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ABSTRACT - The aim of this review was to describe the preferred charged nano-particles (CNPs) for targeted 
delivery in tumor cells. Zeta Potential (ZP), which represents the surface charge of NPs was highlighted in cell 
entrance and interactions. In this regard, various types of endocytosis pathways which are involved in NPs’ uptake 
were first introduced. Then, significance of positively charged NPs (PCNPs) in proton sponge effect 
corresponding to lysosomal escape was discussed. Cells prefer to endocyte the NPs with positive charge in passive 
targeting and gene delivery, while in active targeting; the charge of receptors’ ligand binding site 
determines the NPs cellular uptake. Moreover, pH-sensitive NPs represent charge reversible behavior depending 
on pH changes which leads to longer blood circulation residence and higher uptake at acidic microenvironment 
of the cancer media. Role of the CNPs in overcoming multidrug resistance (MDR) and bypassing p-glycoprotein 
was further investigated. 
_______________________________________________________________________________________ 
 
INTRODUCTION 
 
In recent years, using particles prepared by Nano-
technology is ever-growing in cancer diagnosis, 
treatment, and also in theranostic preparations. 
Nanoparticles (NPs) are able to deliver genes, 
pharmaceutical agents, proteins, peptides, and 
diagnostic agents (1). Targeted NPs possess further 
advantages compared to the traditional forms. They 
can guide the encapsulated agent to the special cell 
or tissue so the off-target side effects will be reduced. 
NPs can improve the oral bioavailability and 
preserve pharmaceutical agents against enzymatic 
degradation. In addition, they increase the solubility 
of less-soluble drugs as a matter of reduced size and 
increased surface area. NPs can also have a sustained 
release of the encapsulated agent at the target tissue 
(2). Despite the vast information regarding several 
NPs beneficial aspects in target delivery, the 
fundamental details about the molecular interactions 
of various NPs with specific cells are still remained 
unclear. Characterization of NPs specifications has 
high importance in target delivery. The physico-
chemical characteristics as well as composition, size, 
shape, charge and surface chemistry have to be 
explored in detail. Cellular entrance variables such 
as the intended cell type, cell treatment, nanomaterial 

cell incubation conditions, and the types of NPs, 
which all have undeniable effects on the amount, 
kinetics, and mechanism of uptake, have to be 
elucidated too. 

Transportation of vital substances into normal 
cells and drugs into target cells is a critical process. 
Nano-sized range proteins and pivotal ions are 
internalized into cells through channels of cell 
membrane lipid bilayer (3). Nano-sized 
Macromolecules and NPs containing therapeutic and 
diagnostic agents are delivered into cells by 
endocytosis. Endocytosed materials which are 
entrapped in lysosomes are not able to reach the 
cytosol (4). Instead, they are exposed to digestion by 
lysosomal enzymes. Thus, well designing NPs in 
targeting to the cell cytoplasm is essential for 
imaging and therapy goals (5), phototherapy (6) and 
drug targeting (7). There are different methods to 
transport NPs to the cytosol such as using 
chloroquine (8), direct microinjection of NPs into 
cells (9), use of electroporation (10), and connection 
of natural chaperons to NPs (11). 
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One of the most common ways in this regard is 
disruption of endosomes and cell entrance through 
the "sponge-effect" phenomenon by positively 
charged NPs (PCNPs) (12). However, crossing 
process of materials through cell membrane is a 
challenging issue. Most NPs, such as needle-shaped 
NPs, cell-penetrating peptides (CPPs) (13), very 
small molecules (14), and PCNPs (15) can penetrate 
through the cell membranes successfully.  

Recent studies showed that size of the NPs has a 
significant place in cellular absorption (16). 
However, inductively coupled plasma mass 
spectroscopy (ICP-MS) results have proved that zeta 
potential (ZP) which represents the surface charge 
has a more significant duty in cellular absorption of 
NPs (17). Understanding the electrostatic 
connections between NPs and cancer target cells has 
an important role in designing targeted NPs and 
predicting their cytotoxicity. 

Surface charge of cell membranes is negative 
(typically -40 to -80 mV) which facilitates delivery 
of PCNPs (18). Cancer cell surfaces contain strong 
negatively charged elements as well as chorionic 
gonadotropin, sialic acid and anionic residues of 
RNA as compared to normal cell surfaces which 
have more neutral zwitterion phospholipids (19). 
Furthermore, concentration of sodium ions inside 
tumor cells (20) and presence of anionic glycocalyx 
on the tumor cells, contributes to their low ZP (19). 
Therefore, PCNPs have a high tendency to 
accumulate in cancer cells (21). However, neutral 
and anionic NPs could also be taken up by tumor 
cells (22). 

Composition, size, and morphology of NPs in 
addition to surface charge have an inevitable role in 
their biologic behavior and cellular uptake. In order 
to explain the charge effect comprehensively, every 
other interfering contributors have to be excluded or 
remained constant. 

This review discusses the fundamental issues 
related to NPs and cancer cells ZP by diverse cellular 
uptake mechanisms; in continue the effects of ZP in 
charged NPs’ (CNPs) uptake into specific tumor 
cells are explained. In this regard, charge related 
uptake of metal, metal oxide, polymeric, lipidic and 
dendrimeric NPs in target delivery are discussed. 
Moreover, the uptake routes of neutral, anionic and 
cationic NPs in active and passive targeting are 
explained.  Molecular interactions of the CNPs with 
the cell membrane and the charge of receptors 
binding sites and their ligands are also reviewed in 
detail. 

The novelty of this work is evaluation of 
electrostatic interactions between specific cells and 
distinct CNPs regarding different strategies of 
passive targeted CNPs. Moreover, molecular and 
charge dependent interactions of specific receptors 
with actively targeted NPs decorated with specific 
ligands are discussed in more details which have not 
been reported before. 

  
Cellular uptake of CNPs 
NPs enter cells via various endocytosis routes, which 
are mostly affected by their charge and size. The 
surface charge of NPs is indicated by ZP which will 
be explained thoroughly in continue.  Surface charge 
of NPs affects their uptake by intra-cellular 
organelles and their lysosomal digestion. Charge of 
NPs determines the blood circulation time, uptake 
rate and the intended target cells. Different routes of 
NPs endocytosis, quantification of surface charge as 
ZP, and lysosomal escape of NPs will be discussed. 
Specific charged NPs have some advantages and 
disadvantages in targeted delivery, which will be 
further explained. 
 
Cellular uptake mechanisms of NPs 
Small molecules are mostly taken up by endocytosis 
(23). This pathway requires ATP to create vesicles 
through lipid bilayer wrapping. Phagocytosis (cell 
eating by phagocytic cells including macrophages, 
neutrophils, dendritic cells, etc. which engulf the 
particles larger than 1 μm) and pinocytosis (cell 
drinking, uptake of liquid and particles smaller than 
50 nm in diameter) are two categories of endocytosis 
mechanisms (24). The major subgroups of 
pinocytosis are adsorptive and receptor-mediated 
internalization. The second pathway is related to 
absorption of NPs through various routes such as 
macropinocytosis, caveolin-dependent/independent 
pinocytosis and clathrin-mediated pinocytosis (25). 

Clathrin- and caveolae-mediated endocytosis are 
dependent on specific protein–receptor interactions. 
NPs which are internalized by the caveolae-
dependent pathway can penetrate into the 
endoplasmic reticulum, while clathrin- mediated 
pathway entraps the NPs into endo/lysosomes (26). 
Figure 1 schematically illustrates various cellular 
entrance ways of the NPs. 
 
