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ABSTRACT - In vitro and in silico models of drug metabolism are utilized regularly in the drug research and 
development as tools for assessing pharmacokinetic variability and drug-drug interaction risk. The use of in vitro 
and in silico predictive approaches offers advantages including guiding rational design of clinical drug-drug 
interaction studies, minimization of human risk in the clinical trials, as well as cost and time savings due to lesser 
attrition during compound development process. This article gives a review of some of the current in vitro and in 
silico methods used to characterize cytochrome P450(CYP)-mediated drug metabolism for estimating 
pharmacokinetic variability and the magnitude of drug-drug interactions. Examples demonstrating the predictive 
applicability of specific in vitro and in silico approaches are described. Commonly encountered confounding 
factors and sources of bias and error in these approaches are presented. With the advent of technological 
advancement in high throughput screening and computer power, the in vitro and in silico methods are becoming 
more efficient and reliable and will continue to contribute to the process of drug discovery, development and 
ultimately safer and more effective pharmacotherapy. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________ 
 
INTRODUCTION 
 
Members of the cytochrome P450 (CYP) 
superfamily are membrane-bound, haem-containing 
terminal oxidases which are responsible for the 
metabolic activation or inactivation of drugs, toxins 
as well as endogenous compounds. Over the past two 
decades, numerous advances have been achieved on 
the use of in vitro approaches to investigate drug 
metabolism and drug interaction involving CYPs. 
These approaches have been shown effective in 
predicting the potential clinical drug-drug 
interactions (DDIs). With the construction of 
recombinant human CYPs using various expression 
systems [1], the source of enzyme is no longer 
limited to liver microsomes, liver slices or 
hepatocytes. Moreover, the activity of a single CYP 
can be studied specifically using recombinant CYPs 
without the requirement of highly specific probe 
substrates. The availability of these enzyme sources, 
coupled with the use of in vitro CYP assays and a 
variety of modern analytical techniques, have 
permitted delineation of enzyme activity, induction 
and inhibition. The in silico approaches have  

 
 
 
emerged, over the past decade or so, as tools of 
increasing importance to predict drug metabolism 
and interaction [2]. Different from in vitro 
approaches, computational approaches can be 
applied to hypothetical compounds as their three 
dimensional (3D) structures can readily be generated 
in silico. Similarly the availability of crystal 
structures of major human CYPs has allowed 
molecular modeling to decipher binding, docking 
and interaction conformation and affinity of different 
compounds (ligands) with the generated CYP 
structures. Therefore in silico methods help 
producing molecular data and filling information 
void in experimentally derived data, and represent an 
important component in examining CYP-mediated 
DDI risk and mechanism. 

This article gives an overview of the current in 
vitro and in silico methods to investigate CYP-
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mediated drug metabolism for prediction of 
pharmacokinetic variability and the extent of drug-
drug interactions. Examples of successful 
application of the in vitro and in silico approaches in 
delineating metabolism and interaction mechanism 
are presented. These approaches have generated 
valuable information and have proven their pivotal 
role in drug discovery, development and clinical use. 
 
