sympathomimetic 

amine 
Humans 5 mg/kg po single dose Tolerance 

Mean Arterial 
Blood 

Pressure 
(mmHg) 

Plasma Cyclohexylamine 
(µg/ml) 

[324] 

D-amphetamine 
Stimulant 

 
22 rats 

1.5 mg/kg D-
amfetamine base IR 

None described 

 
 
 
 

Locomotor 
activity 

(min/15 min 
interval) 

 
 
 

Dopamine concentration 
in the striatum (% of 

baseline) 
[28]* 



J Pharm Pharm Sci (www.cspsCanada.org) 17(1) 34 - 91, 2014 
 

 
 
87 

Diazepam Benzodiazepine 
17 humans 
(healthy) 

0.28 mg/kg Tolerance 

Adjusted 
subcritical 

tracking (rms-
cm) 

Adjusted digit 
symbol 

substitution 
(sec) 

Diazepam plasma level x 
free fraction (ng/mL) 

[85]* 

 
Diltiazem 

Non-
dihydropyridine 
calcium channel 

blocker 

6 humans 
(healthy) 

120 mg po single dose 
(2x60 mg tablets) 

Tolerance 
PR change 

(msec) 
Diltiazem concentration 

(ng/ml) 
[86] 

 

  
Diltiazem 

Non-
dihydropyridine 
calcium channel 

blocker 

20 humans 
(healthy) 

180 mg SR capsule 
with wax matrix 
180 mg SR tablet 

Tolerance 

Changes in 
PQ interval 

(% of 
baseline) 

Diltiazem plasma 
concentration (ng/ml) 

[87] 

Distigmine 
Bromide 

Long acting acetyl-
cholinesterase 

inhibitor 
Rats 

0.3, 1, 3 mg/kg 
po (single dose) 

Time lag between 
arrival of distigmine at 
the site and the onset of 

its inhibitory effect. 

AChE activity 
(%) 

Plasma Concentration of 
distigmine (ng/ml) 

[88] 

Fentanyl Opioid analgesic Rats 

15 µg/kg 
Nasal (pressurized 
olfactory delivery 

device) 

Tolerance 
Analgesic 

effect 
(%MPE) 

Fentanyl (ng/ml) [57]* 

Furosemide Loop diuretic 
26 humans 
(healthy) 

60 mg CR po 
(two different 
formulations) 

Tolerance 
Diuresis 

(mL/min) 
Furosemide excretion rate 

(µg/min) 
[38]* 

Furosemide Loop diuretic 
8 humans 
(healthy) 

10 mg iv infusion over 
30, 100 and 300 

minutes 
Tolerance 

Diuresis 
(mL/min) and 

Natiuresis 
(mmol/min) 

Furosemide excretion rate 
(µg/min) 

[41]* 

Furosemide Loop diuretic 
4 humans 
(healthy) 

40 mg SR tablet po Tolerance 
Diuretic rate 

(ml/h) 
Excretion rate of 

furosemide (mg/h) 
[39]* 

Furosemide Loop diuretic 

11 humans, 
Middle Eastern 
Arabs (healthy) 

12 humans, 
Asian (healthy) 

40 mg tab po single 
dose 

Tolerance 

 
 

Chloride, 
sodium, 
calcium, 

magnesium 
and  

potassium 
excretion 

rates 
 

Furosemide excretion rate 
(µg/hr) 

[40]* 
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Furosemide Loop diuretic 
8 humans 
(healthy) 

40 mg iv after 
breakfast 

40 mg tablet po after 
breakfast 

Tolerance 
Urine flow 

rate (mL/min) 
Furosemide excretion rate 

(µg/min) 
[89] 

Glutamate-
oxaloacetate 
transaminase 

(GOT) 
Glutamate-
pyruvate 

transaminase 
(GPT) enzymes 

Enzymes that 
metabolize 
glutamate 

46 rats 

Single IV bolus 
injections of 

0.03 or 0.06 mg/kg 
GOT 

0.6 or 1.2 mg/kg GPT 

None described 
Blood 

glutamate 
(µM) 