Different kind of NPs: hard, soft and hybrid 
There are vast number of NPs which have been 
prepared using verity of materials so far (31-35). 
Based on type of initial material used in NPs 
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fabrication, NPs are classified into soft, hard and 
hybrid ones. Soft NPs are composed of organic 
compounds which are soft materials such as 
polymers, lipids, proteins and cyclodextrin 
derivatives. Inorganic materials such as metals, 
metal oxides, metal hydroxides, silica and metal salts 
are primary materials applied for preparation of hard 
NPs. In some cases, hard NPs are coated with soft 
materials, resulting in hybrid NPs production. 
Examples of hard, soft and hybrid NPs are presented 
in Table 2 (36).  
Cell uptake studies in the presence of inhibitors help 
us understand the cell entrance mechanisms of NPs. 
For example, Amiloride is an inhibitor of 
macropinocytosis. There is no cellular uptake when 
Amiloride and NPs are added to the cellular culture 
plate confirming inhibition of macropinocytosis 
pathway (27). Therefore, macropinocytosis is the 
main uptake mechanism of these NPs. Other 
inhibitors for different uptake mechanisms are listed 
in Table 1. 
 
Surface charge of NPs  
When the particles are dispersed in the solution, 
formation of the interfacial charge causes 

rearrangement of the local free ions surrounding 
particles resulting in electrical double layer 
formation. Electrical double layer (EDL) around NPs 
is composed of a stationary layer and a diffuse layer 
(37). Stationary layer (compact layer) is composed 
of a thin layer of counter ions immediately next to 
the solid face (Stern layer) containing ions with 
opposite charge and some solvent molecules. 
Slipping plane is the outer plane of stationary layer 
(37). At potentials higher than 150 mV, slipping 
plane is shifted extensively from the particle surface 
and though ZP will not change anymore. That is 
because of the polar orientation of water molecules 
in the electric filed and their binging to the surface 
(38). The stationary layer is immobile; while the NPs 
in the solution are randomly moving. Thus, with the 
motion of materials in the solution, ZP does not 
change. ZP is the potential difference between 
slipping plane and solution medium (37, 39). ZP 
indicates the superficies charge of NPs, which affects 
the cellular absorption. Position of the stern layer, 
slipping plane and ZP are schematically shown in 
Figure 2. 

 

 
 
Figure 1. Schematic representation of NPs uptake mechanisms comprising phagocytosis, macropinocytosis, and endocytosis. 
Endocytosis mechanisms include receptor-mediated endocytosis, clathrin-mediated endocytosis, caveolin-mediated 
endocytosis, and clathrin-& caveolin-independent endocytosis.  
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 Table 1. Some inhibitors of different uptake mechanisms 
   Uptake pathway  Inhibitors Ref. 
Macropinocytosis Amiloride (27) 
Energy-mediated endocytosis  NaN3 (28) 
Caveolin-mediated endocytosis  Nystatin (29) 
Clathrin-mediated endocytosis  Chlorpromazine (29) 
Phagocytosis Cytochalasin-B  (30) 
Pinocytosis Colchicine (30) 
Clathrin-mediated endocytosis Dansylcadaverine  (26) 
Caveolae-mediated endocytosis fillipin (26) 

 
 
Table 2. Examples of different kinds of Soft/ Hard/ Hybrid NPs. 

Different kinds 
of NPs 

Examples 

Soft NPs 
(organic NPs) 

NPs of biodegradable polymers such as PLGA, PLA, PGA, PEG, PVAL  
NPs of non-Biodegradable polymers such as Polyacrylamide polymers 
Lipidic NPs such as Liposome, NLC, NE, SLN 
Cyclodextrin-based NPs 

Hard NPs 
(inorganic 
NPs) 

Metal, Metal oxide, Metal hydroxide, Metal carbonates, Magnetic NPs, Quantum dots and 
Semiconductor NPs such as Gold, silver, copper, ZnO, CuO 
Metal Salts NPs such as NaYF4, zinc phthalocyanine, LaF3:Ce3+, LuF3:Ce3+, CaF2:Mn2+, 
CaF2:Eu2+, BaFBr:Eu2+, BaFBr:Mn2+, CaPO4:Mn2+  
Silica (SiO2) 

Hybrid NPs 
(organic NPs 
coated by 
organic 
materials) 

Silica NPs coated with poly-(L-lysine) and hyaluronic acid 
Iron oxide NPs coated with polyacrilamide  
Magnetic NPs covered by chitosan 
NaYF4 NPs coated with poly(ethylenimine) 
Gold NPs with PEI coating 

 

Dispersion media can influence ZP and slipping 
plane shifting. In non-aqueous solvents with 
dielectric constants greater than 10, there is some 
ionization similar to polar media. This is while, in 
solvents with very low dielectric constant value ~ 2, 
electrostatic interactions are important (40, 41). 

There are different mechanisms that particles 
gain surface charge at aqueous media. These 
mechanisms include 1) Affinity differences of two 
phases to electrons 2) Ionization of surface groups 3) 
Different ion adsorption from electrolyte 4) 
Different ion dissolution from the surface of the 
particles 5) Surface anisotropy 6) Isomorph 
substitution (in clay materials) (39). Surface charge 
of particles is presented by ZP which is important 
parameter in 1) Characterization of the biomedical 
polymers (42), 2) Stability of the colloidal 
dispersions (In general particles will reach an 
established dispersion when absolute value of ZP is 
above ± 30 mV due to the electric repulsion between 
particles) (43), 3) Electro kinetic transport of 

particles (44) and blood cells (45), 4) Membrane 
efficiency (46) and microfluidics (47). As a 
conclusion measuring ZP is necessary for 
determination of surface charge. There are some 
methods for measuring this quantity including 
Streaming potential (48), Streaming current (49), 
Micro electrophoresis (50), Electro osmosis (51), 
Sedimentation potential (52), Light scattering (37) 
and Electro kinetic sonic amplitude (ESA) technique 
(53). 
 
CNPs and proton sponge effect 
Most of the PCNPs (like NPs containing poly 
ethylene imine (PEI)) cause an influx of chloride 
ions into lysosomes to maintain the charge in the 
constant level; which leads to osmotic swelling and 
rupture of the lysosomes, well-known as the “proton-
sponge” effect. As a result, NPs escape from 
lysosomal digestion which is sort of non-target 
localization, thus efficient delivery will be achieved 
(54). Lysosomal escape is important in 
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immunotherapy, because it can facilitate cross-
presentation of immune responses and cause 
activation of both CD4+ and CD8+ T cells, 
simultaneously. Therefore, it can break immune 
tolerance (55) and tackle intera-cellular pathogens 
like hepatitis C virus, Mycobacterium tuberculosis 

and HIV (56). Target site of various drugs such as 
doxorubicin and cisplatin is the nucleus (57). So, 
they should flee from lysosomal enzymatic digestion 
to be delivered into the nucleus successfully. PCNPs 
show efficient nucleus targeting. Figure 3 illustrates 
proton sponge effect schematically. 

 

 
 
Figure 2. Schematic offering of the electrical double layer containing slipping plane and Zeta Potential (ZP). ZP: the potential 
differences between slipping plane and bulk solution. Slipping plane: the outer plane of the stationary layer. Stern layer: 
composed of ions immediately next to the nanomaterial’s external face with the opposite charge of CNPs.  
 