In vitro APPROACHES 
The in vitro characterization of CYP-mediated 
activities can be conducted using simple and robust 
bioanalytical techniques, including the high-
throughput methods (fluorescence and 
luminescence-based), medium-throughput methods 
(high performance liquid chromatography [HPLC] 
based and liquid chromatography-mass spectrometry 
[LC-MS] based) and low-throughput methods 
(radiometric-based). These bioanalytical techniques, 
coupled with in vitro enzyme assays after validation, 
can be used to produce reliable data for the 
determination of the kinetic parameters of the tested 
CYPs [3]. The choice of the method depends on the 
availability of equipment and technical support in 
each lab setting, as well as the sample size. The 
biochemical plots generated using the data obtained 
from each method can be used to elucidate the 
enzyme kinetics in the relevant CYP-mediated 
metabolism, either showing Michaelis-Menten 
kinetic or atypical kinetic (e.g., substrate activation 
and substrate inhibition). Kinetic models for DDIs 
can be derived based on the observed change in 
apparent constant (Km) which is determined from 
non-linear regression and statistical calculation. 
Inhibition kinetics such as IC50 (the inhibitor 
concentration causing 50% reduction on the enzyme 
activity) and Ki (inhibition constant) can also be 
determined using the data generated from the in vitro 
CYP inhibition assay. The mode of inhibition of the 
enzyme (competitive, non-competitive, 
uncompetitive or mixed inhibition) is elucidated 
from Lineweaver-Burk plot, which is generated by 
plotting the reciprocal of velocity against the 
reciprocal of substrate concentration at different 
inhibitor concentrations [4, 5]. Ki value can also be 
determined from the secondary plot constructed by 
plotting the slopes (of each inhibitor concentration) 
from Lineweaver-Burk plot against the substrate [4]. 
Nonlinear regression analysis is nowadays the more 

commonly used way to estimating kinetics and 
inhibition parameters. Many commercially available 
software packages can be used for this purpose such 
as GraphPad Prism, SigmaPlot (with Enzyme 
Kinetics module) and GraFit. These softwares 
provide valid regression algorithm and give robust 
parameter estimates. The intrinsic clearance of a 
drug (CL) can be calculated from Vmax/Km value if 
the enzyme displays typical Michaelis-Menten 
kinetic. The detection of mechanism-based 
inhibition (MBI) is also made possible with in vitro 
CYP inhibition assays using CYP enzymes 
preincubated with and without the inhibitors [6]. 
Quantitative descriptors of MBI reaction include KI 
and kinact which are commonly used kinetic 
parameters describing the inactivation process. KI is 
the concentration of inactivator causing 50% of the 
maximal inactivation; whereas kinact is the rate 
constant for maximal inactivation. To obtain these 
two parameters, the inactivation plot where time 
course of decline in enzyme activity at various 
inhibitor concentrations [I] is first plotted and fitted 
to a series of first-order decay curves. Estimates of 
the rate constant for enzyme inactivation (kobs) at the 
different inactivator concentrations can then be 
determined. KI and kinact can subsequently be derived 
from the plot of 1/kobs against 1/[I]. 

A number of studies have established successful 
theoretical predictions of metabolic DDI in vivo by 
extrapolating the quantitative in vitro data [3, 7-10]. 
In order to predict the magnitude of DDIs, the ratio 
of area under the plasma concentration-time curve 
(AUC) of a victim drug are determined by using the 
in vivo inhibitor concentration and the in vitro 
inhibitor constant ([I]/Ki ratio). The AUC ratio > 2 
indicates a potential for DDI in vivo [11]. Utility of 
[I]/Ki approach to predict AUC ratio changes have 
had good success in predicting DDIs and over the 
years, its prediction accuracy has improved by 
careful selection of [I] and Ki values of the drugs 
involved [12]. A representative listing of reports for 
prediction of DDIs from in vitro data is in Table 1. 
As shown in the table, the predictive methods have 
adequately predicted the extent of pharmacokinetic 
alteration and DDI risk and provided quantitative 
estimation of the effect of CYP-mediated drug 
interactions on drug substrate exposure.  
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Table 1. Selected examples of in vitro studies for investigating CYP-mediated drug interaction or inhibition. 

 
CYP isoform(s) 

 

 
Major findings of the study 

 
Reference 

 
CYP3A4 

 
This study attempted to use in vitro metabolism data to predict the effect of drugs 
with CYP3A4 inhibitory potency on tacrolimus exposure. The IC50 values of the 
investigated drugs on the formation of M-I, tacrolimus major metabolite, were 
calculated, and the effect on oral exposure (AUCp.o.) of tacrolimus was assessed 
from static models (which examined changes in the AUC ratio by taking into 
consideration published pharmacokinetic parameters such as intestinal wall 
availability [Fg], plasma unbound fraction [Fa], and fraction of tacrolimus 
metabolized by CYP3A4 [fm(CYP3A4)]). Most of the predicted increase in AUCp.o. 
ratio fell within a 2-fold range of the observed values, indicating successful 
utilization of the models to predict DDI risk in patients using tacrolimus. Of all 
the CYP3A4 inhibitors examined, relatively high risk of interaction was 
correctly predicted for telaprevir, diltiazem and itraconazole.  
 

