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ABSTRACT - Purpose: As per the US FDA guidance issued on June 2, 1995, the establishment of 
bioequivalence for topical dermatologic corticosteroids is based on comparing the pharmacodynamic (PD) effects 
of Test and Reference products at the dose duration corresponding to the population ED50, determined either by 
naïve pooled data or nonlinear mixed effect modeling (NLME). The guidance was introduced using a study case 
example where the expectation maximization (EM) NLME algorithm, as implemented in P-PHARM®, was used. 
Although EM methods are relatively common, other methods such as the First-Order Conditional Estimation 
(FOCE) as implemented in the NONMEM® software are even more common. The objective of this study was to 
investigate the impact of using different parametric population modeling/analysis methods and distribution 
assumptions on population analysis results. Methods: The dose duration-response data from 11 distinct skin 
blanching blinded pilot studies were fitted using FOCE (NONMEM®) and an EM algorithm (ADAPT5® 
(MLEM)). Three different Emax models were tested for each method. Population PD estimates and associated 
CV%, and the agreement between model predicted values and observed data were compared between the two 
methods. The impact of assuming different distributions of PD parameters was also investigated. Results: The 
simple Emax model, as proposed in the FDA guidance, appeared to best characterize the data compared to more 
complex alternatives. The MLEM method in general appeared to provide better results than FOCE; lower 
population PD estimates with less inter-individual variability, and no variance shrinkage issues. The results also 
favored ln-normal versus normal distribution assumptions. Conclusions: The population ED50 estimates were 
influenced by both the type of population modeling methods and the distribution assumptions. We recommend 
updating the FDA guidance with more specific instructions related to the population approach to be used (EM-
like versus FOCE-like methods) and to the normality assumptions that need to be set (ln-normal versus normal 
distribution).  
__________________________________________________________________________________________ 
 
INTRODUCTION 
 
Bioequivalence (BE) between a Test and Reference 
(Ref) product is mainly demonstrated using  
pharmacokinetic (PK) endpoints, such as the area 
under the curve (AUC) and  peak drug 
concentrations (Cmax), metrics that are related to the 
rate and extent of exposure of a moiety in the 
systemic circulation. For locally acting drug 
products that are not intended to be systemically 
absorbed such as those administered topically, 
bioequivalence may be demonstrated using 
alternative approaches. According to the US FDA 
1995 guidance (1), an in vivo pharmacodynamic 
(PD) endpoint is currently an acceptable surrogate to 

use for BE assessment of topical corticosteroid drug 
products. The PD response following application of  
a topical corticosteroid to the skin is its ability to 
produce a vasoconstriction of the microvasculature 
of the skin, leading to skin blanching at the site of 
application. The skin blanching response is then 
measured visually and/or with a chromameter and is 
expressed in terms of the Area Under the Effect 
Curve (AUEC). The use of this PD endpoint for 
demonstrating BE for topical corticosteroids 
presumes that skin blanching is sufficiently 
correlated with the clinical effect, so that two 
formulations that differ clinically will also differ in 
terms of skin blanching (2-6). 
___________________________________________________ 
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According to the US FDA 1995 guidance, the 
BE assessment of topical corticosteroids involves the 
conduct of two separate studies, a pilot and a pivotal 
study. As a first step, a pilot study is performed 
solely with the reference listed drug product to 
establish the response vs. dose-duration relationship, 
from which PD parameters for use in a pivotal BE 
study can be determined. To this purpose a topical 
corticosteroid formulation is applied to the skin of 
human subjects for differing periods of time, i.e. 
dose durations. To obtain the PD response for each 
dose duration, an AUEC is calculated over a time 
course after drug removal, with time 0 hour 
representing the time at which the residual drug 
product was removed until 24 hours later (AUEC(0-

24)). The calculated PD responses (AUEC(0-24)) are 
plotted as a function of dose duration to obtain the 
response vs. dose-duration relationship. The 
relationship is characterized in terms of an Emax 
model. From the relationship, population mean 
estimates of PD parameters (Emax and ED50) and 
other discriminative time points such as D1 and D2 
for use in the pivotal bioequivalence study are 
determined. Emax is the maximum PD response or, 
alternatively, defined as the maximum AUEC. ED50 
is the dose duration required to produce 50% of this 
maximum PD response. D1 and D2 are dose 
durations at which approximately 33% and 67% of 
the maximal effect is produced and are determined 
as half and double the ED50, respectively. Therefore, 
the calculations of D1 and D2 are directly influenced 
by the estimated value of the ED50.  

 Within a pivotal study, the BE of a multisource 
dermatologic corticosteroid is determined by 
comparing the skin blanching effect produced by the 
Test formulation to that of the Ref at the population 
ED50 estimate identified in the pilot study. This to 
ensure that the response attributable to this dose 
duration will fall within a sensitive log-linear region 
(20% to 80% of Emax) of the dose-response curve 
(7). To make sure that the study is sensitive, only the 
data from those subjects whose D2/D1 ratios of PD 
responses meet a specified minimum value of 1.25 
may be included in the BE assessment. A robust 
estimation of the ED50 from the pilot study is 
therefore crucial as it may not only affect the 
Test/Ref ratio of the PD response for BE assessment, 
but it may also impact on the overall sensitivity of 
the study in establishing BE. 