 
 
Figure 3. Schematic representation of proton sponge effect. As positively charged particles are taken up by endosome, 
chloride ions and then protons and water molecules enter the endosome which result in swelling of endosome. Finally, the 
swelled endosome explodes and the NPs escape from digestion by endosomal enzymes. 
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Advantages and disadvantages of CNPs in target 
drug delivery 
Hydrophobic NPs and PCNPs show electrostatic 
adsorption tendency toward anionic proteins in 
plasma (such as hyaluronic acid and transferrin) (58) 
hence, they are suitable materials for 
reticuloendothelial system (RES) clearance. 
Negatively charged NPs (NCNPs) and hydrophilic 
ones like PEG-coated particles, escape from protein 
adsorption and RES clearance; therefore, they have 
a long time systemic circulation and possess more 
Enhanced Permeability and Retention (EPR) effect 
as compared to positive ones (59). Consequently, 
they are favorable for in vivo experiments as they 
have more tendencies to accumulate in the tumor 
site. However, the inefficient cell penetration of 
NCNPs restricts their final therapeutic performance. 
PCNPs have advantages as well as proton sponge 
effect, improved nucleus/cytoplasm delivery and 
higher cell entrance; but it is worth to note that they 
show lower blood circulation in higher ZP due to 
protein binding (60). Moreover, NPs with high 
cationic charge density show aggregation in 
microvasculature of some organs such as liver, 
spleen and especially the lung (61, 62). To overcome 
disadvantages of charge dependent targeted NCNPs, 
some strategies have been developed. pH-sensitive 
NPs are systems presenting negative charge in 
physiologic pH, but have the positive charge at 
acidic pH around the tumor cells. Therefore, they 
show long blood circulation and high cellular uptake. 
pH-sensitive NPs have both advantages of CNPs and 
overcome both of their disadvantages (63). Enzyme-
degradable surface charge inversion systems have 
also same characteristics and advantages like pH-

sensitive NPs (64). PCNPs have a significant 
advantage of higher and rapid cellular uptake but the 
disadvantage of elimination by RES in higher ZP. As 
a conclusion, particles with lower positive charge 
have longer blood circulation and higher 
entrancement to cells. Both CNPs with high positive 
and negative charge can be taken up by macrophages 
exhibiting lower blood circulation (65). All the 
above-mentioned characteristics are summarized in 
Table 3.  
 
Protein corona and CNPs 
For NPs located in blood plasma or other physiologic 
fluids, layers of proteins surrounding the particles are 
called “protein corona”. In the first step, the most 
frequently proteins coat the NPs; but after a while, 
they will be substituted by proteins with high affinity 
to NPs surface. This phenomenon is well known as 
Vroman’s effect (73). The composition of the corona 
changes over time because there are more than 3700 
proteins in blood circulation which are in 
competition to be adsorbed on the surface of NPs 
(74). The proteins which are adsorbed tightly on NPs 
and could not easily be desorbed from their surface 
are named “hard corona”. “Soft corona” is related to 
proteins which are adsorbed loosely on NPs surface. 
Soft corona also interacts with hard corona (weak 
protein–protein interactions) (75). This model has 
been suggested by Simberg et al. (76).  

Karmali and Simberg have reviewed that apo-
lipoproteins as hard corona, could not be coated on 
inorganic NPs, but usually they are adsorbed on 
polymeric NPs and liposomes (77, 78). Experimental 
researches have demonstrated that protein corona 
load increases by elevation of the NPs’ ZP.  

 
Table 3. Comparison of different NPs properties including cellular internalization speed\extent, RES clearance, protein 
binding, blood circulation time, proton sponge effect and promise organelle for delivery 

Activity Cationic NPs Anionic NPs pH sensitive NPs Ref. 

Cell uptake speed\extent High Low High (60, 63, 66, 67) 
 

RES clearance High Low Low (68) 
 

Protein binding High Low Low (63) 

Blood circulation time Low High High (60, 63, 68) 
 

Proton sponge effect High ----- High (60, 63) 
 

Promise organelle delivery Nucleuses, 
Mitochondria, 
Cytoplasm 

Lysosome, 
Cytoplasm (at 
low charge) 

Nucleuses, 
Mitochondria, 

(60, 67, 69-72) 
 



J Pharm Pharm Sci (www.cspsCanada.org) 22, 191 - 220, 2019 
 

 
 

197 

Proteins with pI <5.5 (such as albumin) are usually 
adsorbed on PCNPs, while cationic proteins (pI > 
5.5) such as IgG, have high affinity to be bound on 
NCNPs (79, 80). For example, complement (C1q) is 
adsorbed on anionic liposomes due to electrostatic 
interaction (81).  

Protein corona can be denatured by surface 
charge of NPs, but it has not seen in the case of 
neutral NPs (74). Protein corona composition of 
different NPs with the same charge differs from each 
other. For instance, the bound proteins on carbon 
nanotubes are different from that of silica and metal 
oxide NPs. Carbon nanotubes prefer to adsorb 
albumin; this is while SiO2, ZnO, TiO2 NPs show 
high affinity to other proteins (82). Albumin (pI = 
4.7) and fibrinogen (pI = 5.5) are the most abundant 
proteins which are adsorbed on many types of NPs. 
Albumin is anionic protein, so it has high affinity to 
cationic lipoplexes and polyplexes, but it can be 
bound on poly-anions and hydrophobic surfaces too 
(77). 

In addition to surface charge, the composition of 
NPs affects the identity of protein corona. 
Hydrophilic inorganic NPs, polymeric NPs and NPs 
with hydrophobic properties can be coated by 
kininogen (pI= 4.9), fetuin A (pI= 4.2-3.5), histidine 
- rich glycoproteins (histidine pI = 7.59), transferrin 
(pI= 5.2 to 5.9) and haptoglobin (pI = 5.5-6.2). 
Materials such as dextran and sugars which contain 
hydroxyl groups, can bind C3 complement (pI = 
6.29) (77). NPs which are coated with dextran have 
sugar moieties which are cases for binding Mannose-
binding lectins (MBLs). Dextran-coated NPs are 
recognized by antibodies too. Liposomes composed 
of phosphatidylinositol (PI) show specific 
interaction with serum mannose-binding protein 
(MBP) (PI= 5.39). There are compounds 
participating in soft corona composition (77). 
PEGylated NPs corona is considered as soft corona, 
having weak interaction with initial hard corona (83). 

Hydrophobic NPs contain more protein corona 
than hydrophilic ones which increase opsonization 
of hydrophobic NPs (79). For example, hydrophobic 
and negatively charged polystyrene NPs possess 
higher amount of protein corona than hydrophilic 
polystyrene NPs (84). Hydrophobic NPs have more 
protein binding sites that is because of forming 
clusters of the polymer chains which are named 
“islands” and act as protein binding sites (85). 
Liposomes composed of long lipid chain adsorb 
more proteins than liposomes with shorter chain 
(86). IgG and albumin have high affinity to 

hydrophobic NPs (87). Proteins of culture media can 
be adsorbed on PCNPs, change their ZP, and 
influence cell uptake (88). In summary, surface 
charge, Size, shape, composition, surface functional 
groups, and hydrophilicity /hydrophobicity of the 
NPs affect identity of protein corona. 
 
Importance of ZP in delivery of CNPs into tumor 
cells trough passive targeting rout 
Cancerous tissues can induce angiogenesis. These 
formed vessels are often leaky without basal 
membrane resulting in fenestrated endothelial with 
the pore sizes of 200–2000 nm which let penetration 
of macromolecules across the tumor cells (89). 
Furthermore, the lymphatic system has reduced 
drainage at cancerous tissues because of minimal 
distances between lymphatic endothelial cells 
leading to retention of NPs in the tumor 
microenvironment. This phenomenon is well-known 
as EPR effect which provides accumulation of NPs 
(10-200 nm) just around the tumor 
microenvironment but not around the normal cells 
(Figure 4). Targeting strategies EPR effect are 
classified in passive targeting class, although NPs 
containing target ligands accumulate in tumor tissue 
using EPR effect as well.   

