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ABSTRACT - Nanotechnology has opened a new horizon of research in various fields including applied physics, 
chemistry, electronics, optics, robotics, biotechnology and medicine. In the biomedical field, nanomaterials have 
shown remarkable potential as theranostic agents. Materials which are considered inert are often used in 
nanomedicine owning to their nontoxic profile. At nanoscale, these inert materials have shown unique properties 
that differ from bulk and dissolved counterparts. In the case of metals, this unique behavior not only imparts 
paramount advantages but also confers toxicity due to their unwanted interaction with different cellular processes. 
In the literature, the toxicity of nanoparticles made from inert materials has been investigated and many of these 
have revealed toxic potential under specific conditions. The surge to understand underlying mechanism of toxicity 
has increased and different means have been employed to overcome toxicity problems associated with these 
agents. In this review, we have focused nanoparticles of three inert metallic materials i.e. gold, silver and iron as 
these are regarded as biologically inert in the bulk and dissolved form. These materials have gained wider research 
interest and studies indicating the toxicity of these materials are also emerging. Oxidative stress, physical binding 
and interference with intracellular signaling are the major role player in nanotoxicity and their predominance is 
highly dependent upon size, surface coating and administered dose of nanoparticles. Current strategies to 
overcome toxicity have also been reviewed in the light of recent literature. The authors also suggested that uniform 
testing standards and well-designed studies are needed to evaluate nanotoxicity of these materials that are 
otherwise considered as inert. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________ 
 
INTRODUCTION 
 
Nanotechnology has emerged as one of the exciting 
and novel field of science in last few decades. The 
history of nanoparticles traces back to ninth century 
when metallic  nanoparticles, not realized at that 
time, were used as paint to decorate ports and 
windows, making them distinguishable among other 
subjects (1, 2) . Nanoparticles are the particles with 
size less than 100 nm in any single dimension (3). 
This definition is based on the fact that particles in 
this size range possess unique structural properties 
that differ significantly from their bulk and dissolved 
counterparts. However, this definition may not serve 
well for nanoparticles in biomedical applications 
where pharmacological and chemical aspects are of 
pivotal consideration along with size and structure. 
Nanoparticles that show improved characteristics 

with size below 100 nm are used majorly in 
diagnostic, like quantum dots, metal nanoclusters 
and paramagnetic particles while those for 
therapeutic applications has size usually above 100 
nm like micelles, dendrimers, liposomes and 
polymersomes all loaded with drug (4, 5). 
Nanoparticles for drug delivery are designed to carry 
payload in desired temporal and spatial 
specifications. 
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They may be considered acceptable with size up to 
300 nm which is sufficiently small to avoid 
reticuloendothelial (RES) systems and blocking of 
blood vessels when administered intravenously (6). 
They present immensely large surface area and 
surface modification opportunities which has made 
them an attractive tool to deliver bioactive molecules 
specifically to target pharmacological sites in body 
(7, 8). In some cases, specific characteristics may be 
imparted to drug delivery nanoparticles e.g. 
lipophilic surface modifications can make them 
cross blood brain barrier-suitable for CNS drug 
delivery (9, 10). Nanoparticle, after intravenous 
administration, are rapidly taken up by 
reticuloendothelial (RES) system which lead to their 
elimination from the body. This problem can be 
overcome by incorporating stealth property to 
nanoparticles (11). Polyethylene glycol (PEG is most 
widely used polymer for stealth coating which 
attracts water on nanoparticles surface to prevent 
opsonization and escape immune system (Figure 1). 

Achieving different pharmacological and 
pharmaceutical milestones are possible by 
nanoparticles engineering and encapsulating drug 
inside it, without any chemical modifications in 
structure of drug molecule which may compromises 
its optimum pharmacological and toxicological 
balance. Nanoparticles have been modified in 
different ways to ensure site specific drug release, 
sparing the rest of the body cells from unwanted 
exposure. The slightly acidic pH (~6) of tumor 
microenvironment from rest of physiological pH 
(7.4) is targeted by making acid cleavable ligation of 
drug on surface of nanoparticles. Another strategy is 
to exploit overexpressing receptors on cancer cells 
like folic acid, hyaluronic acid and transferrin. These 
molecules if conjugated on surface of nanoparticles, 
will drive it directly to the cancer cells (12). Immune 
system recognize and produces antibodies against 
infectious organisms and tumor cells. Attempts have 
been made to decorate these antibodies on surface of 
nanoparticles for tumor targeting and utilizing their 
specificity in this regard. Monoclonal antibodies, a 
purified form of antibodies against single cancer 
epitope, can be covalently bound to nanoparticles 
that will circulate throughout the circulation and 
target only cancer cells (13, 14). Cancer tissues are 
rapidly proliferating and need large supply of blood 
to bring nutrients and carry away wastes. For this 
reason, cancer cells have leaky vasculature to allow 
permit free movement of substance in and out of 
cancer. This provides a passive targeting mechanism 

to nanoparticles as they are can cross leaky 
vasculature of cancer tissues more easily, a process 
known as enhanced permeation and retention (EPR) 
effect (15). The newly formed blood vessels also 
offer resistance to the blood flow in this area hence 
increasing the retention of nanoparticles in the tumor 
mass (16).  