 
[13] 

Multiple CYP isoforms The in vitro DDI potential of SIPI5357, an arylalkanol-piperazine derivative 
used as an antidepressant, was investigated in this study. Potent inhibition of 
CYP2D6, CYP3A4 and CYP2C8 with low IC50 values (below 100 μM) but 
negligible inhibition of CYP1A2, CYP2C9, CYP2C19, CYP2E1 or CYP3A4 
(IC50 > 100 μM) were observed for SIPI5357 in human liver microsomes. The 
compound showed a mixed mode inhibition of CYP2D6, the isoform with the 
highest inhibition susceptibility, with a Ki of 11.12 μM. The value of [I]/Ki for 
SIPI5357 inhibition of CYP2D6 is below the US Food and Drug Administration 
(FDA) cut-off value of 0.1. Data from this study have indicated that SIPI5357 
will not cause significant inhibition of CYP2D6 as well as other major CYP 
isoforms.  
 

[14] 

Multiple CYP isoforms In this study, seven dominant human liver CYP isoforms (CYP1A2, CYP2A6, 
CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were evaluated for 
inhibitory potential by antimalarial artemisinin and its structural derivatives, 
artesunate, artemether and dihydroartemisinin using recombinant enzymes and 
human liver microsomes. Nonlinear regression analysis was performed to 
delineate the inhibitory potency (IC50 and Ki) and mechanisms of inhibition of 
the compounds. The risk of DDI in vivo was estimated from extrapolation using 
the [I]/Ki ratio. Inhibition was noted for all CYPs by all compounds tested, 
mostly through a mixed type of inhibition, with CYP1A2, CYP2B6, CYP2C19 
and CYP3A4 being affected most. Substrates of  CYP1A2 or CYP2C19 were 
predicted to demonstrate a high risk of interaction in vivo if artemisinin is 
coadministrated where AUC ratios > 4 were noted when the maximum unbound 
concentrations of artemisinin at the inlet to the liver ([I]max,inlet,u) were used in 
the extrapolation.  
 

[15] 

Multiple CYP isoforms This study focused on CYP-based DDI involving diethylstilbestrol (DES), a 
synthetic estrogen used for treating certain cases of prostatic and breast cancers. 
Given that DES might be co-administered with anticancer drugs, DES was 
examined for its CYP inhibitory effect in vitro, and the results demonstrated that 
DES was able to competitively inhibit CYP3A4, CYP2C8, CYP2C9 and 
CYP2E1 with Ki values in single digit micromolar concentrations. Based on 
peak serum DES concentration after drip infusion of 500 mg of fosfestrol (DES 
diphosphate) in patients, [I]/Ki ratios were calculated to be more than 2 for the 
four CYP isoforms, indicating potential of DES to induce in vivo DDI through 
CYP inhibition.  