In order to characterize the response vs. dose-
duration relationship and to determine the population 
ED50 and Emax estimates, the US FDA 1995 
guidance recommends to fit the PD response data 
using either naïve pooled data or a parametric non-
linear mixed effect modeling method (NLME). But 
this latest method requires setting distribution 
assumptions, which are absent in the guidance. 
Naïve pooled data does not take into account inter-
individual variability when estimating population 
parameters. As a result, population estimates based 
on the naïve pooled data method poorly correlate 
with the observed data, may not accurately represent 
the study population (8, 9), and should thus not be 
the method of choice. A NLME is therefore the only 
option of first choice to be used for the determination 
of the population parameters of interest such as the 
ED50 and the Emax. However, there are gaps in the 
guidance concerning which NLME should or could 
be used. A case study was included in the guidance 
when it was issued, and the P-PHARM® software 
was used by the FDA to fit the skin blanching data to 
the Emax PD model. P-PHARM®, developed at the 
time by SIMED, was a software package 
incorporating the Expectation Maximization (EM) 
method for NLME modeling (10, 11). The EM 
method, pioneered by Alan Schumitzky and Walker 
(12), is an estimation method that is based on true 
likelihood estimation and is incorporated in a large 
variety of different software such as ADAPT-5® 
developed and supported by the Biomedical 
Simulations Resource (BMSR) at the University of 
Southern California, MONOLIX® by Lixsoft, 
Phoenix® WinNonlin® by Certara, L.P. (11, 13, 14). 
Despite this large availability of the EM method for 
NLME, the NONMEM® software and its FOCE 
method, originally developed by Beal and Sheiner, is 
often the method that scientists think of first in terms 
of NLME and is based on likelihood approximation 
(15-17). We therefore tested two main methods in 
this study; the EM algorithm as implemented in the 
ADAPT-5® software from D’Argenio & 
Schumitzky (9, 18) and the FOCE algorithm as 
implemented in the NONMEM® software.   

The availability of different population 
modeling methods is an advantage, as each has its 
own features and limitations. However, results from 
different population modeling methods can vary due 
to their different estimation approaches in data 
analysis (14, 19, 20). While some studies obtained 
different population mean estimates when using 
different population modeling methods (14, 17, 21, 
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22), some others found comparable results (11, 19, 
23). 

If employing different population modeling 
methods results in different population ED50 
estimates, divergent conclusions on BE 
documentation between topical corticosteroids could 
be made. Therefore, inconsistency in estimated PD 
parameters decreases our confidence in BE 
assessment results for topical corticosteroids. Lack 
of reproducibility and conflicting results from tape 
stripping in BE assessment of topical tretinoin gel 
formulations in two laboratories is the very reason 
which led to withdrawal of the FDA 1998 Draft 
Guidance for bioavailability and BE assessment of 
topical dermatological drug products (24) in May 
2002 (25-27). Hence, it is essential for regulatory 
agencies to update their guidance with instructions 
recommending more consistent approaches to be 
followed by pharmaceutical manufacturers. 

Similar to other FDA draft guidance documents, 
the 1995 Corticosteroids guidance is open to various 
interpretations, and alternative approaches can be 
used to estimate the PD parameters as long as they 
comply with the requirements of the regulations. The 
US FDA Guidance (1) recommends either NLME 
modeling or naïve pooled data method for skin 
blanching data analysis to determine the population 
ED50 and Emax. However, it does not specify which 
type of NLME modeling method should or should 
not be used, nor does it specify the necessary 
assumptions for distribution of the PD parameters 
that need to be set before such an analysis is 
conducted. Interestingly, in a letter published by 
FDA in 1998 (28) in response to Demana et al. (29), 
the absence of any consideration for the nature of the 
distribution (normal or ln-normal) of population 
parameters was mentioned among the reasons to 
discourage the use of naïve pooled data method. 
However, in the very guidance, no distribution 
profile was recommended to be assumed for PD 
parameters when using parametric NLME modeling 
method. Therefore, one can describe skin blanching 
data using different PD models, different fitting 
methods, and different distribution profile 
assumptions. 

As the ED50 is an essential component in 
influencing the BE evaluation of topical 
corticosteroids, its robust estimation is crucial. In 
this study, we therefore investigated whether 
different population modeling methods, and 
different basic fitting assumptions would lead to 
different population mean estimates of ED50 and 

Emax. At the time of this research, no other study 
with real clinical data had been found in the literature 
investigating the influence of the abovementioned 
factors on ED50 estimates for BE assessment of 
topical corticosteroids. In this study, the objective 
was to compare population PD estimates obtained 
from two different NLME population modeling 
methods as well as different assumptions, and to 
conclude whether one method/assumption should be 
prioritized over the other. To ensure practicality and 
objectivity, we based our analysis on real-life 
blinded clinical data sets; they were therefore not 
specifically designed to demonstrate differences 
among methods. The recommendations that we are 
putting forward may provide an opportunity for the 
FDA to update its guidance as well as  other 
regulatory agencies such as Health Canada and 
European Medicines Agency should they want to 
consider publishing guidances on the BE assessment 
of topical corticosteroids using this technique. 
 