More recently, research interest has shifted to 
devise theranostics nanoparticles making them 
immensely attractive in diagnosis and treatment (10). 
Gold, silver and iron are three widely used materials 
that are considered inert to biological systems 
because they are biocompatible and lack toxicity. 
These nanoparticles are also supposed to have 
biological activity like silver nanoparticles (AgNPs) 
have very well (9) documented antibacterial activity 
(17), gold nanoparticles (AuNPs) have cytotoxic, 
oral bioavailability enhancing and 
immunomodulatory effects, which may be an added 
advantage of these particles in treatment of diseases 
like multi drug resistant (MDR) infections and 
tumors (4, 18). Iron nanoparticles (IONPs) are being 
explored for contrast agents in magnetic resonance 
imaging (MRI) for tumor localization and 
pharmacokinetics of nanoparticles (19). Diagnostic 
applications of gold, silver and iron based 
nanoparticles are due to their ability to respond to a 
wide variety of external stimuli such as infra-red 
radiation, magnetic field and ultrasonic waves (20-
22). These nanoparticles also offer opportunity of 
“clickable” release of encapsulated drugs when they 
reach target site (11). In addition, nanoparticles of 
gold, iron and silver are increasingly used for dual 
function nanoparticles that can help in diagnosis and 
treatments of different disease after single 
administration of such nanoparticles. One example is 
image guided therapy in which nanoparticles can 
locate and kill malignant cancer cells with loaded 
drug or burn it by heat produced after alternating 
photothermal exposure (23, 24). On the other hand, 
metallic nanoparticles also possess some detrimental 
effects like genotoxicity, inflammation, oxidative 
stress and interference with intracellular signaling 
(25-27). Such toxicity problems are encountered 
with these relatively inert materials when they are 
used at nanoscale. Toxicity of nanomaterials is 
usually described to be dose dependent which is 
further associated with size and surface engineering 
(28).  

We summarized in this review, the aspects 
which are important from the perspective of drug 
delivery and toxicity of three commonly used 
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metallic nanoparticles i.e. gold, silver and iron. This 
review covers recent literature to elucidate 
underlying mechanisms of toxicity, so far 
established, in different conditions that are 
encountered in vivo. Attempts were also made to 
highlight currently formulated strategies to reduce 
toxicity of these nanomaterials and future prospects 
in the light of some studies already performed in this 
regard. 
 
GOLD NANOPARTICLES 
Gold is one of the most widely used material which 
is directly in contact with human body. Aurotherapy 
or Chrysotherapy is use of gold in medicine and use 
of raw gold for medicinal purpose can be traced back 
as far as the Chinese in 2500 B.C. In Medieval ages, 
Au was considered as heavenly precious glittering 
substance; which upon using against diseases can 
produce some relief. The methodological research 
about pharmacology of gold started in 1890, when 
Koch found its bactericidal activity against 
tuberculosis bacilli. The research about gold 
medicine gains its peak upon unrevealing of 
favorable results in arthritis leading to the 

development of anti-rheumatic agents like auranofin 
and disodium aurothiomalate (30). The toxicological 
symptoms in patients and unclear mode of action of 
gold in arthritis/inflammation imparted some gaps in 
pharmacology of aurhotherapy. AuNPs of different 
sizes with engineered biocompatible surface is 
currently acting as a bridge to reveal the 
pharmacodynamics and kinetics of gold in 
therapeutics (31). Current exploration on unveiling 
the biological applications of AuNPs include 
capping with biofunctional moieties like peptides 
and carbohydrates and looking for cellular insult or 
control of cellular processes (32, 33). Similarly drug 
delivery and photothermal therapy of cancer is 
another direction being debated for biomedical 
applications of AuNPs. Moreover, gold 
nanoparticles can enhance therapeutic efficacy of co-
administered drugs (18). The surface plasmon 
resonance (SPR) and light reflecting ability of 
AuNPs have made them a good tool as a diagnostic 
agent (9). Surface functionalization and ability of 
AuNPs to bind with thiols and amine groups have 
been used for making nanoparticles as a vector for 
drug and DNA (34, 35). 

 
 

 
 
Figure 1: Schematic representation of influence by varying the density of PEG coating on nanoparticles: interaction with 
blood components and subsequent uptake by macrophages. The upper panel shows density of PEG on nanoparticles surface. 
Middle panel shows how type and amount of blood proteins interaction with nanoparticles varies with PEG density. Similarly, 
lower panel shows that serum dependent uptake by macrophage decreases as PEG density increases whereas serum 
independent uptake increases; (taken from (29) with permission)  
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The enhanced permeability and retention of small 
sized nanoparticles have given them an added 
advantage for use against diseases like cancer where 
the permeation of tumor vasculature has been 
exploited to selectively deliver the nanoparticles to 
tumor site (36). Enhanced permeability and 
retention, surface functionalization, SPR and photo 
thermal tumor ablation approach have been 
collectively exploited in search of theranostic 
applications of gold based nanomaterials (37). 
Despite of dramatic utilities of AuNPs there are some 
toxicological threats associated with their use as 
theranostics. AuNPs are considered as the safest 
metallic nanoparticles however toxicity is always 
subjected to considerable debate (38, 39) and in 
some studies toxicity is also documented (4, 5, 18, 
40). The reported damages are particularly important 
due to their genetic, hepatic and renal toxicity nature 
even at lower doses (41). Toxicity of AuNPs is also 
reported on reproductive cells which may lead to 
anomalies in offspring (42). The critical analysis of 
the conditions reporting toxicity of AuNPs indicates 
that they shows sign of toxicity only specific 
conditions. If we could control those underlying 
parameters, the plethora of advantages of AuNPs 
may be availed without much of their side effects. 
The tools to control the side effect of these particles 
are discussed in the following sections. 
 