[16] 
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Despite reasonable successes achieved using in 
vitro data, there are several confounding factors due 
to extrapolation from in vitro parameters which may 
contribute to inaccurate prediction. In a recent study 
by Sane and co-workers [17] which investigated the 
DDI potential of CYP3A4 probe substrate 
midazolam and the perpetrator drug deleobuvir, it 
was demonstrated that DDI prediction using 
deleobuvir alone had significantly over-predicted the 
DDI potential for CYP3A4 inhibition, with an AUC 
ratio of 6.15, a ratio way higher than the clinically 
observed ratio of 1.23. Including metabolites data for 
two major metabolites, CD 6168 and deleobuvir-acyl 
glucuronide, into the predictive model brought the 
predicted inhibitory effect (AUC ratio of 0.97) closer 
to the observed value. This study shows that 
metabolites can significantly contribute to the DDI 
liability of the parent perpetrator compound and this 
may add uncertainty and complexity to the in vitro 
methods. In another recent study which examined the 
inhibition potential of faldaprevir, a selective 
inhibitor of hepatitis C virus NS3/4A protease, with 
major CYP isoforms [18], the DDI risk prediction 
based on [I]/Ki ratios was found to overestimate 
clinical effects while a net-effect model, which 
integrated other drug disposition and DDI 
mechanisms such as protein binding, gut and hepatic 
inhibition, provided more accurate prediction. The 
net-effect model predicted no interactions with 
faldaprevir for CYP2B6 and CYP2C9, and moderate 
inhibition for CYP3A4 (AUC ratios of 1.01, 1.02 and 
3.06 respectively), in consistent with the clinical 
studies which demonstrated AUC ratio changes of 
1.16, 1.29 and 2.92 for the three CYP isoforms 
respectively. On the other hand, the clinical effects 
were clearly overestimated using [I]/Ki values (2.41, 
3.68 and 3.95 respectively). This indicates that 
factors such as protein binding which affects 
‘enzyme-available’ inhibitor concentrations, as well 
as inhibition across multiple organs, could 
potentially complicate the predictive power of the in 
vitro models, and models that take the relevant 
confounding factors into account should provide 
better prediction for in vitro-in vivo scaling [19]. 
 
In silico APPROACHES 
Using the state-of-the-art computational methods, 
the binding orientation and interactions of a specific 
ligand in CYP active site can be predicted virtually, 
followed by quantitative structure-activity 
relationship (QSAR) analysis. The increasing 
number of well-resolved crystal structures of human 

CYP have contributed to the advancement of in silico 
molecular modeling and ligand docking in recent 
years [2, 20-23]. Ligand docking are made possible 
using various docking algorithms with different 
strengths and scoring functions, depending on the 
way the ligand is treated [24]. Validation of the 
molecular docking procedures is important to 
support reliable docking model for virtual screening 
[25]. Based on the postulated binding orientations 
and conformations, the possible interactions of the 
ligand with the active site residues of the enzyme can 
be elucidated, which provide insight into the binding 
specificity and mechanism of the enzyme towards 
the ligand [26]. Moreover, the docking models can 
provide quantitative information on the ranking of 
inhibition potencies of the inhibitors using the 
calculated interaction energy from each docked pose, 
which may complement the experimental data. 
QSAR analysis, on the other hand, attempts to relate 
chemical structures to the observed activities in a 
quantitative manner. ‘Descriptors’ are terms for the 
various calculated or measured properties and can be 
of many types (e.g., spatial, electronic, 
thermodynamic, conformational, topological and 
structural). These descriptors are ‘linked-up’ to 
generate equations or formulae to delineate 
structure-function activities in the CYP(s) under 
investigation [27-29]. 

Another computational approach involves the 
use of pharmacophore models that overlay ligand 
structures or their properties in 3D space in an 
attempt to elucidate the spatial, physical and 
chemical properties of CYP active or binding site. 
The models obtained are consensus structures that 
describe the electrostatic properties and size of the 
active sites, which are amenable for investigating 
detailed CYP-ligand interaction as well as structural 
modification of ligands to alter CYP binding [30]. 
Molecular dynamics (MD) simulation has emerged 
as an in silico technique that is increasingly used in 
CYP structure function analysis [31]. An important 
feature of MD is that it is able to simulate the flexible 
active site of CYPs in the order of nanoseconds time 
scale, thus accounting for the flexibility of this tool. 
The technique allows exploration of thermal motion, 
binding conformations and binding affinities of the 
ligands, as well as the motion, induced fit and 
conformational changes of CYP substrate access 
channel and active pocket [31-33]. With MD 
combined, docking result can be further 
strengthened. 
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Table 2 lists recent studies using the 
abovementioned tools in examining CYP-ligand 
interaction. As is apparent from the table, different 
in silico methods have provided valuable insights 
into the structural and molecular basis of such 
interactions, including the dynamic aspects of 
protein structure, structural flexibility and plasticity 
of the ligand binding and catalysis, binding affinity 
determination, as well as structure-function 
relationship of the interactions. With further 
advancement of the techniques and increase in 
computational power, it is envisaged that in silico 
methods, serving to complement experimental 
investigation of drug metabolism, can and will 
continue to provide invaluable information to deepen 
understanding of CYP-ligand interactions. 
 