METHODS 
 
Data Collected  
The data of each study included the PD response for 
each tested dose duration for one strength of an RLD 
cream formulation of a corticosteroid. 
Pharmacodynamic responses were measured in 
terms of AUEC (unit: scale*time) by means of a 
chromameter, which was then corrected for baseline 
and untreated control site for each dose-duration on 
ventral forearm. A total of 8-10 dose durations were 
used in each study and the tested dose durations 
ranged from a minimum of 3 min to a maximum of 
360 min. The number of subjects ranged from 16 to 
24. The skin blanching data were available from 11 
studies. The data were sent blinded in terms of 
patients and RLD products from Cliantha/Hilltop to 
Learn and Confirm. It was not possible for the 
scientists at Learn and Confirm to know what RLD 
products were tested, but it was mentioned that the 
same RLD was administered in two of these 11 
studies (Studies 6 and 11). 
 
Population Modeling/Fitting of the Response vs. 
Dose-Duration Data 
By use of PD models we attempted to produce the 
best fit of AUEC(0-24) versus dose duration data to 
characterize the response vs. dose-duration 
relationship from which population mean estimates 
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of Emax (scale*min) and ED50 (min) could be 
determined.   

For each study the AUEC(0-24) versus dose 
duration data were fitted twice using two different 
population modeling methods, the FOCE method as 
implemented in NONMEM® version VII and the 
EM method as implemented in ADAPT-5® MLEM 
version 5.0.53. In each method, the same dataset was 
fitted separately to three different Emax models, the 
simple Emax model as per the FDA guidance, and 
two modifications to it, an Emax model with Hill 
factor, and an Emax model with a minimum Dose-
Duration threshold. Goodness of fit measures were 
used for model discrimination. The best fitting 
model to the set of observations was selected and 
was consequently used to compare FOCE and 
MLEM. The methods were compared in terms of 
their agreement in population mean estimates of PD 
parameters and associated inter-individual 
variability (CV%), and the agreement between 
model predicted values and observed data. As 
parametric population modeling methods require 
certain distribution profile to be assumed, the impact 
of assuming ln-normal versus normal distribution of 
PD parameters on analysis results was also 
investigated. 

When using MLEM, each population analysis 
was run until 1000 population iterations with 
sampling methods (including important sampling) 
set at 2000. Results from each MLEM analysis were 
considered to have started attaining convergence 
when all PK parameter values had converged 
graphically (for example, if all PK parameters 
appeared to have reached stable values starting at 
population iteration 600). Then the log likelihood 
estimates for the following 200 population iterations 
at convergence (in the current example between 
population iterations 600 and 800) were studied and 
were verified to not vary between the minimum and 
maximum estimates by more than 1% for these 200 
consecutive iterations. The population iteration 
number at convergence was then chosen as the first 
population iteration within that set of 200 that 
resulted in the exact median convergence estimate 
(for example if the median value was 1290.20, then 
if the first population iteration that reached this exact 
value was 700, then convergence was set to be 
achieved at population iteration 700). Once the 
population iteration at convergence was determined, 
the MLEM analysis was re-run until this exact 
population iteration in order to get the population 

parameter values and their associated individual 
estimates (“post-hocs”). 

 
When using FOCE, the analyses were permitted 

to converge automatically by NONMEM® and 
results were only used if optimization was concluded 
successfully with a minimum of 3 significant digits.  

For both MLEM and FOCE, the values for the 
initial estimates (“priors”) per study for Emax and 
ED50 were set as the average of the last three AUEC 
values of all subjects and as the first tested dose 
duration, respectively. 

 
Structures of the PK-PD Models  
As mentioned earlier, the AUEC represents the 
estimate of the extent of PD response. Therefore, the 
effect (E) was represented as AUEC in the PK-PD 
models.    

Pharmacological effects being reductions in skin 
color, the baseline responses were higher than the 
responses seen following drug applications. 
Therefore, the AUEC versus dose duration curves 
have negative slopes, which are reflected by the 
minus sign in the Emax model equations. For all 
models and for all studies, AUECs are in fact 
baseline-adjusted control site-corrected AUEC(0-24), 
Emax is the maximum fitted value of AUEC, ED50 
is the dose duration required to produce 50% of the 
fitted Emax value, and Time represents each tested 
dose duration. 

Three different models were evaluated for their 
ability at best characterizing the observed AUEC 
data from all 11 studies. The simple Emax model, as 
recommended in the FDA guidance, was the base 
model to which two other Emax models were 
compared. The first one incorporated one additional 
parameter, a minimum effective dose duration 
threshold below which no effect could be seen. The 
second one was the commonly used “sigmoidal 
Emax” model and thereby also incorporated only one 
additional parameter versus the base model, the 
“Hill” coefficient. The formulas describing the three 
models are presented below:  

 
Base model (Simple Emax model) 

 

AUEC(baseline-adjusted) =0 - 
𝑬𝒎𝒂𝒙 .  𝑻𝒊𝒎𝒆

𝑬𝑫𝟓𝟎ା 𝑻𝒊𝒎𝒆
  (1) 

 
 

Base model with a Minimum Effective Dose 
Duration Threshold (“MIN”) 
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IF (TIME.LT.MIN) AND IF ((TIME-

MIN).LT.0) 
THEN Z= 0 
ELSE  Z=1 

 
AUEC(baseline-adjusted) = 0 -  

(
𝑬𝒎𝒂𝒙 .  (𝑻𝒊𝒎𝒆ି𝑴𝑰𝑵)

(𝑬𝑫𝟓𝟎ି𝑴𝑰𝑵)ା(𝑻𝒊𝒎𝒆ି𝑴𝑰𝑵)
).Z  (2) 

 
Sigmoidal Emax model 

 

AUEC(baseline-adjusted) = 0 - 
𝑬𝒎𝒂𝒙 .  𝑻𝒊𝒎𝒆𝑯𝑰𝑳𝑳

𝑬𝑫𝟓𝟎
𝑯𝑰𝑳𝑳ା 𝑻𝒊𝒎𝒆𝑯𝑰𝑳𝑳 (3) 

 
For each model, parameters fitted were 

associated with an inter-individual variability, and 
the residual variability was fitted using both a 
proportional and an additive error component. Due 
to convergence issues, the model with the minimum 
effective dose duration threshold could only be fitted 
in NONMEM® with an additive component error.  