Size and Shape 
 The size of AuNPs exerts dramatic effects on the 
interaction of these particles with macromolecules of 
living system. In 2007 Pan et al. performed 
experiments to evaluate toxicity of AuNPs in the 
range of 0.5 nm to 15 nm. They found that particles 
in the range of 1 - 2 nm are more cytotoxic than 
particles either smaller or larger than those. The 
results were very interesting in the sense that one 
cannot draw conclusion as to the safe size range. 
They also found that AuNPs of 1.2 nm lead to 
apoptosis whereas AuNPs of 1.4 nm produced 
necrosis (43). The cytotoxicity and associated 
necrosis is further confirmed by cytotoxicity against 
cell line of melanoma, macrophages, and fibroblasts. 
A logical explanation of this abnormal behavior is 
the fitting of the nanoparticles in the pockets of DNA 
coil or 3D quaternary structure of proteins (44). This 
pocket-fitting model is also supported by DNA or 
protein mediated synthesis of Au nanoclusters (NCs) 
where reduced Au atoms are grouped inside disulfide 
pockets in proteins or in folding of DNA duplex (45-
49). Later in 2009, Pan et al. explained that toxicity 

of AuNPs as small as 1.4 nm is due to oxidative 
stress and damage to mitochondrial integrity (50). In 
another work done by (51) the same sized (1.4 nm) 
AuNPs have shown the ability to catalyze the 
reaction in conversion of ring shaped protein “trp 
RNA-binding Attenuation Protein” to capsid shaped 
protein. These result suggest that particles in the size 
range of 1-2 nm have intrinsic ability to bind with 
biological macromolecules leading to protein 
configuration conversion. This intrinsic activity may 
be an unwanted pharmacological effect where inert 
AuNPs are desirable. Similarly, teratogenic effects 
of AuNPs can be attributed to size dependent passage 
of nanoparticles from maternal blood to fetus, 
usually controlled by transport channels and 
endocytic or diffusive processes (52). AuNPs in 4-20 
nm showed ligand dependent toxicity, which interns 
upon further investigation, revealed due to free 
ligation or Au precursor salts while nanoparticles 
showed not cellular toxicity (53). Overall, the shape 
of nanoparticles is also important in addition to size 
in a single dimension. Cellular uptake seems to be 
inversely related to size (in range of 30-90 nm) but 
directly related to roundness of AuNPs (54). Rod 
shaped AuNPs appeared to have less cellular uptake 
efficiency in comparison to spherical one. Usually, 
rod shaped AuNPs show lower internalization than 
spherical particles albeit toxicity profiles don’t differ 
significantly (55). Although no hard and fast rules 
exist to serve as starting point, screening of size of 
nanoparticles along with appropriate surface group is 
necessary to assure the safety of nanoparticles before 
using them in clinical practice. Table 1 cites selected 
major reports that explain the size dependent toxicity 
of AuNPs in vitro and in vivo. 
 
Surface chemistry 
The surface chemistry is a key factor governing 
interaction of AuNPs with the living system (44). 
The first and foremost consideration in selecting 
surface coating materials is that they should be 
biocompatible and non-toxic. For example, 
phosphine-stabilized AuNPs having size of 1.4 nm 
have been prepared but failed electrophysiology-
based safety testing in human embryonic kidney 
cells, a safety test prescribed in FDA guideline (56). 
In addition, leaching of such surface coating 
materials may be problematic such as toxicity caused 
by cetyltrimethyl ammonium bromide CTAB, a 
famous stabilizing agent for AuNPs (57). The 
behavior of AuNPs may also be explained on the 
basis of corona of functional groups attached on their 
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surface. The toxicity of gold nanorods and 
nanospheres on human hepatocellular carcinoma cell 
line has been proven to be reduced by encapsulating 
the nanomaterials in silica core (58).  In another 
work, the intracellular accumulation of AuNPs in 
macrophages was shown to occur in chronic 
exposure only. AuNPs coated with polyethylene 
glycol (PEG) show decreased cytotoxicity along 
with low intracellular accumulation (54). This was 
further supported by another study which 
demonstrated inverse relation between PEG MW on 
surface and cellular uptake of AuNPs (54). 
PEGylated nanoparticles exhibited reduced 
interaction with intracellular proteins which 
ultimately resulted in rapid expulsion of these 
nanoparticles from the cells (59). In another study, 
different AuNPs coated with ethanediamine, 
glucosamine, hydroxypropylamine, taurine, and 
PEG were prepared and internalization of these 
particles in the primary culture of human endothelial 
cells was investigated. It was found that the particles 
coated with ethanediamine were internalized to very 
high extent indicating that these particles can be 
studied for chronic toxicity on human endothelial 
cells (60). 

