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ABSTRACT - Purpose: The natural products resveratrol and trans-ε-viniferin have been reported to have 
many beneficial effects, which include the enhancement of cognition and memory. There have been no studies 
which have reported the effects of these compounds on the different GABAA receptor subtypes and this study 
aimed to address this. Methods: The effects of both resveratrol, and its dimer, trans-ε-viniferin, have been 
investigated on different GABAA receptor subtypes expressed in Xenopus laevis oocytes, using the two-
electrode voltage clamp technique. Results: Resveratrol induced a current of 22 ± 3.53 nA in the α1β2γ2L 

subtype of the GABAA receptor (but not in the α5β3γ2L and α2β2γ2L subtypes) when applied alone. It also 
positively modulated the GABA-induced current (IGABA) in α1β2γ2L receptors, in a dose-dependent manner 
(EC50 58.24 μM). The effects of resveratrol were not sensitive to the benzodiazepine antagonist flumazenil. 
trans-ε-Viniferin exhibited a different pattern of activity to resveratrol; it alone had no effect on any of the 
subtypes, but it did negatively modulate the GABA-induced current (IGABA) in all three subtypes. The greatest 
inhibition was found in the α1β2γ2L subtype (IC50 5.79 μM), with the inhibition in the α2β2γ2L (IC50 of 19.08 
μM) and α5β3γ2L (IC50 of 21.05 μM) subtypes being similar. The effects of trans-ε-viniferin in α1β2γ2L and 
α2β2γ2L receptors were also not sensitive to the benzodiazepine antagonist flumazenil while, in the α5β3γ2L 

subtype the effect was not sensitive to the inverse agonist L-655,708, indicating different binding sites for this 
molecule. Conclusions: The results of the present study indicate that both resveratrol and trans-ε-viniferin 
modulate the GABA-induced current in different ways, and that trans-ε-viniferin may be a lead compound for 
the discovery of agents which selectively inhibit the GABA-induced current in α1-containing subtypes.  
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
____________________________________________________________________ 
 
INTRODUCTION 
 
GABAA receptors are membrane bound 
pentameric chloride selective ion channel 
composed of α, β, and γ subunits. There are 19 
genes for GABAA receptors, which include 16 
subunits (α1-6, β1-3, γ1-3, δ, ρ1-3, θ, π, ε) that are 
assembled as the different subtypes of GABAA 

receptors (1). These differences in the 
combinations of receptor subunits result in 
variations in the biophysical and pharmacological 
properties of the receptors. The distribution of 
these receptors in the body also differs, with 
GABAA receptors being widely distributed in the 
CNS. Most importantly, agonist affinity, receptor 
kinetics, and sensitivity to a variety of clinically 
important drugs (including benzodiazepines and 
general anaesthetics) are determined by the 
composition of the subunits (2, 3). For example, 
receptors that are composed of α1-3, α5, γ2, and β2 or 
β3 are sensitive to the benzodiazepines, whereas 
receptors composed of α4 or α6, or δ instead of γ2, 
are not sensitive to this class of drugs (4). Simple 

changes in the receptor subunit combinations can 
lead to dramatically different activities; for 
example, receptors containing α1β2γ2 mediate the 
sedative and anticonvulsant effects of diazepam, 
α2βγ2- and α3βγ2-containing receptors are 
responsible for the anxiolytic and muscle relaxing 
effects of this drug, and α5βγ2-containing receptors 
may mediate learning and memory processes (5). 
The involvement of α5-containing GABAA 
receptors in cognition and memory is supported by 
both mutational and pharmacological studies on 
rats (6, 7), so these receptors have become 
attractive targets for the development of memory 
enhancing drugs (8). 

Vitis vinifera (common grape vine) belongs to 
the family Vitaceae and the extracts and pure 
compounds from this plant exhibit a variety of  
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biological activities, including effects on different 
neurological disorders. Resveratrol (3,5,4'-
trihydroxy-trans-stilbene), a phytoalexin from this 
plant, has been reported to improve scopolamine- 
but not mecamylamine-induced memory 
impairment in rats, in both passive avoidance and 
Morris water maze tests. The interaction of 
resveratrol with muscarinic cholinergic receptors 
has also been suggested by the same authors (9). 
The neuroprotective effects of resveratrol have 
been reported by a number of studies which 
include the protection of dopaminergic neurons 
from MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) induced toxicity in mice. It has 
also been reported to reduce the effect of 
acetylcholine esterase (AChE), with subsequent 
improvement of memory impairment in diabetic 
rats (10). The effect of resveratrol on the level of 
different neurotransmitters during 
ischemia/reperfusion in rats has been reported by 
Li et al., who found that it significantly increased 
the basal extracellular level of GABA (11). 