 
Statistical Analyses 
 
This study investigated whether the PD parameters 
were better assumed as ln-normally or normally 
distributed. In the absence of a known distribution 
profile, non-parametric statistical tests at a 5% level 
of significance were used to compare the results (30). 
The Kruskal-Wallis ANOVA and the Wilcoxon 
Signed-rank tests were used to compare more than 
two independent groups and two paired groups, 
respectively (31, 32). To compare the frequencies of 
occurrence of a nominal variable (e.g. shrinkage) 
between two categories (in here, FOCE and MLEM 
methods), two-sided Fisher’s exact test was used 
(33). SPSS® version 25 (IBM Corp. 2017) and PSI-
Plot® version 8.8 (Poly Software International, Inc. 
2012, Pearl River, NY) were used for statistical tests 
and additional generation of graphs. 
 
Model discrimination 
According to the law of parsimony, the simplest 
model should be used preferentially over more 
complicated models if models fit the data similarly 
and the standard model discrimination criteria are 
similar between models (34, 35). The criterion 
determining the selection of the most appropriate 
model was the lowest observed value of the Akaike 
Information Criterion Test (9, 35) when using 
ADAPT®5 and the lowest observed value of the 

Minimum Value of the Objective Function (MOF) 
according to a chi-square distribution (p<0.05) (36) 
when using NONMEM®. 
 
Influence of Different Distribution Assumptions 
The impact of different distribution assumptions was 
investigated based on population mean estimates of 
PD parameters and their associated inter-individual 
variability in terms of coefficient of variation 
(CV%), and their distribution profile. This analysis 
was performed only with MLEM, as the distribution 
type must be chosen by the modeller prior to 
analysis. Therefore, each study dataset was 
presented to MLEM algorithm twice when using 
simple Emax model; once assuming normal and the 
other time ln-normal distribution of the PD 
parameters. This test was not conducted with 
NONMEM® with FOCE algorithm as the 
population mean estimate is a geometric mean. 

Population PD estimates and associated CV% 
were compared when normal versus ln-normal 
distribution were assumed.  

Distribution profiles of data were assessed both 
graphically and numerically for both assumptions. 
Histograms of PD parameters were generated for 
graphical assessment. As a numerical test for 
assessing normality, the Shapiro-Wilk test was used. 
 
Comparison of NONMEM® FOCE and 
ADAPT®5 MLEM Methods 
FOCE and MLEM methods were to be compared 
only on the most appropriate found structural model, 
and only when assuming that parameters were ln-
normally distributed. Population mean estimates and 
their associated inter-individual variability in terms 
of coefficient of variation (CV%), as well as the 
agreement between model predicted values and 
observed data (the quality of fit) from the two 
methods were compared. 

Residual variability and Goodness-Of-Fit (GOF) 
plots were used as the measures of the agreement 
between model predicted values and observed data. 
The scatterplots of “observed AUEC versus the 
corresponding post-hoc predicted values” (IPRED 
versus DV plot) and “weighted residuals versus 
population predicted AUEC values” (WRES versus 
PRED plot) were chosen as GOF plots. 

Ratios of PD estimates obtained from MLEM 
versus FOCE and their associated 90% confidence 
intervals (CIs) were calculated for each study. The 
two methods were deemed to be similar for specific 
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parameter estimation if their ratios and 90% CIs were 
completely within the range of 0.80 to 1.25 interval.  
 
RESULTS 
 
Model Discrimination 
The more elaborate models did not improve 
goodness of fit any further. Therefore, the simple 
Emax model was selected as the most appropriate 
model to characterize the data, out of the three 
different models tested. Results of the discrimination 
process are presented in Table 1. 
 
Influence of Different Distribution Assumptions  
Different distribution assumptions caused a 
statistically significant difference in population 
mean estimates of ED50 and Emax (P<0.05). 
Medians for population ED50 estimates were 96.7 
and 126.0 min and for population Emax estimates 
were 43.10 and 49.0 scale*min, when normal and ln-
normal distribution were assumed, respectively. 
Inter-individual variabilities around population 
mean estimates were significantly different when 

normal versus ln-normal distribution were assumed 
(P<0.05). Population mean estimates and associated 
CV% under normal and ln-normal distribution 
assumptions for each study are given in Table 2. 

No specific trend could be observed for 
distribution profile of population Emax estimates; in 
some studies distribution of Emax estimates was 
either normal or ln-normal and in the others neither 
of them, regardless of initial assumption. For 
example in study 1, Emax estimates were ln-
normally distributed while in Study 2 they were 
neither normally nor ln-normally distributed when 
ln-normal distribution was assumed.  