The density of PEG coating on AuNPs has also 
shown to affect the binding of serum protein on the 
nanoparticle surface, a property which actually 
affects the uptake by macrophages (Figure 1). At 
high PEG/nm of AuNPs, the serum protein 
adsorption on the surface of nanoparticles decreased 
while at low density of PEG/nm, the adsorption of 
serum protein increased supporting a competitive 
ligand displacement mechanism for serum protein 
adsorption on AuNPs. High density of PEG on the 
surface of AuNPs resulted in increased uptake of the 
nanoparticles by macrophages (61). Surface coating 
material has also been proven to modify other 
toxicity parameters. Aspartate, citrate and bovine 
serum albumin, when used as capping material, 
AuNPs appeared to be non-toxic in-vitro against 
human fibroblast cells (MRC-5). They found that all 
the three types of AuNPs were proven to be non-
cytotoxic in in vitro experiments against human 
fibroblast cell line (MRC-5) but the in-vivo studies 
in murine models showed the citrate capped AuNPs 
were hepatotoxic while aspartic acid capped AuNPs 
were hepatotoxic as well as nephrotoxic (62). Liver 
contains diverse families of enzymes that can 
catalyze many types of materials. This can explain 
altered biodistribution of nanoparticles in-vivo (63). 
Surface modification can also play role in colloidal 

stability. Agglomeration of nanoparticles as 
imparted by coating material may lead to reduction 
in internalization, reduced renal clearance and 
blockade of blood vessels. Aggregation of AuNPs is 
mainly dependent on zeta potential imparted by 
ligands. Particles with positive surface charge are 
less prone to aggregate and presents longer stability 
in-vitro as compared to negative charge AuNPs (64). 
However this is inverted in-vivo where negatively 
charged proteins are electrostatically adsorbed on 
positive surface of AuNPs, phenomenon of 
opsonization, and results in aggregation-responsible 
for toxicity profiles and accumulation in glomerular 
filtration assembly and probably for nephrotoxic 
profile (18, 65-67). 
 
Special Case: Oxidation Stress  
Reactive oxygen species are free radicals formed 
inside that cells which have the potential to redox 
damage several intracellular processes. This 
mechanism is well reported for gold nanoparticles 
and many researchers claim it to be the key 
molecular event for its pharmacological activity 
(68). At the same time, gold nanoparticles have 
shown mutagenicity, genotoxicity and cytotoxicity 
in a number of studies and the mechanism evaluated 
for the cause of damage is increased reactive oxygen 
species (ROS). Production of ROS leads to damage 
in DNA resulting in genotoxicity, mutagenicity and 
cytotoxicity (41, 69, 70). Although some research 
work have also reported the toxicity of AuNPs 
independent of ROS production (71, 72). However, 
none of these studies could neglect the role of ROS. 
Thus, it can be stated that ROS production may not 
be the sole player of DNA damage and some other 
mechanism may also be responsible for its toxicity 
like leaching of Au ions from nanoparticles and 
complexing effect with surrounding bio-
macromolecules (65, 73). Antioxidants have the 
ability to destroy the ROS and a large number of 
antioxidants have been reported which have been 
extensively used in the clinical practice. Ascorbic 
acid, glutathione and N-acetyl cysteine (a precursor 
of glutathione) are known antioxidants which have 
been known in clinical practice. If the glutathione 
production is genetically suppressed, the 
genotoxicity and cytotoxicity of AuNPs is reported 
to be increased (74). 

Research work also supports the fact that use of 
antioxidants prior to or along with AuNPs has 
resulted in decreased ROS production and 
cytotoxicity. Triphenylphosphine monosulfonate, 
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glutathione and N-acetyl cysteine were used as 
antioxidants and pretreatment with these agents 
decreased AuNPs associated ROS production (50). 
In another study, the decreased level of ROS caused 
by dimethyl sulfoxide (DMSO) resulted in overall 

increased wound healing by combination therapy of 
therapeutic pulsed ultrasound, AuNPs and DMSO 
(75). In some cases, antioxidants have been 
beneficial in reducing the genotoxicity induced by 
the oxidative stress generation (35). 