The suppression of β-amyloid (Aβ) fibril 
formation is considered to be an important target 
for the treatment of Alzheimer’s Disease (AD) and 
ε-viniferin, the dimer of resveratrol, and resveratrol 
glucoside (at concentrations of 5 - 10 μM) have 
been reported to inhibit both fragment Aβ (25-35) 
and full length (Aβ (1-40) and Aβ (1-42)) peptide 
aggregation in vitro (12, 13). trans- ε-viniferin 
isolated from Vitis amurensis, at a concentration of 
5 μM, also protects cultured cortical neuronal cells 
from glutamate-induced neurotoxicity (14). 

The effect of resveratrol on different ligand-
gated ion channels has been studied by Lee et al. 
(15, 16) and it has been found that it potentiates the 
5-hydroxytryptamine (5-HT) induced current in 
the 5-HT3 receptor, with an EC50 value of 28.0 ± 

2.4 µM. At the same time, it inhibits the GABA-
induced current in the GABAC ρ receptor 
expressed in Xenopus laevis oocytes, with an IC50 

value of 28.9 ± 2.8 µM. Resveratrol also reported 
to inhibit 1 μM GABA-induced current at human 
ρ1 GABAC receptors with an IC50 value of 72 μM 
(17).To date, however, no studies have been 
reported on the effects of resveratrol on the 
different subtypes of GABAA receptor. In the 
present study, the effects of both resveratrol and 
trans-ε-viniferin (Figure 1) have been examined in 
three different GABAA receptor subtypes. 
 
METHODS 
 
Materials 
Human α1, α5, β2, β3 and γ2L DNA in pcDM8 
(Invitrogen, CA, USA) were a kind donation from 
Dr Paul Whiting (Merck, Sharpe and Dohme 
Research Labs, Harlow, UK). Xenopus laevis were 
obtained from NASCO, Fort Atkinson, 
Wisconsin, USA and housed in the Department of 
Veterinary Science, University of Sydney. DMSO, 
GABA, and zinc sulphate were purchased from 
Sigma Aldrich Chemical Co. Ltd. (St Louis, MO, 
USA). trans-ε-Viniferin was purchased from Cfm 
Oskar Tropitzsch GmbH, Germany and resveratrol 
was purchased from Sigma Aldrich, Australia. 
Flumazenil and L655,708 were purchased from 
Tocris Bioscience, Minneapolis, USA. The 
compounds used were dissolved in DMSO and any 
further dilution was made with ND96 (96 mM 
NaCl, 2 mM KCl, 1 mM MgCl2.6H2O, 1.8 mM 
CaCl2, 5 mM HEPES, 2.5 mM sodium pyruvate, 
0.5 mM theophylline, 50 μg/mL gentamycin, pH 
7.5) buffer before use (all drug solutions were 
standardised to contain 0.8% DMSO). 

 
 

Figure 1. Structures of resveratrol and trans-ε-viniferin.
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Oocyte preparation 
After surgical removal, the ovarian lobes of female 
Xenopus laevis were rinsed with oocyte releasing 
buffer 2 (OR2; 82.5 mM NaCl, 2 mM KCl, 1 mM 
MgCl2.6H2O, 5 mM HEPES, pH 7.5), then 
suspended for 2 hours in collagenase (2 mg/ml in 
OR2, Bohringer Manheim, Germany) to allow the 
separation of oocytes from connective tissues and 
follicular cells. The separated oocytes were then 
washed several times with ND96 buffer solution. 
The oocytes were then sorted under a microscope 
in order to obtain mature and healthy cells with 
clear animal / vegetal pole divisions and without 
any spots or markings on the surface. Before 
injection, the oocytes were stored in a refrigerator 
at 2-8 0 C.  
 