When ln-normal distribution was assumed, the 
histogram of population ED50 estimates displayed a 
ln-normal distribution. Shapiro-Wilk test results of 
ln transformed population ED50 estimates also 
confirmed the assumed distribution (Figure 1, panel 
a). When normal distribution was assumed, 
however, neither normal nor ln-normal distribution 
profile characterized the obtained ED50 estimates 
(Figure 1, panel b).  
 

 
Table 1. PD model discrimination. 

Model Ref. model Description 
No. of system 
parameters 

MOF 
Change in 
MOF 

Selected 
Model 

Base model   
''Additive+ 
proportional" 
error model                            

6 1062.6     

Base model + MIN Base model 
''Proportional" 
error model                                       

7 1063.7 
+1.1  
(<3.841, 
P<0.05) 

Base 
model 

Sigmoidal Emax 
model 

Base model 
''Additive+ 
proportional error 
model''                             

8 1070.9 
+8.3  
(<5.991, 
P<0.05) 

Base 
model 

PD model discrimination in FOCE based on Minimizing the Objective Function (MOF) according to a Chi Square 
distribution (P<0.05)  

  
 

Model Ref. model Description  
No. of system 
parameters 

AIC Selected Model 

Base  model   
''Additive+ 
proportional" 
error model                            

6 1395.8   

Base model + MIN Base model 
''Additive+ 
proportional" 
error model                            

8 1406.3 Base model 

Sigmoidal Emax 
model 

Base model 
''Additive+ 
proportional" 
error model                            

8 1396.9 Base model 

PD model discrimination in MLEM based on minimizing the Akaike’s Information Criterion (AIC) test 
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Table 2. Comparison of population mean estimates and associated inter-individual variability (CV%) of each study 
when different distribution profiles for PD parameters were assumed. 

Study 
Ln-normal distribution Normal distribution 

Geo Mean CV% Arith Mean CV% 

1 87.6 128 48.4 49.9 

2 255 169 188 57.1 

3 501 127 293 43.2 

4 38 134 32.6 50 

5 37.5 17 44.9 30.7 

6 126 120 124 50.7 

7 145 166 96.7 55 

8 235 91 161 34 

9 77 102 50.2 38.2 

10 33.7 166 44.2 70.9 

11 1220 160 611 49.4 
Data represents population geometric (Geo) mean and arithmetic (Arith) mean estimates with associated CV% for ED50 
(min). 

 
 

Study 
Ln-normal distribution Normal distribution 

Geo Mean CV% Arith Mean CV% 

1 35 19.3 30.2 48.8 

2 48.5 36.6 39.2 49.4 

3 82.8 26.7 55.1 40.8 

4 56 33.3 50.1 37.8 

5 16.4 76.1 22.1 62.6 

6 58 34.4 51.9 29.7 

7 57.1 6.31 43.1 38.7 

8 47.8 16.3 42.6 48.3 

9 53.3 8.64 43.5 28.9 

10 49 31.7 46 32.8 

11 30.6 11.7 22.9 51.4 
Data represents population geometric (Geo) mean and arithmetic (Arith) mean estimates with associated CV% for Emax 
(scale*min). 

 
  

As an additional evidence of distribution profile, 
the geometric mean/median ratios were compared 
with the arithmetic mean/median ratios of individual 
PD estimates. When ln-normal distribution was 
assumed, geometric means and medians of 
individual ED50 estimates appeared to be more in 
agreement with each other than their arithmetic 
means and medians, implying ln-normal distribution 
of ED50 estimates being more likely. In contrast, 

comparing the ratios for individual Emax estimates 
was unavailing under either assumption (Figure 2).  

 
Comparison of NONMEM® FOCE and 
ADAPT®5 MLEM Methods 
Assuming ln-normal distribution of PD parameters, 
the base model was used to compare FOCE and 
MLEM methods, as it was selected as the best fitting 
model to the set of observations. 
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Figure 1. The histogram of population PD estimates for study 1 (n=23). A, when ln-normal distribution was assumed. B, when 
normal distribution was assumed. 
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Figure 2. Ratios of arithmetic and geometric mean to the median of post-hoc PD estimates. A, when ln-normal distribution 
was assumed. B, when normal distribution was assumed. The perfect overlay of mean with median is denoted by the long 
horizontal line. 
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The NONMEM® FOCE and the ADAPT®5 
MLEM methods were found to result in differences. 
They disagree more often than not between each 
other, especially in terms of ED50 and associated 
CV% rather than Emax. Figure 3 shows the 
dispersion of the ratios of “PD estimates from 
MLEM versus PD estimates from FOCE” within the 
range of 0.80-1.25 interval. The 90% CI for the ratios 
of population Emax estimates from all studies, 
except study 11, fell within the range of 0.80-1.25 
which shows the general agreement between two 
population modeling methods in estimating 
population Emax estimates. However, the dispersion 
of the ED50 ratios showed that MLEM estimates in 
majority tend to be lower than FOCE estimates 
among which 90% CI for the ratios, in 5 out of 6 
studies, completely fell off the lower bound of the 
range (p=NS, n=11). Population mean estimates and 
associated CV% for each study are given for FOCE 
and MLEM in Table 3. 