 
Table 1. in vitro and in vivo toxicity of gold nanoparticles depending upon size 

Size (nm) Ligand* Cell line Dose Toxicological effect Reference 
in vitro studies in cell line 

0.8, 1.2, 1.4, 
1.8, 15 

TPPMS, TPPTS HeLa 250 µM AuNPs of 1.2 nm lead to 
apoptosis whereas AuNPs of 1.4 
nm produced necrosis. 1.4 nm 
AuNPs are most toxic of these 

(43)  

2 Quaternary 
ammonium 

COS-1 
mammalian 
cells 

0.38-3 
µM 

Cationic nanoparticles are toxic (76) 

3.5 Lysine/polylysine RAW 264.7 
mouse 
macrophage 

10-100 
µM 

Non-toxic and Non-
immunogenic 

(77) 

3.7 PEG HeLa 100 µM No toxicity (78) 
<10 ̶ A549 cells 5 µg/ml Nanoparticles prepared in water 

are non-toxic whereas those 
prepared in acetone induce 
apoptosis 

(79) 

13.1 Citrate Human dermal 
fibroblast  

4 mM Decreased cell proliferation (80) 

15 Citrate Huma lveolar 
macrophage 
(A549) cells 

2000 µM No toxicity (81) 

15, 50, 100 nm ̶ Caco-2 cells 5 µg/ml Cytotoxic, larger particles are 
more toxic to mitochondria 

(82) 

18 Citrate HeLa 2 nM Non-toxic (83) 
16, 26, 40, 58 (10-Mercapto-

decyl)-trimethyl-
ammonium bromide 
(TMA) for positive 
charge and 11-
Mercaptoundecanoi
c acid (MUA) for 
negative charge 

RAW 264.7 
and non-
phagocytic 
HepG2 cells 

Au 
concentr
ation of 
10 mg/L 

Positive nanoparticles show 
higher cytotoxicity against 
HepG2 cells. Negative 
nanoparticles show higher 
cytotoxicity against RAW 264.7 
cells 

(84) 

33 CTAB and citrate BHK21 cells 
of hamster 
kidney 

120 nM Not toxic (85) 

50 Citrate Blood  Non toxic (86) 
90  Human 

prostate 
carcinoma 
(PC-3) cell 

34 nM Non-Toxic (87) 
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Table 1 Continued… 

100 PCL Human ublical 
vein 
endothelial 
(ECV 304) 
cells 

 Non-toxic (88)  

in vivo studies in animal models 
20 Arabic gum Pigs 1.8 

mg/kg 
No toxicity (89) 

4, 10, 28, 58 Citrate Mice 
(BALB/c) 

200 
mg/kg 

No toxicity (90) 

3, 5, 8, 12, 17, 
37, 50, 100 

Citrate Mice 
(BALB/c) 

8 mg/kg 8-37 nm show lethality (91) 

3, 10, 50, 100 Citrate Zebra fish Up to 
250 µM 

No toxicity (92) 

15, 50, 100, 
200 

Citrate Mice (ddy) 1000 
mg/kg 

15 and 50 nm were found in liver, 
kidney, heart and brain. No 
toxicity reported. 

(93) 

13 PEG Mice 
(BALB/c) 

4.26 
mg/kg 

Inflammation and apoptosis in 
liver 

(86) 

13.5 Citrate Mice 2.2 
mg/kg 

Reduction in body weight and 
RBC count 

(94) 

17, 37 ̶ Mice 
(BALB/C) 

8 
mg/kg/w
eek 

Produce fever and altered 
dopamine and serotonin 
secretion; 17 nm particles impair 
learning and memory 

(91) 

20, 40, 80 PEG Mice 
(BALB/c) 

2010 
mg/kg 

No toxicity (95) 

18.6, 67.5 Tannic acid Polymorphonu
clear 
neutrophil 
cells 

100 µM  Induction of apoptosis associated 
with degradation of cytoplasmic 
proteins and endoplasmic 
reticulum stress 

(96) 

2, 10, 25 nm 
and their 
aggregate 

PVP HeLa 0.83 nM 2 nm don’t but 10 and 25 nM 
cause cytotoxicity. However, 
larger aggregates promote cell 
growth. 

(97) 

* Ligand are not toxic at this concentration when administered alone. 

 
 
SILVER NANOPARTICLES 
AgNPs are widely used due to their unique properties 
like catalysis and sensing (98, 99). Recently, AgNPs 
have become focus of biomedical research due to 
their antimicrobial properties (100-105). AgNPs are 
bactericidal in nature due to multimodal pathways. 
Although molecular basis of bactericidal action is 
unknown, different studies show that AgNPs can 
cause lysis by arresting different processes such as 
cell wall synthesis, arrest mitochondrial system, 
ribosomes inhibition or damage to nucleic material 

i.e. DNA (106-108). In addition, they can also 
synergize efficacy of many antibiotics and has 
opened new horizon to treat MDR infections (109). 
Now, various orthopedic devices and wound 
dressings are available in market with AgNPs 
coatings to prevent against microbial contamination 
of underlying wound (110). The toxicity of AgNPs 
is also studied and a body of literature is available in 
this direction. In some studies the genotoxicity of 
nanoparticles is well documented while in some 
studies contradictory effects are also reported. 
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AgNPs are supposed to damage mammalian cells in 
the same way as they do the bacterial and fungal 
cells. 
 