cRNA preparation of different GABAA 
receptors and microinjection 
Human α1, α2, α5, β2, β3 and γ2L cDNAs subcloned 
in pcDM8 were linearised using the restriction 
enzyme NOTI, 3 μL buffer (50 μM Tris-HCl (pH 
7.5), 10mM MgCl2, 100 mM NaCl, 0.1 mg/mL 
BSA). Linearised plasmids containing α1, α2, α5, β2, 
β3 and γ2L cDNAs were transcribed using T7 RNA 
polymerase and capped with 5,7-methylguanosine 
using a ‘‘mMESSAGE mMACHINE’’ kit 
(Ambion, Austin, TX, USA). Reaction buffer (2 
μL), NTP/CAP nucleotide bases (10 μL) and 
enzyme mixture (2 μL) were added to linearized 
DNA and incubated at 37 0C for 1.5 h. The 
synthesized RNA was then purified and quantified. 
The quantification of RNA was carried out by 
heating 2 μL RNA at 94 0C for 1 min, then running 
it on a 0.9 % agarose electrophoresis gel containing 
1 μL ethidium bromide (5 mg/mL) to check the 
integrity of the RNA. This was further quantified 
using a Thermo Scientific NanoDrop 1000 
Spectrophotometer and the samples were 
combined to achieve the desired combinations and 
ratio of subunits. Forty nanograms per 50 nl of a 
1:1:2 mixture of (α1, α2, or α5): (β2 or β3):γ2L cRNAs 
were injected using a 15 to 20 µM diameter tip 
micropipette (micropipette puller, Sutter 
Instruments, USA) into the cytoplasm of individual 
defolliculated oocytes using a Nanoject injector 
(Drummond Scientific, Broomali, PA, USA). The 
oocytes were incubated in buffer solution at 18 0 C 
in an orbital shaker with a once daily change of 
buffer. 
 
Oocyte recording 
Two-three days after injection, the two-electrode 
voltage clamp technique was performed to 
measure the receptor activity with Digidata 1200, 
Geneclamp 500 amplifier (Axon Instruments, 

Foster City, CA, USA). Microelectrodes were 
made by pulling glass capillaries (0.94 mm 
I.D.x1.2 mm O.D.; Harvard Apparatus Ltd., Kent, 
UK) using an automated micropipette puller (PUL-
100, World Precision Instruments, Inc.) filled with 
3M potassium chloride solution. 

Oocytes were placed in the oocyte bath 
chamber, impaled by electrodes with resistance of 
less than 10 MΩ (usually 0.5 to 2.0 MΩ). In the 
oocyte chamber, the cells were always perfused 
with ND96 buffer solution. The current traces 
elicited due to the application of drugs and / or 
GABA were recorded using a Mac Lab 2e recorder 
(ADInstruments, Sydney, NSW, Australia) and 
Chart Version 5.1 program. For all the 
electrophysiological experiments, the oocytes 
were clamped at a holding potential of -60 mV. 
 
Data analysis 
Data analysis was performed as described 
previously, with slight modifications (18). The 
analysis was performed on GraphPad Prism 
version 5; concentration–response curves were 
obtained from the currents recorded from the 
applied GABA concentrations (EC10 for 
potentiation and EC50 for inhibition) in the 
presence of range of resveratrol and trans-ε-
viniferin concentrations. The data are expressed as 
a percentage of the averaged maximum current 
(Imax) and fitted by least squares non-linear 
regression with the empirical Hill equation. 
 

I/Imax = [A]nH/ (ECnH
50+ [A]nH) 

 
where [A] is the agonist concentration, nH is the 
Hill coefficient and EC50 is the effective 
concentration that evoked a 50% of Imax response. 
Similarly, inhibition curves were assembled from 
the peak currents recorded from the range of ε-
viniferin concentrations applied in the presence of 
a fixed concentration (EC50) of GABA. The data 
were expressed as a percentage of the peak current 
(Imax) obtained from the application of the GABA 
concentration alone. The concentration that 
inhibited 50% of Imax (IC50) was estimated from 
fitting the data with the Hill equation, where the 
concentration of the ε-viniferin is substituted for 
the agonist concentration. Unless otherwise stated, 
parameters were calculated from individual 
oocytes and then averaged. 
 
RESULTS  
 
Resveratrol 
The addition of the maximal concentration of 
GABA (1 mM) induced a large inward current 
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(IGABA) in all three subtypes of receptors, 
confirming the expression of the respective 
GABAA receptors by the oocytes. This current was 
not inhibited by either 10 or 100 μM solutions of 
zinc chloride, indicating the incorporation of the 
γ2L subunit(19). Resveratrol (Figure 1), at a 
concentration of 100 μM induced a slight current 
(22 ± 3.53 nA) (Figure 2B) at α1β2γ2L, but not at the 
α2β2γ2L and α5β3γ2L GABAA receptor subtypes. 
Resveratrol at 100 μM concentration did not 
modulate the GABA-induced current at the α2β2γ2L 
and α5β3γ2L subtypes of GABAA receptor but 
potentiated the EC10 (3 μM) GABA-induced 
current at α1β2γ2L by 126 ± 15 %. In a dose-
response study, when applied with a fixed dose of 
GABA (EC10, 3 μM), resveratrol positively 
modulated the GABA-induced current (62 ± 2.35 
nA) in a concentration dependent manner, with an 
EC50 of 58.24 μM (Figure 2A). Moreover, the 
effect of resveratrol was not sensitive to the 
benzodiazepine antagonist, flumazenil (Figure 3), 
indicating that it does not interact with the high 
sensitivity benzodiazepine binding site, which is 
sensitive to flumazenil and is located at the 
interface of the α-γ subunits (20, 21). 
 