 
 
 

PERSPECTIVE AND SUMMARY 
The currently available in vitro and in silico methods 
for investigating CYP-mediated metabolism and 
interaction represent important experimental 
approaches in drug research. In vitro and in silico 
data provide important input to guide the design of 
clinical drug interaction investigations, prediction of 
trial outcomes, and to influence dose adjustment in 
drug labels and clinical practice. The obvious 
advantages offered by these tools include lower 
human risk due to the rational design of clinical 
studies, and in the case of new chemical entities, 
compound attrition during development can be 
reduced, with associated cost and time savings. Cost 
and time savings are particularly clear and alluring. 
With the rapid advancement of the in vitro screening 
systems and computer power and technologies, 
thousands of new chemical entitles can be screened 
and tested in a short period of time. 
 

Table 2. Selected examples of in silico approaches for investigating ligand interactions of CYP enzymes. 

In silico approach CYP isoform(s) Major findings of the study Reference 

Protein-ligand 
docking 

CYP2A6 and 
CYP2A13 

A structure-function study of naphthalene, phenanthrene, 
biphenyl, and their analogues in interaction with CYP2A13 and 
CYP2A6 using ligand binding spectroscopy and molecular 
docking was undertaken. Spectral binding studies indicated that 
CYP2A13 induced type I binding spectra more readily with the 
examined chemicals when compared to CYP2A6. Molecular 
docking demonstrated correlations between ligand interaction 
energies (U values) for the chemicals with CYP2A13 and 
CYP2A6 and the spectral binding efficiencies (Amax/Ks ratios). 
Those compounds having higher spectral binding efficiencies 
(e.g., 2-ethynylnaphthalene, 3-ethynylphenanthrene and 2-
naphthalene propargyl ether) showed lower U values, whereas 
compounds which showed lower spectral binding efficiencies 
had higher U values. Data from this study support the 
applicability of molecular docking analysis in investigating the 
molecular interaction of xenobiotics with active sites of CYP 
proteins. 

[34] 

CYP3A4 This study examined the effect of methamphetamine on spectral 
binding, ligand docking and metabolism of protease inhibitors 
(PIs) with CYP3A4. The data suggested that methamphetamine 
did not alter the spectral change (Amax and Ks), CYP3A4 
inhibition, and substrate docking of type I PIs (PIs that showed 
type I spectral change in ligand binding spectral  assay) with 
CYP3A4. Molecular docking showed that there was no 
significant difference in the average interaction energies of the 
type I ligands in the presence and absence of methamphetamine. 
Moreover, there was no major conformational change in the 
active site of CYP3A4 with ligand binding in the presence of 
methamphetamine. On the other hand, methamphetamine altered 
spectral binding of type II PIs, ritonavir and indinavir, whereby 
Amax was decreased for ritonavir and Ks were reduced for both 
PIs. Furthermore, in vitro incubations using human liver 

[35] 
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Table 2. Continued… 
 
microsomes showed a decrease in ritonavir hydroxylation in the 
presence of methamphetamine. Subsequent CYP3A4 docking 
with these PIs showed that methamphetamine altered the ligand 
docking in consistent with the data of the spectral binding and 
metabolism studies. 