PD parameter variances may be underestimated 
during the modeling process. When the post-hoc 
estimates are very close to the population values, the 

variance of post-hoc estimates distribution is 
shrinking towards zero and it becomes difficult to 
estimate the differences between subjects. This 
phenomenon is defined as η-shrinkage (shη) (36). 
When the data was fitted with FOCE, 6 out of 22 
variance estimates (27%) were associated with 
shrinkage issue (marked as bolded in Table 3), while 
there were no instances of this issue when MLEM 
was used. The number of shrinkage issues with 
FOCE was significantly higher than with MLEM 
(P<0.05, Fisher's exact test). For the purposes of this 
study, a severely underestimated variance was 
associated with an inter-CV<1%. 

In study 6 (n=16) and study 11 (n=24) the same 
RLD formulation was used to characterize the 
response vs. dose-duration relationship. Therefore, 
the variability in results of population analysis of 
repeated applications of the same RLD were 
determined and compared between MLEM and 
FOCE. Although MLEM appeared to be more 
reproducible, the variabilities in population mean 
estimates were too large with both methods.  
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Figure 3. Dispersion of the ratios of “PD estimates from MLEM versus PD estimates from FOCE” within the acceptance range 
of 0.80-1.25. Each point represents the ratio in each study and black solid bar represent 90% confidence interval for each ratio. 
Due to the greater variability of PD estimates of study 11, the dispersion profiles were also shown when excluding study 11. A, 
ratio of ED50 in all studies. B, ratio of ED50 in all studies except study 11. C, ratio of Emax in all studies. D, ratio of Emax in 
all studies except study 11. 
 



J Pharm Pharm Sci (www.cspsCanada.org) 21, 413 - 428, 2018 
 

 

 
   422 

There was no statistically significant difference 
in residual variability of the fitted model whether 
FOCE or MLEM were used (P>0.05). When the 
dispersion of the ratios of residual variability of the 
model from FOCE versus MLEM was generated, the 
ratio fell within the range of 0.80-1.25 in 10 out of 
11 studies (Figure 4), which implies that the residual 
variability was similar when different methods were 
used. In the meantime, GOF plots did not suggest 
any apparent differences between the two methods. 
In conclusion, comparative results of residual 
variability and GOF plots between FOCE and 
MLEM were indicative of the same overall quality 
of fit for both methods. 

DISCUSSION 
 
Although the BE assessment of many topical 
formulations still relies on establishing similar 
clinical efficacy in a comparative clinical study using 
clinical endpoints in patients, topical corticosteroids 
are the only exception for which BE can be assessed 
solely based on an in vivo PD study endpoint (i.e., 
skin blanching) in healthy volunteers. The response 
vs. dose-duration relationship for topical 
corticosteroids is demonstrated by application of one 
strength of drug formulation for varying durations of 
time as this method has the least manipulation of 
experimental parameters (37).

 
Table 3. Comparison of population mean estimates and associated inter-individual variability (CV%) obtained from two 
NLME modeling methods for each study. 

Study 
Base model Base model + MIN Sigmoidal Emax model 

Geo Mean CV% Geo Mean CV% Geo Mean CV% 

1 87.6 128 57.6 173 37 72 

2 255 169 252.9 169 1950 22 

3 501 127 192.1 121 122 63.1 

4 38 134 34.3 150 43.4 148 

5 37 17.6 62.6 83.4 35.4 16.7 

6 126 120 52.6 53.2 71 90.5 

7 145 166 124 177 102 156 

8 235 91 195 77.7 95.3 51.5 

9 77 102 74.5 116 53.6 80.7 

10 34 166 31.9 177 663 5.91 

11 1220 160 15.6 11.3 221 117 

Data represents population Geometric (Geo) mean estimates and CV% of ED50 (min) with MLEM.  
 

Study 
Base model Base model + MIN Sigmoidal Emax model 

Geo Mean CV% Geo Mean CV% Geo Mean CV% 

1 118 320 113 473 170 353 

2 219 318 219 320 2850 103 

3 373 103 346 63.0 153 95.6 

4 35.4 137 34.3 174 37.5 143 

5 34.9 0.55 35.3 0.55 15 751 

6 102 130 99.6 132 65.8 101 

7 140 247 118 439 146 247 

8 132 0.55 393 866 10.8 2603 

9 78.3 146 71 206 1.4 2.27E+14 

10 35.2 288 32.8 373 59.2 463 

11 8550 120 2150 250 524 74.3 
Data represents population Geometric (Geo) mean estimates and CV% of ED50 (min) with FOCE. The bolded values 
represent shrinkage. 
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The US FDA 1995 Guidance recommends 
characterizing this PD response in terms of an Emax 
model to determine population ED50 estimate. 
Correct estimation of ED50 is of particular 
importance as its value will affect validity of the 
consecutive pivotal study by directly influencing the 
shorter dose duration calibrator (D1= 0.5*ED50) and 
the longer dose duration calibrator (D2= 2*ED50). 

One of the biggest challenges associated with 
dose duration-response quantification for topical 
corticosteroids is the determination of the ED50 of 
the Ref product as it may not always be reproducible 
and of adequate reliability (37-40). Due to the 
importance of accurately estimating population 
ED50 in BE assessment of topical corticosteroids, 
this project aimed to investigate whether different 
population modeling methods and different basic 
fitting assumptions would lead to different 
population PD estimates, and whether a 
recommendation should be put forward for 
regulatory agencies to consider for updating and 
improving guidance documents on the BE 
assessment of topical corticosteroids. 