trans-ε-Vinferin 
trans-ε-Viniferin (Figure 1), at a concentration of 
100 μM, did not induce any current at all three 

subtypes of GABAA receptors when applied alone, 
but there was a small outward current for trans-ε-
viniferin on the α5β3γ2L subtype (Figure 4F) of the 
GABAA receptor. However, it did negatively 
modulate the GABA-induced current (IGABA) at all 
three subtypes. In dose-response experiments, 
involving co-application with the EC50 GABA 
concentration, trans-ε-viniferin inhibited the 
GABA-induced current in a concentration 
dependent manner. The highest inhibitory potency 
was observed at the α1β2γ2L subtype, with an IC50 
value of 5.79 μM Figure 4 (A-B),, followed by the 
α2β2γ2L (IC50 19.08 μM) Figure 4 (C-D),  and then 
the α5β3γ2L (IC50 21.05 μM) (Figure 4 (E-F)). 

Further studies showed that the effect of trans-
ε-viniferin on both the α1β1γ2L (Figure 5A), and 

α2β2γ2L subtypes is not affected by the 
benzodiazepine antagonist flumazenil (Figure 
5B), indicating that it does not interact with the 
high affinity benzodiazepine binding site (which is 
sensitive to flumazenil). In addition, the effect of 
trans-ε-viniferin on the α5β3γ2L subtype is not 
sensitive to L-655,708, a preferential inverse 
agonist of this subtype of GABAA receptor (Figure 
5C) (22). 
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Figure 2. A. Dose-response curve for the effect of resveratrol on the GABA EC10 (3 μM) response at α1β2γ2L GABAA 
receptors. B. Typical traces for the positive modulation of the GABA EC10 (3 μM) induced current by different 
concentrations of resveratrol. 
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Figure 3. Traces showing that the positive modulation of the EC10 (3 μM) GABA-induced current by resveratrol is 
insensitive to the benzodiazepine antagonist flumazenil. 
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Figure 4. Dose-response curve and typical traces showing the effect of trans-ε-viniferin on the GABA-induced current 
in different subtypes of GABAA receptors; A-B α1β2γ2L , C-D α2β2γ2L, E-F α5β3γ2L. Data for all dose-response curves are 
the Mean ± SEM (n=3-4 oocytes). 
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Figure 5. Effect of flumazenil on trans-ε-viniferin inhibition of EC50 GABA-induced current in the α1β2γ2L  (A) and  
α2β2γ2L subtype (B). C. Effect of L-655,708 on trans-ε-viniferin-induced current on α5β3γ2L. 
 
 
DISCUSSION 
 
γ-Aminobutyric acid (GABA) is the major 
inhibitory neurotransmitter in the central nervous 
system (CNS), and GABAergic neurons constitute 
17-20% of all neurons in the brain (23). There are 
three different types of GABA receptors, which are 
classified as GABAA, GABAB, and GABAC 
(GABAρ) based upon their subunit composition, 
gating properties, and pharmacological profiles. 
GABAA and GABAC are ligand-gated ion channel 
receptors (LGICs), whereas GABAB are G-protein 
coupled receptors (24, 25). GABAA receptors are 
an important target for anxiolytics, sedative, 
hypnotics, anticonvulsant and muscle relaxants 
(26) and, in spite of having a range of drugs for the 
treatment of anxiety, there is an increased demand 
for herbal preparations for the treatment of anxiety, 
depression, insomnia etc. (27). In the present study, 
we report the differential effects of resveratrol, and 
its dehydrodimer trans-ε-viniferin, which was 
originally obtained from plant, on different 
GABAA receptor subtypes expressed in Xenopus 
laevis oocytes. The effects of resveratrol on ligand 
gated ion channels have been investigated by many 
researchers and it has been reported that the neuro-
protection by resveratrol in a cerebral ischaemia 
model is a result of its interaction with NMDA 
receptors (28). Resveratrol has been found to 
inhibit the acetylcholine-induced current in rat α3β4 
nicotinic acetylcholine receptors (IC50 25.9 μM), 