QSAR CYP1A2 A QSAR study was performed for 21 naturally occurring 
flavonoids using both 2D (topological, structural and 
thermodynamic) and 3D (spatial) descriptors to delineate 
structural basis for potent CYP1A2 inhibition. The generated 
QSAR models were of statistical significance both internally as 
well as externally. The derived QSAR equations suggest that 
double bond present at 2, 3-positions and the absence of hydroxyl 
substituent or glycosidic linkage at 3-position of the 1,4-
benzopyrone nucleus were critical for CYP1A2 inhibition. 
Furthermore, the phenyl ring present at 2-position of the 1,4-
benzopyrone ring should not be substituted with hydroxyl group. 
Additionally, hydroxyl groups present in the benzopyran nucleus 
at 5 and 7-positions should not be glycosylated for good CYP1A2 
inhibitory activity. 

[36] 

CYP2C9 and 
CYP2D6 

This study used human clinical data as a base to construct four 
QSAR models to recognize and identify substrates and inhibitors 
for CYP2C9 and CYP2D6. The models were used to screen a 
large data set of environmental chemicals and were able to 
identify and discriminate substrates and inhibitors of the two 
CYPs with high degree of concordance, specificity and 
sensitivity (66% - 88%). Compounds containing acidic functions 
and aromatic amines were generally predicted to be CYP2C9 and 
CYP2D6 inhibitors respectively. This supported the literature 
findings in general. Furthermore, a weak overrepresentation of 
polyaromatic hydrocarbons was seen among predicted CYP2C9 
active and Ames positive compounds, and the mutagenicity was 
predicted with a QSAR model based on Ames in vitro test data. 

[37] 

Pharmacophore 
modeling 

CYP2C19 This study aimed to synthesize and investigate a series of 
omeprazole-based analogues for inhibitory potency toward 
CYP2C19. A CYP2C19 inhibition pharmacophore model was 
built for the series, and additional analogues with inhibitory 
potency against CYP2C19 were designed based on the model. 
Upon identifying inhibitors for CYP2C19, ligand-based design 
was adopted to develop compounds with improved metabolic 
stability. A compound (compound 30) was identified to be a 
highly potent and metabolically stable inhibitor for the isoform. 

[38] 

CYP3A4 A pharmacophore model for CYP3A4 specific inhibitor was built 
based on the structure of ritonavir, a known CYP3A4 
pharmacoenhancer and inactivator. This study demonstrated that 
the H-bond donor/acceptor moiety, a flexible backbone, and 
aromaticity of the side group analogous to Phe-2 of ritonavir 
were important for CYP3A4 inhibition. Hydrophobic 
interactions at the sites adjacent to the haem and phenylalanine 
cluster were also pivotal in the ligand binding process. 
Furthermore, two compounds that were less complex than 
ritonavir but showed comparable inhibitory potency were 
identified. 

[39] 

Molecular 
dynamics 

CYP1A2 The inhibitory mechanism against CYP1A2 for oroxylin and 
wogonin, two biologically active flavonoids found in commonly  

[40] 



J Pharm Pharm Sci (www.cspsCanada.org) 20, 319 - 328, 2017 
 

 
 

325 

 
Table 2. Continued… 
 
used traditional Chinese herbal medicine, were investigated 
using molecular dynamics simulations together with molecular 
docking. The in silico simulations revealed that van der Waals, 
hydrophobic and hydrogen-bonding interactions were important 
in the inhibitory mechanisms of oroxylin. Oroxylin binding also 
induced a larger and more open binding site in CYP1A2-oroxylin 
complex compared to that of wogonin and –naphthoflavone, a 
potent CYP1A2 inhibitor probe. Unlike oroxylin, binding of 
wogonin and –naphthoflavone involved mainly hydrogen-
bonding as the predominant force. The different binding pocket 
architecture and binding mode have accounted for the relatively 
weaker inhibitory effect of oroxylin. 