Size and Shape 
Some studies have also shown that the smaller sized 
AgNPs causes increased toxicity (111). This 
observation is supported by the fact that smaller 
sized particles can easily enter into the cells.  
However, some studies report contrasting results and 
role of silver nanoparticle size in toxicity is not well 
supported (28). Lee et al. evaluated the 
biodistribution of AgNPs of around 10 and 25 nm 
size in brain and testicles, and found it to be 
independent of size. However on the other hand, 
when Park et al. scanned biodistribution of AgNPs 
with significant size differences (22, 42, 71 and 323 
nm), the accumulation of AgNPs in different tissues 
including brain and testicles was inversely related to 
size. The AgNPs of 323 nm were not able to diffuse 
in any organ (112, 113). Similarly, Hendrickson et 
al. have recently reported the affinity of 12 nm 
AgNPs i.e. smaller size range having more affinity 
to liver and kidney (114). These studies revealed size 
to be important factor in controlling the 
biodistribution of AgNPs but results are only visible 
when size is significantly varied. There is possibility 
of achieving a balance between size and 
pharmacology of AgNPs and minimizing its tissue 
accumulation which subsequently results in toxicity. 
Although size of AgNPs can alter biodistribution, it 
association with toxicity is not established. 
Moreover, shape of nanoparticle may also not 
significantly affect toxicity of AgNPs (115). 
  
Surface chemistry 
The antibiotic effects of AgNPs, although well 
documented, prerequisite its efficacy and clinical use 
to specific bacterial cells i.e. it should kill only 
bacterial cells without harming the host cells. 
Considerable efforts have been made in order to 
make AgNPs host specific. One possibility is to treat 
host cells with anti-oxidants e.g. N acetyl cysteine or 
reduced glutathione (GSH) potentiating their ability 
to detoxify ROS species. Cytotoxicity and 
genotoxicity of Ag nanoparticles is observed at 
concentrations much higher than MIC of AgNPs 
(88). Dose dependent toxicity is also observed in 
zebrafish models even using albumin as capping 
agent (116). In this way, it has been proved that the 
cytotoxicity and genotoxicity of host cell may be 
prevented by using appropriate dose of AgNPs. As 

toxicity of AgNPs is mainly due to leaked Ag ions 
(117), organic coating is more capable to prevent 
leaking of Ag ions as compared to inorganic coating 
(118). 

Just as discussed for AuNPs, intrinsic toxicity of 
surface coating material can also participate in 
overall toxicity of nanoparticles. Lu et al. conducted 
a comprehensive study to evaluate toxicity of AgNPs 
with different coating properties. They found that 
polyvinylpyrrolidone (PVP) coated AgNPs are more 
biocompatible than citrate coated nanoparticles. 
Interestingly, they also observed that citrate coating 
may undergo chemical changes during drying 
process rendering them more cytotoxic, genotoxic 
and phototoxic (115). Protein ligations on the surface 
of AgNPs enhanced their cellular biocompatibility 
and kept them dispersed in cytoplasm of fibroblast 
cells (119). Yang et al. determined toxicity of AgNPs 
with different ligands in order of Gum 
Arabic>PVP>citrate (28). Gum Arabic is of natural 
and biocompatible origin than citrate and PVP but 
presented greater cytotoxicity which is explained on 
the basis of ability of ligand to tightly cap the 
underlying AgNPs. Citrate has more ability to tightly 
ligate the Ag in nanoparticles thus poses lesser risk 
of leaking out of Ag ions and thus less toxicity. 

Zeta potential or surface charge of AgNPs plays 
important role in anti-microbial potential of 
nanoparticles. The presence of carboxyl, amino and 
phosphate groups in cell wall of bacteria, gives it a 
net negative charge which repels negatively charges 
AgNPs like citrate (-40 mV) and PVP (-12 mV). 
AgNPs capped with branched polyethyleneimine 
(+39 mV) showed greater bacterial interaction (120). 
AgNPs with near to zero i.e. neutral zeta potential 
appeared to be less toxic as compared to negatively 
charges AgNPs. Park et al. synthesized AgNPs with 
0.91 mV zeta potential and they showed EC20 
(concentration for 20 % cell death and 80 % viable) 
of 1.6 µg/ml against 5000 cells/ml of RAW264.7 
(121). While Park et al. synthesized AgNPs with -47 
mV zeta potential and its EC20 was around 0.18 
µg/ml against 3 × 106 cells/ml of RAW264.7 (122). 
It can be deduced from these two independent studies 
that more negative zeta potential greatly enhance the 
cytotoxicity potential of AgNPs, excluding the effect 
of size and ligands. 
 
Special Case: Ionization of Silver 
Genotoxic potential is reported in many studies (26, 
87, 121, 123) and the mechanism is supposed to be 
ionization of AgNPs by Trojan horse type 
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mechanism leading to production of Ag+2 and ROS 
(117). Stored AgNPs formulation was proven to be 
more toxic than freshly formulated preparation. 
Reason for this increased toxicity is the erosion of 
surface coating or dissolution/leaking of silver to 
Ag+ ions (124). If these particles are to be marketed 
for clinical use for therapeutic application, it is very 
difficult to make fresh AgNPs for use as antibacterial 
agent. Similarly, no study is present to investigate the 
dissolution of AgNPs when it is absorbed in the 
systemic circulation. If the dissolution of AgNPs 
takes place in vivo, it would cause systemic toxicity 
which may over weigh the beneficial effect. This 
ROS produces oxidative stress which ultimately 
leads to genotoxicity and cytotoxicity of the cell. In 
some studies, oxidative stress is associated with 
reduced amount of glutathione present in the cell 
(125). But some contradictory studies are also 
documented as in one experiment; AgNPs were 
injected in group of mice for 28 days and any 
mutation on the cells of bone were investigated by 
hematological studies and no significant damage to 
the blood cells were documented (126). Similarly, 
nanoparticles were administered in mice by 
inhalation for twenty eight days and no significant 
change in blood chemistry was reported (127). 