inhibit the GABA-induced current in GABAC 
receptors, and to potentiate the 5-HT induced 
current in 5-HT3A receptors (15, 16, 29). It also 
inhibits the effect of GABA (1 μM) at the human 
ρ1 GABAC receptor as a non-competitive inhibitor 
with an IC50 of 72 μM (30). In the current study, 
resveratrol had no direct effect on the different 
subtypes of GABAA receptors, except α1β2γ2L, 
when applied alone. It did, however, positively 
modulate the GABA-induced current at the α1β2γ2L 

subtype (but not the α2β2γ2L and α5β3γ2L subtypes) 
in a dose-dependent manner. It appears, therefore, 
that the α1 subunit is essential for the modulatory 
effects of this compound on GABAA receptors. 
Moreover, the effect of resveratrol is not sensitive 
to the benzodiazepine antagonist flumazenil, 
indicating that its binding site is distinct from that 
of high affinity benzodiazepine binding site. In the 
previous studies, similar data has been obtained 
where resveratrol had no influence on the positive 
modulation of  diazepam. At the same time, there 
was no significant effect on the effect of higher (40 
μM) concentration of GABA at α1β2γ2L receptors 
(31). In the present study, resveratrol positively 
modulated the current induced by a lower (3 μM) 
GABA concentration. 

Although both resveratrol and trans-ε-
viniferin are present in comparable amount in 
grapes (32), the effects of trans-ε-viniferin have 
not been well studied (33), despite it having been 
found to be more active than resveratrol in a range 

500 nA 

120 s 

EC50 (30 µM) 
GABA 

100 µM viniferin  

10 μM L655,708 



J Pharm Pharm Sci (www.cspsCanada.org) 18(4) 328 - 338, 2015 
 

 

 
336 

of biological assays. For example, it is more active 
than resveratrol in inducing the relaxation of rat 
thoracic aorta preparations, has greater in vitro 
antioxidant activity, is a more potent inhibitor of 
platelet-derived growth factor-induced cell 
proliferation, and induces nitric oxide generation in 
vascular smooth muscle cells (VSMCs) (34-36). A 
number of reports on the modulatory effect of 
resveratrol on ion channel receptors have been 
published (15, 16), however, to date, no reports on 
the modulatory effects of trans-ε-viniferin have 
been published. In the present study, trans-ε-
viniferin, the dehydrodimer of resveratrol, has 
been shown to negatively modulate the GABA-
induced current (IGABA) in all three subtypes of 
GABAA receptor in a dose-dependent manner. The 
effect of trans-ε-viniferin on the α1β2γ2L and α2β2γ2L 

subtypes is also not sensitive to benzodiazepine 
antagonist flumazenil, while the effects on the 
α5β3γ2L subtype are not sensitive to the inverse 
agonist L-655,708, indicating that this compound 
does not interact with the high affinity 
benzodiazepine binding site. 

The α5  subunit containing receptors are mainly 
located in the hippocampus, where they mediate a 
tonic chloride leak current and contribute a slow 
component to GABAergic inhibitory synaptic 
currents. The inhibitory effect of these receptors on 
the excitation of hippocampal neurons is thus 
partly responsible for their association with 
cognition, learning and memory. These receptors 
have thus become an important target for different 
pathological conditions including age related 
dementia, schizophrenia, and  Down syndrome 
(37). Moreover, it has also been reported that the 
chronic treatment of TS mice (mouse model of 
Down syndrome) with an α5 negative allosteric 
modulator (NAM) reversed their deficit in spatial 
learning and memory (38). In the present study, 
trans-ε-viniferin negatively modulated the GABA-
induced current at α5β3γ2L GABAA receptor with an 
IC50  of 21.05 μM, which indicate the potential of 
this molecule for the development of drug for the 
treatment age related dementia, Down syndrome 
and schizophrenia. 
      In conclusion, despite the structural similarity 
between resveratrol and trans-ε-viniferin, these 
compounds modulate the GABA-induced current 
in GABAA receptors in different ways. The effects 
of trans-ε-viniferin are subtype selective but, in 
order to increase the selectivity, particularly 
selectivity towards α5β3γ2L GABAA receptor, 
analogues of this compound should be designed 
and, in addition to being tested on GABAA 
receptors in vitro, should be tested in animal 
models.  
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