Nonspecific interactions between PCNPs and 
negative charge of the cell membrane (ZP of MCF-7 
cells is -20.32 mV), play a pivotal role in endocytosis 
of NPs in passive targeting to neoplasm cells. 
Conversely, there are positive sites on cell membrane 
that interact specifically with NCNPs and make them 
to be internalized into cells in the form of clusters. 
All three cationic (90), anionic (90) and neutral (91) 
NPs can be taken up by neoplasm and normal cells 
(92); But PCNPs internalize more rapidly into cancer 
cells (15, 90, 93). Therefore, uptake of NPs into 
neoplasm cells is dependent on ZP; but in normal 
cells, it is not. Cellular entrance of PCNPs of metal 
oxide (ZP = +20.3 mV) coated with PEG-PEI (30.6 
nm); and NCNPs (-10 mV) coated with 
phosphorylated PEG (11.2 nm), into MDA-MB-231 
breast cancer cells showed that PCNPs had higher 
uptake into MDA-MB-231 cells (90). NCNPs of 
gold had slightly higher uptake as compared to the 
neutral ones (17).  Since ZP of the cancer cells is 
negative, the repulsive interaction between NCNPs 
and negatively charged cell membrane will repel the 
NPs internalization. Recent studies reported that 
there are cationic sites on the cell membrane which 
facilitate fusion of NCNPs with the cells (94).  
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Figure 4. Representation of enhanced permeation and retention of NPs in tumor area known as EPR phenomenon. Blood 
endothelial cells are leaky at the tumor site, which let penetration of NPs to the tumor milieu. However, the lymphatic 
endothelial cells are tight at the cancer site, which cause retention of the NPs at cancer site and prevent their departure from 
the surrounding tumor cells.  
 
 
Cerium oxide (CeO) NPs with the negative charge of 
-16.26 mV, have shown higher cellular entrance than 
PCNPs with +36.60 mV charge. That is for 
neutralization of cationic NPs by serum proteins in 
cell culture media. However, there are few positive 
parts for adsorption of anionic NPs on tumor cells 
(95).  

Wilhelm et al., have reported repulsive 
interactions between NCNPs and anionic portions on 
cell membrane (96); so NCNPs form clusters as they 
bind to positive sites of the cells. In addition, 
attachment of CNPs on cell membrane lead to 
reduced charge density and may help adsorption of 
other free particles (96). 

Type of ZP can influence both adsorption of NPs 
on cell membrane and their entrance into the cells. 
Adsorption process of all three GNPs with various 
ZPs is the rate-limiting step, which states the amount 
of internalized GNPs into SK-BR-3 mammary 
cancer cells. 

PCNPs attach to the anionic cell membrane and 
cells import them through endocytosis or via another 
internalizing pathway (97, 98). Meanwhile, cells 
tend to maintain their original membrane charge (99, 

100). As PCNPs attach to the cell surface; rigidity 
and morphology of the membrane will be changed 
(21, 97) and fluidity and permeability of the cell 
membrane will be increased (21). Then, under this 
condition; PCNPs will be internalized more easily 
than negative and neutral NPs into the cells. Poly 
caprolactone NPs with surface charge of +25 mV 
(due to the localization of drug on NPs surface) and 
size range of 100-300 nm were used for carrying 
tamoxifen into estrogen receptor (ER) positive cells 
of mammary tumor cells (101). Because of positive 
ZP of tamoxifen-loaded NPs, they were able to enter 
into the cells through non-specific endocytosis.  As 
described with examples in the passive targeting of 
NPs to mammary tumor cells, PCNPs have shown to 
be internalized more rapidly into the cells due to 
nonspecific interactions with the anionic parts of the 
cell membrane; whereas, NPs with negative charge 
were internalized into cells with different 
mechanisms. NCNPs alter ZP of the cell surface and 
enter cells in this way. ZP of normal mammary 
epithelial cells (MCF10A) and mammary tumor 
epithelial cells (MCF7) were decreased for exposure 
of negatively charged iron oxide NPs. ZP change 
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was due to internalizing cationic parts of the cell 
membrane through endocytosis. So, as shown in the 
results, NCNPs were internalized by normal cells 
more quickly than tumor cells. MCF10A normal 
cells possess ZP of -31.16 mV and are much more 
negative than MCF-7 cancer cells (-20.32 mV) 
(102).  

It was also shown that vesicles formed in 
MCF10A cells had bigger average size than those of 
MCF7 cells, because NPs are filled in the form of 
clusters in MCF10A vesicles; while, the fractured 
form of NPs are filled in MCF7 cells vesicles (102). 
In another study, Vanessa et al., have reported that 
uptake of iron oxide NPs into Caco-2 human colon 
cancer cells is increased, when surface charge of 
these NPs gets more negative. Also, NPs with more 
negative charge accumulate in larger vesicles. They 
concluded that non-specific cell uptake and cell 
interaction are responsible for internalization of 
highly negative surface charged NPs into cells (26). 
Arnida et al., have indicated that highly negatively 
charged GNPs as hard NPs, exhibit more cellular 
uptake into PC-3 cells, a human prostate cancer cell, 
than both positive PEGylated GNPs and less 
negative PEGylated GNPs (103). This phenomenon 
is due to presence of hydrophilic stealth coating 
around the PEGylated GNPs which present reduced 
interactions of NPs with cell membrane and result in 
reduced cellular uptake (104). In another study, 
NCNPs composed of Poly (methacrylic acid) and 
agmatine showed high cell uptake into A2780 
ovarian cancer cells (105). 

Two kinds of NPs using different polymers 
(containing cystatin) with the same particle size 
(250-300 nm) but different ZP were constructed and 
their cellular uptake into the lysosome of MCF-10A-
neoT cells have been investigated (70). PLGA (poly 
(Dl-lactic-co-glycolic acid) NCNPs (ZP: -22 mV) 
have shown higher cellular uptake compared to 
positively charged chitosan NPs (ZP: +36 mV). 
PLGA NPs exhibited hydrophobic surface 
properties, whereas chitosan NPs were hydrophilic 
(70). It is indicated that, NPs with hydrophobic 
surface show more “aggressive” behavior which 
make them more suitable for rapid cellular uptake. 
Also, there are non-specific hydrophobic 
interactions between NPs and cell surface which lead 
to endocytosis of hydrophobic NPs (101, 106, 107). 
Positively charged chitosan NPs did not exhibit 
inhibitory effect on cathepsin B due to higher 
hydrophilicity and swelling capacity. In the opposite 
side, PLGA NPs with negative charge could deliver 

cystatin to endosomes/lysosomes and inhibited 
cathepsin B (70). 

Surface charge type of NPs determines their 
internalization mechanisms into cells. Experimental 
studies showed that all three cationic, anionic and 
neutral dendrimers were taken up by A549 cells, but 
with various routes. Cell entrance mechanism of all 
three dendrimers by A549 cells line (alveolar type II 
cells) was fluid-phase endocytosis. Cationic and 
neutral dendrimers were taken up by non-clathrin, 
non-caveolae mediated mechanism because of 
electrostatic interactions or non-specific fluid-phase 
endocytosis mechanism. Anionic dendrimers mainly 
were taken up by caveolae-mediated endocytosis 
(108). Clathrin and caveolae pathways are involved 
in the endo-lysosomal phase (109). Hence as 
reported, cationic dendrimers were not transferred by 
lysosomes, but both anionic and neutral dendrimers 
were localized in the lysosomes (108). 

Cell membrane exhibits negative charge, thus 
cationic dendrimers showed strong adsorption to the 
cell surface and were rapidly endocytosed. Cationic 
dendrimers were taken up by adsorptive endocytosis 
by connecting to the negatively charged 
proteoglycans. Since neutral dendrimers do not have 
any net charge; they are presumably endocytosed by 
non-specific interactions such as hydrophobic and 
hydrogen bond interactions (110, 111). Similar to the 
linear macromolecules (112), anionic dendrimers 
penetrate cells by interacting with the positive sites 
on the cells.  