CYP3A4 This study used molecular dynamics simulations, together with 
free-energy calculations, to investigate the positive homotropic 
cooperativity of ketoconazole binding in CYP3A4. The MD 
simulations demonstrated that the binding of the first 
ketoconazole molecule was able to increase the binding affinity 
for the second molecule. The major driving force for this binding 
was the shape complementarity through nonpolar van der Waals 
interactions. Furthermore, the calculated binding free energies 
were found to agree well with the values predicted from a simple 
2-ligand binding kinetic model. Also, the calculated values were 
broadly similar to the experimentally derived data.   

[41] 

 
 
As a consequence of high data throughput, the 
modest instrumentation requirements, and more 
efficient actual clinical study protocols, the overall 
cost of developing and maintaining in vitro and in 
silico programs generally is low or modest. 

Despite various advantages and benefits, the in 
vitro and in silico methods are not without their 
limitation and drawbacks. The drawback mainly 
stem from the complexities and confounding factors 
when extrapolating in vitro and in silico data to in 
vivo situations. A number of uncertainties and 
sources of bias and error in the in vitro methods have 
been demonstrated, including the inhibitor existing 
as enantiomers in vivo, the metabolites of the 
inhibitor also affecting the pharmacokinetic of the 
victim drug, uncertainties in estimating enzyme-
available inhibitor concentrations, cooperativity and 
allosteric regulation of CYPs, non-CYP 
determinants of metabolic clearance, and concurrent 
induction and inhibition [12]. For the in silico 
approaches, certain confounding factors may 
complicate the task of developing appropriate 
models. As an example, CYP3A4, known for its 
large binding site and ability to accommodate 
different binding modes of diverse chemical 
structures, necessitates complex modeling efforts  

 
and requires techniques to deconvolute the resulting 
mixed data content. Moreover, not only can small 
ligands interact as substrates or inhibitors, 
heteroactivation through a unique binding location 
within the CYP3A4 pocket can further complicate 
the modeling task [27]. In addition, the generally 
lack of complete information of stereochemical and 
conformational data of CYP protein and the 
structural characteristics of ligand, in particular, the 
structural information of the active sites of the more 
recently identified CYPs, have made the application 
of in silico methods restricted somewhat [27]. In a 
recent study whereby QSAR modeling of major CYP 
isoforms was utilized to predict likelihood of DDI for 
all possible binary combinations of marketed drugs 
[42], Zakharov and co-workers were able to 
demonstrate good accuracy of prediction (balanced 
accuracy exceeding 70% for more than 600,000 
combinations) using their developed models but felt 
that the accuracy of the models could be improved 
further if additional factors underlying DDI 
mechanisms such as concurrent inhibition and 
induction, non-CYP clearance and transport 
mechanisms and drug intrinsic pharmacokinetic 
properties could be integrated into the computational 
models. Lonsdale and his colleagues recently used 
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quantum mechanics/molecular mechanics 
(QM/MM) methods to examine mechanism of N-
hydroxylation of (R)-mexiletine by CYP1A2. They 
demonstrated that the calculated reaction barriers 
derived from QM/MM pointed to direct N-oxidation 
as the preferred mechanism over that of H-
abstraction/rebound. They further opined that the 
reliability of their results could be further enhanced 
by determining reaction barrier profiles for 
mechanism and spin state of more starting 
geometries of mexiletine during QM/MM modeling. 
This was however not practical due to high 
computational cost, indicating that running cost may 
restrain somewhat the extensive iterations needed for 
better predictive precision using in silico methods 
[43]. Taken together, the abovementioned 
complexities and confounding factors have affected 
to varying degree the applicability and predictive 
performance of current in vitro and in silico models. 

The challenge of developing the best possible in 
vitro and in silico methodologies will remain as more 
is learned about CYP enzymes and, as more data on 
ligand interactions with the enzymes are reported, 
existing tools and methods need to be validated, 
refined and additional tools will be created. These 
tools have aided greatly to better understanding of 
the nature of CYP-mediated metabolism and 
interaction, and their further expansion will continue 
to contribute to the process of drug discovery, 
development and ultimately safer and more effective 
pharmacotherapy. 
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