Over all conclusion, from so far reports on 
toxicity of AgNPs is to control the dissolution and 
leaking of Ag ions from AgNPs by size or surface 
ligation. More efficient surface ligation with tightly 
packed ligands on nanoparticles surface will prevent 
the Ag ions leaking, enhancing its colloidal stability 
and thus reducing toxicity.  
 
IRON NANOPARTICLES 
Iron is considered one of the most inert materials 
used in nanotechnology. It is a common component 
of many biological systems such as bio-imaging, 
blood circulation (128, 129), energy production 
(130), enzyme catalysis (131, 132) and immune 
system (133). Iron oxide nanoparticles (IONP) have 
drawn considerable attention in medical field. Just as 
discussed for gold and silver, iron showed improved 
properties at nanoscale. They are widely investigated 
for diagnostics, drug delivery and dual function 
modalities i.e. therapeutic and MRI diagnostic. This 
paramagnetic behavior can be exploited in MRI 
which use strong magnetic field for diagnosis of 
various lesions and pathological changes in the body. 
MRI uses a combination of magnetic field 
radiofrequency pulse to image body organs 
containing IONP. They improve contrast of image 

and ensure imaging of target organs with particular 
safety for pediatrics and geriatrics patients (134-
138). 

Therapeutic use of IONP is mostly related to its 
applications in drug delivery. It can load drug and 
target it to specific site under the influence of 
magnetic field. IONP are usually intravenously 
administered to patient for diagnosis and targeting. 
IONP can be targeted to a specific area by applying 
external magnetic field directly over tumor affected 
body part (Figure 2). IONP based targeting with 
magnetic field has been comprehensively reviewed 
elsewhere by (139) and readers interested in this 
aspect are encouraged to read their review article. 
This will localize nanoparticles in this region when 
they reach with blood circulation. Another strategy 
is to use targeting (140-142). IONP based 
hyperthermia is utilized for controlling the release of 
the drug from the temperature sensitive micelles due 
to phase change in micelles. When micelles are 
deformed, drug is released in the target tissue (11, 
143). In another study the synergistic effects of the 
hyperthermia and chemotherapeutic drugs has been 
reported on various cell lines (144). These site 
specific retention characteristics of IONP is also 
utilized in hyperthermia mediated treatment of 
tumor. When IONP are exposed to alternating 
magnetic field, heat is generated. Heating tumor 
mass up to 45°C will lead to apoptosis whereas 
heating above it may cause necrosis. Recently, it has 
also been used for thermotherapy or thermos-
ablation of tumor tissues (145). IONP are leading 
paradigm in theranostic nanoparticles due to above 
mentioned diagnostic and therapeutic uses. One 
example is image guided therapy in which IONP can 
locate cancer and kill them with loaded drug or burn 
them by heat produced after alternating magnetic 
field application (23, 24). 

Thus, IONP will not only prevent the unwanted 
effects of the anti-cancer drugs but it will also 
augment the cytotoxicity of these drugs. Like Ag and 
AuNPs, the toxicity of IONP is subjected to 
considerable debate with results depending upon 
various factors. In the work of (146-149) the 
genotoxicity of IONP is reported. Among these 
results the effect of IONP on human skin and lung 
cell lines were of considerable importance as drug 
carrier in humans (146). Iron may exist as ferrous 
(+2) or ferric (+3) form in NPs and both oxidation 
states show similar physicochemical properties. 
Fe2O3 and Fe3O4 nanoparticles may present different 
level of interaction with biological tissues and 
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relative abundance of these materials may be of 
significant importance in in-vivo toxicity studies 
(147). 

 
Size 
IONP which are used for diagnostics are usually 
smaller than 10 nm because superparamagnetic 
properties can only be achieved at such small size. 
However, this size can lead to removal of IONP after 
they are settled in tumor mass via leaky vasculature. 
Thus, passive targeting by EPR effect may not be 
feasible for IONP. Their toxicity may not be related 
to its size as shown by many studies. Thus, size of 
IONP may not be of much significance except for its 
magnetic characteristics that are usually found to be 
safe (150). 