Zhan-Guo Yue and et al., prepared three kind of 
Chitosan-Based NPs (215 nm) with different ZP: 
positive NPs (39.25 mV), negative NPs (-45.84 mV), 
neutral NPs (0.51 mV); and then they investigated 
their cellular entrance to A549 cells. They found 
that: 1) Charge plays a considerable role in cellular 
entrance. PCNPs promote the speed and amount of 
NPs absorption. 2) Negative and neutral NPs prefer 
co-localization with the lysosome, while some of the 
PCNPs escape from lysosome and show peri-nuclear 
localization. PCNPs in the smaller size, directly 
internalize into the nucleus (113). Passive targeting 
of FITC-Chitosan NPs (194.7 nm, ZP = +35.5 mV) 
to A549 cells, showed that clathrin-mediated 
endocytosis was the predominant process of cellular 
uptake (114). 

There are studies showing that culture media can 
shift uptake mechanism to receptor mediated 
endocytosis. NPs can adsorb materials from culture 
media which act like ligands for specific receptors. 
NPs composed of carboxymethyl dextran and the 
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most negative charge NPs have shown receptor 
mediated endocytosis uptake into cells. There are no 
receptors for carboxymethyl dextran on Caco-2 cells, 
but presence of protein corona around NCNPs causes 
cellular uptake by clathrin- and caveolae-dependent 
pathways (26). In another study, NPs with 
hydoxylated dextran coat, because of interacting 
with EGF receptors internalize into cells through 
clathrin-mediated endocytosis. This pathway is 
activated by adsorption of ligands from culture 
media on NPs surface (115). Research demonstrated 
that Iron oxide NPs adsorb proteins from cell culture 
media and internalize into cells by receptor 
mediated-endocytosis like other metal and metal 
oxide NPs (82, 116). Uptake comparison of different 
CNPs is summarized in Table 4. 
 
Importance of ZP in gene delivery of CNPs into 
cancer cells 
Gene delivery to tumor site is highly challenging in 
tumor therapy because of lacking the suitable vector 

for carrying the desired gene by the intravenous 
route. Nucleic acids have negative charge; and are 
better incorporated into positively charged carriers. 
Some of the NPs containing nucleic acids (122), 
which are aimed to be delivered to the nucleus, have 
to penetrate both cytoplasmic and nucleus 
membranes which both have negative charge. Using 
PCNPs showing proton sponge effect together with 
endosomal escape capability will be an added 
advantage. Resultantly, using PCNPs is a successful 
approach for gene delivery. In the following, 
Characteristics of some NPs containing nucleic acid 
will be explained in detail. 

Recently, surface charge effect of oligo-deoxy-
nucleotides (ODN) and plasmid DNA with PPI 
(polypropylenimine) dendrimers and PPI-modified 
GNPs in cellular uptake by MDA-MB-231 breast 
cancer cells have been investigated (123). 
Experimental results showed that ZP is a more 
important factor in ODN cell internalization rather 
than particle size. 

 
 
Table 4. Entrance comparison of the CNPs to neoplasm cells. As a matter of surface charge, PCNPs show higher uptake to 
the tumor cells compared to neutral and NCNPs; and NCNPs demonstrate more uptake than neutral NPs to these kinds of 
cells.  

NPs composition Cell line Average particle 
size (nm) 

Comparison of cellular uptake base 
on NPs charge (mV) 

Ref. 

Magnetite NPs MCF-7 40 +9.4 > -8.3 (15) 
Magnetite NPs HUVEC (normal 

cell) 
40 +9.4 = -8.3 (15) 

MnFe2O4 NPs MDA-MB-231 30.6 (+NPs) 
11.2 (-NPs) 

+20.3 > -10 (90) 

Gold NPs SK-BR-3 17.7 +20 > -10 > -4 (17) 
Lanthanide-doped 
upconversion NPs 
(UCNPs) 

MCF-7 87-108 +50.5 > +45.5 > +35.4 > –37.9 (117) 

PLGA NPs lysosome of MCF-
10A neoT 

250-300 -22 > +36 (70) 

ZnO (zinc oxide) NPs A549 24 +25 > -44.6 (118) 
Chitosan-Based NPs A549 215 +39.25 > -45.84 (113) 
Dendrimers A549 --- Cationic > anionic > neutral (108) 
Cerium oxide (CeO) NPs A549 3–5 (-NPs) / 8–10 

(+NPs) 
-16.26 > +36.60 (95) 

GMO-chitosan and 
PLGA-PVA NPs 
 

DU145 201-233 +12.5 > -8 in blank NPs 
-0.9 > 10 in drug loaded NPs 

(119) 

Gold NPs PC-3 cells 30-90 -22 > -18> +24 
Non-PEG-NPs > PEG-NPs 

(103) 

Polymeric NPs Caco-2  45, 90 +22 > -19 (120) 
Mesoporous core-shell 
silica NPs 

Ocar8 cells 74, 125 +24.5 > -31.2 (121) 

Polymeric NPs A2780 5 Cationic > anionic (105) 
GMO : glyceryl monooleate, PLGA: poly(glycolic-lactic) acid     
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On the other hand, NPs produced with G1 (+5.6 mV), 
G2 (+5.2 mV) and G3 (+6.5 mV) dendrimers have 
significantly lowered cellular uptake compared to 
those produced with G4 (+12.1 mV) and G5 (+17.7 
mV) dendrimers for the lake of insufficient positive 
ZP (123). The diameter (and height) of the NPs 
produced with G2 to G5 dendrimers were 74 nm (17 
nm), 98±20 nm (21 nm), 42 nm (14 nm), and 71 nm 
(20 nm), respectively. GNPs modified G3 dendrimers 
(ZP = +34.1 mV), have shown feasible uptake into 
MDA-MB-231 cells for high positive ZP (123). 
Gene delivery of acylated chitosan gold NPs (Nac-6-
Au) modified with immobilized DNA plasmid into 
MCF-7 cancer cells is also a charge dependent 
process. These NPs with the average size of about 
15.34 nm and ZP of +20 mV are delivered into MCF-
7 cells (124). Low particle size and positive ZP lead 
to successful penetration of these NPs into cells. 
Cationic vectors can efficiently condense and protect 
the gene, so the preferred charge for NPs which are 
used in gene delivery is positive. 

Rajagopal Ramesh et al., designed cationic 
liposomes (300–325 nm) carrying therapeutic cancer 
suppressor genes: p53 and FHIT, which are 
frequently altered in lung cancer. DOTAP- 
cholesterol is a cationic agent, which was applied in 
these liposomes. This formation caused their high 
cellular entrance into human non-small carcinoma 
cell lines H1299 (p53null/FHIT2) and A549 
(p531/FHIT2). They suppressed tumor development 
in vivo both in local and systemic administration 
(125).  

Gene vector namely FA-SPE-PEG constructed 
from Folic Acid (FA), Spermine (SPE) (endogenous 

tetra-amine involved in eukaryotic cell metabolism) 
and PEG is another NP system with the particle size 
of 56 nm and ZP of +7.22 mV. This vector showed 
high loading efficiency and gene protection from 
degradation by nucleases. Furthermore, these NPs 
exhibit selective and high entrance towards FR-
overexpressed A549 cells. Because of low cationic 
charge, FA-SPE-PEG NPs showed low cytotoxicity 
in normal cells (126). PCNPs are also promising 
vectors for gene delivery in Glioblastoma, Hela, 
Cos-1 and U 937 cells (88, 127-129). More examples 
of vectors for gene delivery to different cells are 
shown in Table 5. 
 