Serum GOT or GPT 
(mg/L) 

[90] 
 

Heparin Anticoagulant 
9 humans 
(healthy) 

2000 IU continuous 
infusion over 40 min 

Tolerance 
- may be caused by 

depletion of endothelial 
TFPI sources 

Plasma 
concentration 
of TFPI (free 

and total) 
(ng ml-1) 

TFPI 
production 

rate (µg min-

1) 
 

Anti-IIa activity (U ml-1), 
a measure of heparin 

concentration 
[91] 

(+/-) 
Irbesartan 

Angiotensin II 
receptor blocker 

 

24 humans (mild 
to moderate 

hypertension) 

300 mg po once daily 
for 4 weeks 

Central-effect 
compartment 

Receptor antagonism 

Seated 
diastolic 

blood 
pressure 

Mean irbesartan 
concentration (ng/ml) 

[92]* 

(+/-) 
Meperidine 

Opioid analgesic Sheep 
100 mg iv dose over 1 

second 
Tolerance 

Contractility   
(% reduction) 

Concentrations of 
meperidine in 

myocardium and coronary 
sinus blood (mg/L) 

[53]* 

(+/-) 
Methylphenidate 

Central Nervous 
System Stimulant 

4 rats 
2, 5, 10 mg/kg iv 

(three doses) 
Tolerance or 

Desensitization 
Dopamine 

ratio to basal 

Methylphenidate 
concentration in dialysate 

(ng/ml) 
[93] 

Metolazone 
Thiazide-related 

diuretic 

5 humans (renal 
transplant 
patients) 
5 humans 
(creatinine 
clearance 

5 mg 
Tolerance to diuretic 

effect 

Sodium 
Excretion rate 

(meq/min) 

Urinary metolazone 
excretion rate (ng/min) 

[94] 

(+/-)  
Morphine 

Opioid analgesic Rats 

2.5 mg/kg 
Nasal (pressurized 
olfactory delivery 

device) 
 

Tolerance 
Analgesic 

effect 
(%MPE) 

Morphine (ng/ml) [57]* 
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(+/-) 
Morphine 

Opioid analgesic 280 rats 

15 mg/kg through 
intragastric 

administration 
(single dose) 

Tolerance due to drug 
induced desensitization 
of receptors or counter 
regulatory substances 

% MPE on 
TPR (thermal 

pain 
response) 

Concentration of blood 
morphine (µg/L), and 
concentration of CSF 
morphine (µg/L), both 

conjugated and 
unconjugated 

[59]* 

Nefopam 
Non-opioid 
analgesic 

24 humans 
(healthy) 

20 mg po and iv 
(single doses) 

None described 
Visual analog 
scale drowsy 

(mm) 

Nefopam plasma 
concentration (nM), 
desmethyl-nefopam 

plasma concentration 
(nM) 

[95] 

(+/-) Nicotine Stimulant 
8 humans 
(healthy) 

2.5 µg/kg/min iv for 
30 min, 120 min, and 

210 min 
Tolerance 

Heart rate 
(BPM) 

Blood nicotine 
concentration (ng/ml) 

[315] 

Pancuronium 
Neuromuscular 
blocking agent 

5 humans 
(healthy) 

4 mg iv Effect compartment 
% twitch 

depression 
Pancuronium 

concentration (nmol/L) 
[316]*  

Piritramide 
Synthetic opioid 

analgesic 

24 humans 
(post-abdominal 

surgery) 

7 µg kg-1 min-1 up to 
maximum 0.2 mg/kg 

Equilibration delay of 
piritramide between 

plasma concentration 
and effect site 

Pain intensity 
VAS 

measured (0-
100) 

Pain intensity 
VAS 

predicted 
(0-100) 