Given the availability of different types of 
NLME modeling methods, each study analyst could 
choose a different method for characterization of 
AUEC versus dose duration for skin blanching data. 
It may be acceptable for scientists to use different 
population modeling techniques if they result in the 
same estimates. We have, however, seen that this is 
not the case, and two of the most widely used 
techniques (e.g., NONMEM® FOCE, and 
ADAPT5® MLEM) result in significantly different 
ED50 estimates. Discrepancies may be indicative of 
some insufficiency in one or another method or some 
difficulty arising from a particular dataset, potency, 
the model, poor starting values, or other sources 
which require further investigation (17, 19, 21, 41, 
42).  Some difference in population mean estimates 
from MLEM and FOCE would be expected due to 
their different estimation approaches in data 
analysis, but the differences observed in this study 
were rather large as the ratios of the ED50 estimates 
were rarely within +/-20% of each other.
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The impact of population modeling evaluation on 
ED50 estimates was previously acknowledged by 
the US FDA (43). 

FOCE and similar estimation methods (FOCE-
like methods) implement the estimation of maximum 
likelihood (ML) to solve the nonlinear problems. 
Therefore, the population mean estimates from 
FOCE-like methods are based on model 
approximation and not true ML estimators (20, 44). 
In addition, FOCE-like methods first fit the data by 
obtaining population mean estimates followed by a 
conditional second step with individual data 
estimates (post-hocs) in an iterative fashion. The 
fixed effects and random effects are fitted 
simultaneously with respect to population mean and 
variability estimates as well as the residual 
variability (11, 45). MLEM and similar estimation 
methods (EM-like methods), on the other hand, 
compute maximum likelihood with an iterative 
approach that involves 2 repetitive steps; an 
expectation step (E-step) and a maximization step 
(M-step). Since the linear approximation is replaced 
by importance sampling-based estimation method, 
the parameters obtained are true/exact ML estimates 
(11, 20, 44, 46, 47). In the E-step, parameter 
variables are estimated using the latest predicted 
parameter values and the observed data (Bayesian 
estimation of the individual parameters). In the M-
step, parameter values are estimated and updated to 
maximize the log-likelihood function in the E-step 
(estimation of population parameters). These new 
values are then reused for the subsequent iteration 
(46, 47). In the MLEM algorithm, ML is combined 
with an EM algorithm (10, 11, 48-50). EM-like 
methods, similar to FOCE-like methods, fit the data 
in an iterative fashion, but in a different order; they 
first compute the individual estimates (post-hocs) 
followed by the population estimates.  

In this study, population PD analyses of topical 
RLD corticosteroid formulations were conducted for 
11 different PD effect study data, using two different 
population modeling methods and different 
distribution profile assumptions. A satisfactory 
model was developed in both methods based on 
goodness of fit measures (MOF and AIC) and 
residual variability. In both methods, the simple 
Emax model described the skin blanching data better 
than two modified forms of it which were tested in 
this study. In general MLEM appeared to provide 
“better” results than FOCE did. MLEM provided 
lower population PD estimates (Figure 3) with less 

variability, and no issue of variance shrinkage (Table 
3). 

The simple Emax model (hyperbolic model) as 
suggested by the FDA 1995 guidance remains at this 
time preferable to more complex/modified models. 
This is in agreement with previously published 
results. Demana et al. investigated the suitability of 
two different PD Emax models to describe skin 
blanching data as the result of topical corticosteroid 
application; simple Emax model and sigmoidal 
Emax model. They concluded the chromameter data 
were best described by the simple Emax model (29). 
Later on, other studies also found that sigmoidal 
Emax model did not improve the model fit (51, 52). 

Both FOCE and MLEM algorithms are designed 
to estimate the central tendency of population data 
using parametric methods (17). Therefore a certain 
type of distribution assumption is required to be 
made prior to performing the population analysis. 
Owing to the different shapes of them, the central 
tendency values of normal and ln-normal 
distributions vary; while in normal distribution the 
arithmetic mean and median overlay, in ln-normal 
distribution geometric mean and median overlay (53, 
54). As a consequence, different distribution profiles 
may cause difference in central tendency values, in 
our case, population mean estimates of Emax and 
ED50. The FDA 1995 Guidance does not 
recommend a particular type of distribution (normal 
versus ln-normal) to be assumed for running NLME 
population modeling. Based on our literature search, 
only two studies mentioned the type of distribution 
profile that they assumed within population analysis 
for fitting AUEC versus dose duration data (51, 52). 
Both studies assumed normal and ln-normal 
distribution for Emax and ED50 parameters, 
respectively. However, neither mentioned the basis 
for this choice. In this study, the distribution profile 
of data was assessed both graphically and 
numerically. The initial distribution assumptions 
significantly affected the population Emax and ED50 
estimates and associated CV%, as well as the 
distribution profile of population ED50 estimates. 
When ln-normal distribution was initially assumed, 
population ED50 estimates appeared to be ln-
normally distributed. When normal distribution was 
assumed, however, neither normal nor ln-normal 
distribution profile could be achieved. Investigating 
the influence of the two assumptions on distribution 
profile of population Emax estimates was 
unpersuasive. Given the fact that ED50 serves as an 
essential component in influencing BE evaluation of 
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topical corticosteroids, the results of analysis for 
ED50 estimates were prioritized in making a 
conclusion. The results, therefore, suggested that 
assuming ln-normal distribution of the PD 
parameters should be favored over normal 
distribution for skin blanching studies. 