Importance of ZP in targeting of pH sensitive NPs 
to cancer cells 
pH sensitive NPs have charge switchable property 
when are exposed to different pHs (136). NPs with 
reversible surface charge can be used as promising 
carriers of drugs to tumor cells. Their surface charge 
will be changed to desired positive charge around 
acidic media of the tumor cells or inside endosomes 
and lysosomes. These NPs are anionic and repel 
from the cell membrane, so are engineered to switch 
positive charge at acidic media. pH-sensitive NPs 
exhibit positive charge at acidic tumor environment 
and negative or neutral charge in physiologic pH; for 
that reason, they pose higher cellular uptake by 
cancer cells rather than normal cells due to the 
electrostatic interaction with surface of the 
negatively charged cell membrane. In some cases, 
pH-sensitive materials of the NPs are cleaved at the 
slightly acidic medium of intracellular organelles 
and result in drug release in intracellular media 

 
Table 5. Some NPs used as gene delivery vector to cancer cells. PCNPs are a promising vector for gene delivery. 

NPs Average diameter 
(nm) 

ZP (mV) Cell line Ref. 

Dendrimers 71±21 +34.1 MDA-MB-231 (123) 
N-acylated chitosan gold NPs 15.34 +20 MCF-7 (124) 
Polymeric NPs 60 +30 MCF-7 (130) 
Self-cross-linked glycol chitosan NPs 269.8 +7.7 MCF-7/ADR (131) 
Polymeric pH sensitive NPs 94.5 +30 MCF-7 (58) 
Reduction-sensitive linear cationic click polymer 150 +10 MCF-7/ADR (132) 
Liposomes containing P53 and FHIT 300-325 positive H1299, A549 (125) 
PEG-NPs 56 +7.22 A549 (126) 
Hollow mesoporous silica nanospheres 140 +28 H1299 (133) 
Nano lipid carrieras (NLC) 157 +15.9 A549 (134) 
Multi-functionalized carbon dots 143.1 +25.7 H460 (135) 
Polymeric NPs 10 - 100  +7 - +31 Cos-1 (127) 
Polymeric NPs 980 +24 HeLa  (128) 
Liposomes ---- positive A172 (129) 
Polycationic peptide NPs 143 +18.58 U 937 (88) 
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(137). In inflamed cells, the extracellular pH (6.5–
7.2) is slightly lower than that of normal cells (pH = 
7.4) (138). Involving active targeting moiety 
(specific ligand-receptor interaction) in drug 
delivery of pH-sensitive NPs, increases cell entrance 
efficiency. 

For example, morpholino-terminated 
dendrimers with the average size of 9 nm, show 
surface charge-tunable property. Their ZP changes 
from -8 mV at physiologic pH to +14 mV at acidic 
tumor pH due to the protonation of morpholino 
group at acidic pH. Finally, their cellular uptake and 
blood circulation time will be increased and their 
cytotoxicity will be decreased (66). In another 
example, neutral charge (-1.91 mV) of the rigid pH-
sensitive micellar nano-complex (RPN) containing 
DOX switches to positive charge (+10 mV) around 
tumor media; resulting in rapid accumulation of 
DOX around nucleus area of the MCF-7/ADR cells 
for the synergistic effect of EPR and lysosomal 
escape. RPN shows pH-sensitive properties (67). 
Dual-functional liposomes with pH-responsive Cell-
Penetrating Peptide (CPP) and active targeting 
hyaluronic acid (HA) were prepared for targeting to 
A549 cancer cells. These NPs (enriched with 
arginine and histidine) had negative charge (-20 mV) 
in physiologic pH but they exhibited positive charge 
(27.45 mV) in acidic pH around the tumor (139).  

HA is able to be hydrolyzed by hyaluronidase 
(HAase) in tumor matrix; in this way, CPPs with the 
positive charge would be exposed to the tumor media 
and facilitate effective uptake of NPs into the cancer 
cells. HA-CPP liposomes exhibit high cellular 
uptake via EPR effect (140) and for affinity to HA 
receptors (CD44 and RHAMM) (141, 142). When 
CPP coated liposomes were internalized into the 
cells followed by entrance into the endosomes and 
lysosomes, the imidazole group of histidine in CPP 
induces proton sponge effect and leads to 
endosomal/lysosomal escape. In general, cell 
membrane is negative due to anionic carboxylates, 
phosphates and sulfates presence on the cell 
membrane which causes electrostatic interaction 
with PCNPs (143). 

Erlotinib and DOX containing NPs (80 nm) are 
another examples of pH-sensitive carriers (71). At 
extracellular acidic pH of tumor, surface ZP of these 
NPs changes from negative to positive (pH = 7.4: ZP 
= -38 mV, pH = 6.5: ZP = 4.5 mV, pH = 5.5 and 4.5: 
ZP = 22 mV) due to the protonation/deprotonation of 
the amino group of histidine and carboxyl group of 

hexahydrobenzoic acid (144). This provides stronger 
positive charge which facilitates cellular uptake via 
energy-mediated macropinocytosis pathway. 
Imidazole group of histidine in these NPs, as 
mentioned before, exhibits proton sponge effect and 
leads to endosomal escape and cell nucleus entrance 
(71). Similar results have been reported for different 
types of pH-sensitive NPs to liver cancer cells (145, 
146). Other examples of pH sensitive NPs are 
summarized in Table 6. 
 
Importance of ZP in overcoming multidrug 
resistance in cancer cells using CNPs 
Multi-Drug Resistance (MDR) is an important 
problem in chemotherapy of cancer cells expressing 
ATP binding cassette (ABC) transporters. These are 
transmembrane proteins with the function of 
pumping toxins and drugs out of the cells which 
block the apoptosis pathway (151, 152). P-
glycoprotein (P-gp) membrane proteins are encoded 
by MDR gene family; which is well known as ABC 
transporters (153). P-gp effluxes hydrophobic and 
positively charged xenobiotics like DOX and 
paclitaxel out of the cells; and reduce the 
chemotherapy efficiency (154-156). D188 (Aspartic 
acid in the position 188), E353 (Glutamic acid in the 
position 353), E782, and D997 are residues close to 
the membrane surface and are located outside the 
perimeter of the intracellular domain helices of P-gp 
inside the chamber. These residues have negative 
charge and show electrostatic interaction with the 
positively charged drugs (157). 

Hence, utilizing NCNPs which are internalized 
by endocytosis and cover positive charge of the 
drugs is a useful approach to overcome MDR (158). 
P-gp among ABC transporters category have same 
characteristics as well as multi-pass transmembrane 
portions and using ATP to shuttle materials across 
the membrane (Figure 6).  

P-gp is over-expressed in the malignant tissues 
of almost 40-50% of mammary neoplasm patients; 
so that is a promising target which should be 
considered in nano-system designation (159, 160). 
To conquest MDR, many researches have been done. 
One of them is using NPs which internalize into cells 
via endocytosis (161). NPs with different charges 
have been used for this purpose. 
 
There are two main approaches to conquest MDR 
using NPs which are discussed in the following: 
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Table 6. Some examples of pH-sensitive NPs delivered into cancer cells. These NPs with different compositions have 
negative charge at physiologic pH and positive charge at tumor microenvironment pH.  

NPs composition Average 
diameter 
(nm) 

Cell line ZP at 
physiologic pH 
(mV) 

ZP at tumor 
acidic pH 
(mV) 

Ref. 