Piritramide  concentration 
measured (µg/L) 

Piritramide  concentration 
measured (µg/L) 

[96] 

Propofol 
General Anesthetic 

 
18 rats 150 mg/kg·h 

Delay of equilibrium of 
blood and effect site 

Electroenceph
alographic 
amplitude 

Propofol blood 
concentration 

[97]* 

Propofol General Anesthetic Rats 

30 mg/kg in 5 min iv 
bolus infusion and 150 
mg/kg iv continuous 

infusion (5 hrs) 
-both doses tested as 

1% in Intralipid® 
10%, 1% in 

Lipofundin® and 6% 
in Lipofundin® 

emulsions 

Hypothetical multiple 
compartments 

EEG effects 
Propofol blood 

concentration (µg/ml) 
[98]* 

(+/-) Propranolol Beta-blocker 
8 humans 

(detoxified 
alcoholics) 

80 mg po Acute tolerance  

 
Degree of 

beta-
blockade, 
changes in 

heart rate  (%) 
 

Propranolol plasma 
concentration (ng/ml) 

[317]* 
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Remifentanil 
Synthetic opioid 

analgesic 
10 humans 
(healthy) 

3 µg/kg/min for 10 
minutes 

Equilibration between 
arterial drug 

concentration and the 
effect site occurs more 

rapidly than equilibrium 
between arterial drug 

concentration and 
venous drug 

concentration 

Spectral edge 
(Hz) 

(opioid effect) 

Venous remifentanil 
concentration (ng/mL) 

[69]* 

Scopolamine 
Anticholinergic 

 
90 humans 
(healthy) 

0.5 mg iv infusion 
over 15 min. 

Delayed distribution to 
effect compartment 

Saccadic peak 
velocity (°s-1) 
VAS alertness 

(mm) 

Plasma scopolamine 
concentration (pg ml-1) 

[99] 

Sodium 
dichloroacetate 

Acetic acid 
analogue  

37 humans 
(healthy) 

30 mg/kg, 60 mg/kg or 
100 mg/kg iv infusions 

over 30 min 

1) Inhibition of PDH-
kinase could be 
reversible at low 

concentrations of DCA, 
becoming 

irreversible at high 
concentration 

2) PDH-kinase binding 
of DCA may be more 
rapid than dissociation 

3) There may be 
Substantial redundancy 
in the amounts of DCA 

bound compared 
with that needed for 

maximal effect, or 4) A 
combination 

of these fairly common 
pharmacological 

phenomena 

Serum lactate 
concentration 

(mM) 

Serum Sodium 
dichloroacetate 

concentration (µg/mL) 
[100] 

Spiraprilat 
Active metabolite of 

spirapril (ACEI) 
8 humans (CHF) 6 mg po of spirapril None described 

 
 
 

Pulmonary 
capillary 
wedge 

pressure 
(mmHg) 

 
 
 

Spiraprilat plasma 
concentration (ng/ml) 

[330] 
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(+/-) Temazepam Benzodiazepine 
11 humans (end-

stage renal 
disease) 

30 mg capsule po (two 
single doses) 

Tolerance- discrepancy 
between plasma t1/2 
and binding affinity 

Sedation 
score 

NRSS Nurse 
rated sedation 
score (range 

0- wide 
awake to 4- 

sleeping 
soundly, not 
awakened by 

blood 
sampling) 

Temazepam concentration 
(ng/ml) 

[101] 

(+/-)  
Zopiclone 

Short-acting 
hypnotic 

 

10 humans 
(healthy) 

7.5 mg po single dose 
Tolerance or pseudo-

tolerance 

Saccadic peak 
velocity and 

Digital 
symbol 

substitution 
test 

(sedation 
scores) 

Blood sample from 
forearm vein zopiclone 

(ng/ml) 
[102] 

+/- Indicates Racemic Drug with Enantiomers * Indicates Drug listed in both Table 2 and 3
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