Although not written in the guidance, lower 
ED50 estimates should be preferred to ensure that the 
comparison between a Test and Ref in pivotal study 
remains in the sensitive portion of the dose duration 
response curve. For this reason, the population 
modeling method which provided lower estimates 
was considered to be preferable in this study. 
Numerical comparison of the results of each study 
suggested that the estimates were different between 
the two methods. The dispersion of the ratios of PD 
estimates from MLEM versus PD estimates from 
FOCE (Figure 3) shows that ED50 estimates from 
MLEM in majority appeared to be lower than FOCE 
estimates. This is in agreement with previously 
published results. Staatz and Tett also found 
population mean estimates lower when they used 
EM-like versus FOCE-like method to fit the blood 
concentration–time data of orally administered 
tarcrolimus (17). Many other studies also reported 
different results from FOCE-like and EM-like 
methods (14, 21, 22), but none had used skin 
blanching data of topical corticosteroids.  

The estimated inter-individual CVs around each 
PD parameter by different methods for the same 
dataset may be indicative of the uncertainty 
associated with the population estimate of the PD 
parameter (55). Given the example provided in the 
1995 US FDA guidance, no data indicating the inter-
individual variability associated with the population 
ED50 estimate appears to be required by the agency. 
As a consequence one could never know the inter-
individual variability around the estimated ED50 
and, therefore, on the D1 and D2 time points. In this 
study, we assumed that a better population modeling 
method would be associated with detectable (e.g. No 
shrinking issues) but lesser inter-individual 
variability around the ED50 estimate. Results 
showed that inter-individual variabilities around 
population mean estimates generally appeared lower 
in MLEM than in FOCE and no variance shrinkage 
was observed with MLEM while it was an issue with 
FOCE. This finding was in agreement with the 
results previously found by Colucci et al (42). 
However, the CV% associated with ED50 estimates 
were significantly higher than CV% associated with 
Emax estimates for both methods (median of 

137.34% and 128.0% versus 25.27% and 26.70% 
when FOCE and MLEM were used, respectively). 
Given that we often “hear” that sponsors experience 
difficulties at determining the ED50 values in pilot 
skin blanching studies, the greater variability in 
ED50 estimates seen was not surprising. Tsai et al 
also found a higher CV% for population ED50 
estimates than for population Emax parameters (≈40-
90% versus ≈10-27%) in a dose duration-response 
characterization study for clobetasol 17-propionate 
(52). 

In this study, the same RLD formulation was 
used in study 6 and 11. Therefore population mean 
estimates obtained from the two studies were 
expected to be comparable. In contrast, a large 
difference was observed between the population 
mean estimates for both NLME methods, implying 
neither FOCE nor MLEM were of adequate 
reproducibility for this dataset. In two surveys 
conducted by FDA, one of which was on 88 ANDAs 
with vasoconstrictor BE studies submitted from 
January 1992 to April 2015 (56), high variability and 
lack of reproducibility and consistency in PD 
response/skin blanching data were reported alike as 
the difficulties with topical corticosteroids 
experienced by sponsors (39, 43, 51).  

Wide variation in residual variabilities of ≈30% 
to 250% was observed in our results with both 
methods; median residual variabilities with the Emax 
model were 61.89 and 67.20 when FOCE and 
MLEM were used, respectively, implying high 
uncertainty left after the data were fitted and 
therefore overall low degree of model fit to the Emax 
model. The literature search showed that the data of 
skin blanching study is inherently associated with 
high degree of variability. High variability in AUEC 
data have been found by many investigators (28, 30, 
38, 57, 58). In a study performed by Smith et al, there 
were extensively large standard deviations about the 
mean values of AUEC at each time point with no 
differentiation between the means. Approximately 
20-50% variability were found in skin blanching data 
(30). As such, an intra-individual variability of 60%-
139% was found in a study performed by Singh et al 
(51) which was inversely related to dose duration and 
to the potency of the dermatologic corticosteroid 
product. In a more recent study conducted by 
Lehman and Franz (58), variability ranging from 78-
126% were reported in the skin blanching data which 
were fitted to the Emax model. The authors, 
however, did not specify which fitting method was 
used. The variability in the mass of formulation 
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applied to the skin, different application sites along 
the forearm, chromameter probe manipulations, 
ambient temperature, relative humidity, posture, one 
application site for each dose duration, and adjusting 
the chromameter readings for the baseline are some 
sources contributing to the high variability in skin 
blanching data (29, 51, 59-61).  

In conclusion, this study demonstrated that using 
different population modeling methods and different 
assumptions regarding distribution of PD parameters 
affected the population estimation of the PD 
parameters and their associated variability. 
Regardless of the population modeling method used, 
more complex versions of the simple Emax model 
did not appear to be necessary to describe skin 
blanching data better. The study results suggested 
that EM-like methods may provide better population 
ED50 estimates of skin blanching data. It also 
suggested that ln-normal distribution should be 
assumed for the distribution of the ED50 parameter.  

As population ED50 estimates play a critical role 
in the BE assessment of topical corticosteroid 
products, any difference in estimated PD parameters 
could influence the outcome of BE evaluation for 
these products. Due to the availability of several 
methods for performing population modeling and 
their parametric approach in data analysis, updating 
the US FDA 1995 Guidance with more specific 
instructions related to the population approach and 
normality assumptions, would favor a more 
consistent approach to be followed by 
pharmaceutical manufacturers, and would increase 
the confidence in BE assessment results of these 
products.  
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