Liposome-cpp-HA --- A549 -20 +27.45 (139) 
Mesoporous silica NPs 80 A549 -38 +22 (71) 
Morpholino-terminated 
dendrimers 

9 MCF-7 -8 +14 (66) 

Rigid pH-sensitive micellar 
nano-complex (RPN) 
containing DOX 

50 MCF-7/ADR -1.91 +10 (67) 

PMLA-PEI-DOX-TAT@PEG-
DMMA* 

108 A549 -16.33 +10.81 (147) 

Lipid Polymer Hybrid (LPH) 
NPs containing DOX 

200 MCF-7, and MDA-
MB-231 cells 

negative positive (148) 

PLGA-PVA-paclitaxel 195 MCF-7 −31.6 positive (149) 
Smart liposomes 134 A549 -10 +15 (150) 
Polymeric NPs 250-2000 HepG2 -15 +13 (145) 
Polymeric NPs 210 HepG2, A549  -5.26 positive (146) 

*PMLA: Poly (β-L-malic acid), TAT: Transactivator of transcription, DMMA: Di-methoxy-methamphetamine 
 
 
 
 

 

Figure 6. Bypassing P-gp efflux by endocytosed NPs. Cationic and hydrophobic drugs are pumping out of the cells by ABC 
transporters. Positively charged particles enter cells by aqueous channels and carriers. Hydrophobic drugs inter cells through 
phospholipid bilayer with simple diffusion. Anionic drugs and endocytosed NPs containing cationic drugs bypass P-gp efflux. 
(ABC transporter images were adopted from protein data basis (PDB).) 
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Gene delivery by MDR silencing agents such as 
siRNA to silence MDR  
Nucleic acid delivery in order to silence P-gp 
encoded gene is one of these strategies. NPs with 
efficient gene delivery property possess positive 
charge. For instance, polymeric complex NPs were 
used to deliver both paclitaxel and survivin in order 
to overcome paclitaxel resistance in A549 cells. 
These NPs with the size of 150-180 nm and ZP of 
+20 mV have shown efficient gene transfer to tumor 
cells (162). In another example, Polymeric NPs with 
the average size of 295.3 nm and ZP = +40.8 mV 
down regulated Stat3 and killed the pulmonary 
tumor cells effectively (163).  

Gene transferring by cationic NPs (+4 mV) to 
overcome MDR was achieved using liposomes (500 
nm). These carriers contain DOX and siRNA which 
target MRP1 and BCL2 mRNA and then block the 
pump and non-pump H69AR cellular-resistance, 
respectively (164). So in this approach, NPs with the 
positive charge will be applied. PCNPs play two 
important roles. First, they are the promising vectors 
for nucleic acids delivery such as siRNA due to 
attraction between positively charged vectors and the 
anionic nucleic acid. As a result, this leads to 
excessive nucleic acid loading and efficient therapy. 
Moreover, the tendency between anionic cell surface 
and PCNPs helps them to be internalized into cells 
via endocytosis and bypassing P-gp efflux (131). 

In a recent study by Yin Q. et al., cationic poly 
amino esters were used for co-delivery of MDR-1 
and Survivin-targeting RNA. Polymeric NPs had the 
average size of 60 nm and ZP of +30 mV. They were 
composed of polymers, which were administered as 
a co-delivery system of iMDR-1-shRNA and 
Survivin-shRNA. The fabricated nano-sized 
particles caused down-regulation of the P-gp and 
Survivin expression in MCF-7 cells (130).  

Delivering MDR-1 siRNA using self-cross-
linked glycol chitosan NPs also was accomplished to 
dominate MDR. These NPs were composed of Pgp-
targeted poly-siRNA (psi-Pgp) and thiolated Glycol 
Chitosan polymers (tGC). Psi-Pgp-tGC NPs with the 
average size of 269.8 nm and ZP of +7.7 mV, 
exhibited high entrance into Adriamycin-resistant 
MCF-7/ADR cells, resulting in down-regulated P-gp 
expression (131). Delivery of DOX with psi-Pgp-
tGC NPs led to increased cytoplasmic/nuclear DOX 
accumulation and efficient drug therapy due to 
overcoming MDR (131). 

Polymer coated AuNPs are pH sensitive NPs, 
which deliver siRNA into MCF-7 cells, in order to 

gene silencing and reducing MDR1 expression. 
These NPs were made of PEI (polyethyleneimine), 
PAH (poly (allylamine hydrochloride)-citraconic 
anhydride) and AuNP-CS (gold nanoparticle coated 
with chitosan). The average size of these NPs was 
94.5 nm and the ZP was about +30 mV (58). Under 
the acidic condition, anionic PAH-Cit hydrolyzes 
and changes to cationic PAH (165). Structure of NPs 
is destroyed layer by layer, and the siRNA releases 
to the cytoplasm. Amino groups with the positive 
charge on PAH induce proton-sponge effect and lead 
to inhibition of lysosomal ingestion of siRNA. This 
is a critical step in siRNA delivery for MDR1 
silencing (58). MDR1 is P-gp encoding gene; hence, 
corresponding delivered siRNA should be released 
in the cytoplasm to silence specific cellular mRNAs. 

Gene delivery via reduction of sensitive linear 
cationic click polymeric NPs to reverse MDR using 
siRNA to silence the expression of P-gp is also a 
charge dependent process. These NPs with the 
average size of 150 nm and ZP of +10 mV have been 
used as a vector to deliver plasmid iMDR1-pDNA 
and Adriamycin (ADR) into drug-resistant MCF-
7/ADR cells. shRNA expressed by pDNA; targets 
MDR-1 gene (iMDR1-pDNA), thus reverses MDR. 
As a result, P-gp expression was suppressed and 
ADR accumulation and cytotoxicity against MCF-
7/ADR cells were enhanced (132).  

In conclusion, PNNPs play a critical role in 
endosomal escape and efficient delivery of siRNA, 
in order to silence MDR1. This event blocks P-gp 
and increases the absorption of chemotherapeutic 
drugs. 
 
Drug delivery by CNPs to overcome MDR and 
efficient delivery of cationic drugs  
As mentioned above, P-gp pumps cationic materials 
out of the cells. So, overcoming MDR by anionic 
particles seems to be an effective performance. 
Negatively charged carriers are mostly used for 
encapsulation of these materials. 

Wei-Ting Huang et al. prepared NPs with 
different surface modification strategies and 
different negative charges. These polymeric NPs 
(with the average particle size of 100 nm and ZP of -
3 mV) consisted of amphiphilic carboxymethyl-
hexanoyl chitosan (CHC), cisplatin, and the MDR-
suppressing Chinese herbal extract: demethoxy-
curcumin. They were bio-functionalized by CD133 
antibody for enhanced uptake by A549-ON lung 
cancer stem-like cells (CSC) (166).  
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DOX and Resveratrol were co-encapsulated in 
modified PLGA NPs; which were then delivered to 
MDA-MB-231/ADR cells (DOX-resistant, estrogen 
receptor negative, mammary adenocarcinoma cell) 
and MCF-7/ADR cells (DOX-resistant, estrogen 
receptor positive, mammary adenocarcinoma cell). 
These NPs inhibited the expression of MDR proteins 
like P-gp, MRP-1, and BCRP and overcame DOX 
resistance and also promoted apoptosis through 
down-regulating the expression of NF-κB and BCL-
2. Their average size and ZP were 170 nm and -15.5 
mV, respectively (167). 

Polymer-lipid hybrid NPs (PLN) with the 
average size of 290 nm and ZP of -23.1 mV showed 
cellular uptake via phagocytosis pathway. Uptake of 
these NPs was evaluated in two Pgp-overexpressing 
mammary tumor cell lines (a human cell line: 
MDA435/LCC6/MDR, and a mouse cell line: 
EMT6/AR1). DOX-PLNs largely accumulated in 
EMT6/AR1 cells rather than 
MDA435/LCC6/MDR1 cells, due to the high-level 
expression of P-gp on EMT6/AR1 cells (30). 

Simultaneous delivery of DOX and GG918 
(Elacridar) by PLN have also reported to improve the 
cure of multidrug-resistant mammary malignancy. 
These NPs with the size range of 187 to 272 nm and 
ZP of -20 mV had higher uptake into human MDR 
breast cancer cell line MDA435/LCC6/MDR1 (168). 
GG918 have MDR reversal activity (169). 