 
Surface chemistry 
IONP have been reported with various surface 
coatings materials. In addition to above discussed 
materials for biocompatibility or penetration 
enhancement, they have been combined with other 

metals to form novel structures with modified 
magnetic and heating properties (151). However, 
toxicity of IONP is dependent upon materials 
forming the shell and we have not discussed 
nanoparticles with non-iron metallic shells. IONP 
have been prepare with PEG and folic acid coating 
for enhancing their release only in cancerous cells. 
The results obtained in these experiments are of 
substantial importance as tumor mass was decreased 
up to 10 fold than control group. In another study, 
the IONP were coated with different materials and 
their toxicity was evaluated. Results clearly revealed 
dependence of toxicity on surface ligation. It was 
established that the surface of IONP could be 
manipulated to alter the endocytosis of nanoparticles 
and their subsequent toxicity (152). Similarly, 
coating of IONP nanoparticles with three very 
closely related carbohydrates i.e. glucose, lactose 
and maltose resulted in very different behavior in 
human cell line suggesting that the effect of surface 
coating will markedly affect nanoparticles fate in 
vivo (153).  

 

 
 
Figure 2. Enhanced permeability and retention (EPR) effect under magnetic field. Nanoparticles are accumulated in tumor 
tissues due to leaky vasculature. Non-stealth nanoparticles are rapidly cleared through kidney and lungs whereas stealth 
nanoparticles can escape this elimination step. Nanoparticles accumulation in tumor is further enhanced after external 
application of magnetic field (produced with permission from (138)). 
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Soensen et al. performed a series of studies to find 
interdependence of nanoparticles coating and 
toxicity. They found that toxicity may be observed 
with materials that are intrinsically toxic (154). 
Later, Sorensen et al. showed that cellular uptake of 
oxide nanoparticles is also influenced by surface 
coating. Thus, toxicity of IONP is mainly controlled 
by extent of internalization and number of 
nanoparticles per cells (155, 156). 

When coating is not homogenous on 
nanoparticles, the resultant nanoparticles will 
present coated and uncoated surfaces that may pose 
different toxicity issues (157). In some studies, the 
mechanism seemed to be responsible for the 
genotoxicity was the ROS generation (158). In other 
studies, contradictory results were observed 
including peroxidase like activity of nanoparticles to 
reduce oxidative stress (159, 160). Thus, 
involvement of ROS in IONP toxicity remains 
controversial. In the case of IONP, we lack the data 
in which N acetyl cysteine or glutathione could be 
used for reduction of ROS generation and prevention 
of DNA damage could be achieved. Although the 
mechanism responsible for the toxicity of IONP is 
suggested to be ROS generation in (159) so we 
suggest that pretreatment with N acetyl cysteine if 
lead to decreased toxicity of IONP, will indicate 
ROS dependency of IONP for toxicity. We should 
also consider the factor of iron overload, when 
considering them for clinical application, the 
problem which is commonly encountered in the 
patients of thalassemia (161). The metal may 
dissolve inside the body and lead to hemosiderosis 
i.e. accumulation of iron in various body organs 
especially liver. If such condition appears, patient 
may be treated with iron chelator like 
desferrioxamine (162). 
 
Special case: Interference with Intracellular 
Signaling 
IONP have shown to inhibit differentiation of stem 
cells. These effects have been observed with dextran 
coated IONP when used during labelling of 
mesenchymal stem cells (163, 164). Another study 
found that IONP can suppress formation of new 
blood vessels from progenitor cells (165). These 

studies support the interference of IONP with 
different intracellular pathways leading to altered 
cell response to growth factors (157). However, 
these effects are also dependent upon intracellular 
concentration of IONP and many strategies aimed to 
reduce IONP dose may serve to overcome these 
problems (166). In magnetic field hyperthermia, 
tumor cells respond to applied hyperthermia by 
producing heat shock proteins. Although their 
function is to prevent cell damage resulting from 
heat, they are recognized by human immune system 
resulting in anti-tumoral immune response (167). 
However, no link has yet been found between these 
immunomodulatory effects and IONP and these 
vaccine like effects are attributed to hyperthermia 
(168). 
 
CONCLUSION 
 
Relatively inert materials such as gold, silver and 
iron can show toxicity at nanoscale as the mechanism 
of nano-toxicity is dependent markedly upon size 
and surface chemistry, which intern, is further 
associated with degree of internalization in cells or 
leaking. Thus, enhancing the colloidal stability and 
purity of AuNPs, AgNPs and IONPs can lead to 
reduction in their toxicity, making their clinical 
application possible. Surface coating material may 
modulate nanoparticles toxicity either directly or by 
altering penetration in cell. After internalization, 
nanoparticles can interact in dose and colloidal 
stability dependent fashion with different 
intracellular systems such as mitochondria, 
ribosomes and chromosomes. AuNPs and AgNPs 
have shown to induce production of ROS that can 
arrest different cell processes.  On the other hand, 
IONP have shown to modulate intracellular 
signaling pathways, thus altering different cell 
processes leading to cell death. Careful selection of 
coating materials and comprehensive 
characterization of surface coated nanoparticles is 
prerequisite for clinical applications. We further 
stress the need of uniform guidelines of test 
procedures that will aid in systematic analysis of 
toxicity of different nanomaterials.  
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Figure 3. Mechanism of toxicity after internalization into cell, a) gold nanoparticles cause toxicity by physical interaction 
and ROS production, b) silver nanoparticles case toxicity by physical interactions, silver ions (Ag+2) and ROS production and 
c) iron oxide nanoparticles intracellular toxicity by ROS mediated oxidative stress. 
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