EGFR-targeted nano-carriers are used as 
combination delivery system of 
Paclitaxel/Lonidamine to treat MDR in human breast 
tumor cells. These NPs with the average size of 
139.6 nm and ZP of -29.6 mV showed high 
internalization into mammary tumor cells due to 
EGFR targeting property (170). Lonidamine inhibits 
the Warburg effect and induces mitochondrial 
binding of pro-apoptotic Bcl-2 proteins. Paclitaxel 
stabilizes microtubules and EGFR-peptide targets 
NP system to EGFR overexpressed MDA-MB-231 
cells; as a result, the whole system overcame MDR 
in these cancer cells (170). 

pH-sensitive NPs show a negative charge at 
physiologic pH and a positive charge at acidic pH 
around the tumor so they will interact with the 
negative surface of the cells followed by 
endocytosis. Rigid pH-sensitive micellar nano-
complex (50 nm) containing DOX (Dox\RPN), had 
ZP of -1.91 mV at physiologic pH and +10 mV at 
acidic pH (pH = 5.6) around tumor (67). PNNPs with 
the average size lower than 50 nm have shown 
passive targeting property and penetrated the tumor 

through EPR phenomenon. Dox\RPN had a positive 
core (PLGA) and neutral shell. After internalization 
into lysosomes of cancer cells; its pH sensitive shell 
dissociated and the positive core of PLN induced 
lysosomal escape. Lysosomal escape effect and 
higher cellular uptake synergistically led to 
accumulation of Dox\RPN around the nucleus area 
of MCF-7/ADR cells and prevailed DOX resistance 
(67). 
 
Importance of ZP in active targeting of NPs into 
cancer cells 
The aim of active targeting is accumulation of NPs 
in target sites like tumor location and reduction of 
drug exposure to normal cells. Therefore, the output 
of therapy will be increased and the adverse effects 
will be reduced (171). For fabrication of targeted 
delivery systems, NPs are conjugated to targeting 
ligands and then they will be destined to special 
receptors on target cells (172).  

In active targeting, there are specific and strong 
dual interactions between ligand and receptor (173, 
174). Furthermore, some receptors have significant 
surface charge and show electrostatic interactions 
with ligands which are decorated on NPs surface 
(175-179). Hence, in targeted delivery, CNPs can be 
internalized into the cells depending on receptor 
binding site charge (180, 181). Receptor-mediated 
endocytosis is the main uptake mechanism of the 
active targeted NPs.  

Charge of ligands and receptors’ binding sites 
can be defined with isoelectric point (pI) (182, 183). 
Molecules have a positive charge at the pHs lower 
than pI, and negative charge at pHs higher than pI. 
At the pH = pI, molecules are neutral. Electrostatic 
interactions between CNPs decorated by specific 
ligands with opposite charge of the receptors, lead to 
attachment of NPs on the cell membrane and their 
internalization into cells via receptor-mediated 
endocytosis which is the main uptake mechanism of 
the active targeted NPs (184, 185). In the following 
sections, some important receptors and organelles 
which have attracted attention in targeted delivery of 
NPs will be explained in this regard. 
 
Targeting of CNPs to cancer cells overexpressing 
CD44 receptor 
CD44 (a type 1 transmembrane glycoprotein) 
(GenBank accession no. P16070), is the biomarker 
of tumor stem cells and an overexpression of 4−5 
fold, is the early sign of cancer metastasis (186). 
CD44 can activate signaling pathways such as Rho 
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GTPases, Ras MAPK and Pi3K/Akt; which are 
involved in cancer progression (187). The binging 
site at extracellular domain of CD44 consists of 
arginine and lysine residues, which possesses a 
positive charge (175-177). 

Hyaluronic acid (HA) is used as targeting agent 
to CD44 and cells expressing receptor for HA-
mediated motility (173, 174). HA is negatively 
charged molecule that show electrostatic attraction 
with CD44. NPs containing HA ligand can interact 
with positively charged aforementioned binging site 
of CD44 and guide their cellular uptake via receptor-
mediated endocytosis (188).  

For example, IC87114 loaded polymeric NPs 
modified by HA with average size of 200 nm and ZP 
of -10 mV, exhibited higher uptake into MDA-MB-
231 with moderate CD44 expression (189). In 
another study, NPs composed of HA-HPCD/ADA-
PEG (HA: hyaluronic acid, HPCD: HP-β-
cyclodextrin, ADA: 1-adamantane carboxylic acid) 
with negative ZP (−14 mV) were delivered into 
A549 cells successfully (181). These NPs contain 
hyaluronic acid (HA) as a specific ligand, which is 
recognized by the CD44 receptor. Carboxyl groups 
of HA on Dox-loaded NPs are responsible for NPs’ 
negative charge.  
 
Targeting of CNPs to cancer cells overexpressing 
Folate receptor  
Folate receptors (especially FRα (GenBank 
accession no. P15328)) are one of the common 
receptors overexpressed on many tumor cells (190, 
191). This receptor is found on the cell membrane, in 
secreted form, in the endosome, in the cytoplasmic 
vesicles, and in the clathrin-coated vesicles. Folic 
acid binding site at extracellular domain have a 
positive charge at pHs below pI (178); pI = 10.8, 
8.76. Folate receptor has high tendency to folate and 
folic acid analogues and conducts receptor-mediated 
endocytosis. At acidic pH of the endosome, folate 
receptor triggers a conformational change which 
strongly reduces its affinity to folates (178, 192-
195). Two negatively charged carboxyl groups of 
Folic acid specifically stick to the positively charged 
ligand-binding pocket of the receptor. There are 
negatively charged sites in the extracellular domain 
of the receptor which are involved in non-specific 
interactions of the receptor with positively charged 
parts of the folic acid molecule containing amine 
groups (178). Hong Yuan et al. have prepared SLNs 
(dv = 369.3) containing folate to improve cytotoxicity 
and cellular uptake by FR mediated endocytosis. 

These SLNs (ZP = 32) were used to deliver 
paclitaxel to A549 cells line (196). As another 
example, MP\Alg–Ccm AuNPs constructed from 
Curcumin (Ccm) and Methotrexate (MTX) were 
conjugated to a biopolymer as a stabilizer. These 
NPs use active targeting pathway to penetrate into 
MCF-7 cells due to the presence of the "anti-folate" 
drug, MTX. The NPs’ ZP was -25.8 mV and their 
average size was 187 nm (197). Folate receptor and 
reduced folate carriers are two systems which are 
involved in MTX internalization (198). MCF-7 cells 
have both carriers and MTX exhibits more affinity to 
reduced folate carriers (199). 
  
Targeting of CNPs to tumor cells’ mitochondria 
Mitochondria are the primary site of cell apoptosis 
induction. Hence, targeting them with therapeutic 
agents such as radiotherapy agents is an important 
approach in cancer therapy. Recent studies showed 
that NPs modified with TPP (Tri-Phenyl-
Phosphonium) which is the mitochondria targeting 
domain accumulate extensively in mitochondria 
(200, 201). Therefore, TPP is the active targeting 
ligand for delivering modified NPs into the 
mitochondria.  Mitochondria are the most negatively 
charged organelles in the cells, and since TPP has 
positive charge; so an electrostatic interaction with 
mitochondria are established (202). Hence, NPs 
containing TPP will enter the mitochondria 
successfully. 

In interesting study, three kinds of AuNPs, with 
negative charge (40 nm, -44 mV), positive charge 
(45 nm, +53 mV) and positively charged modified 
by TPP (50 nm, +45 mV) were prepared. Cellular 
uptake of prepared NPs into MDA-MB-231 cancer 
cells and MCF-10A normal cells were investigated 
(203). PCNPs (both positive AuNPs and TPP-Au 
NPs) enter to MDA-MB-231 cells about two folds 
more than MCF-10A cells. However, uptake of 
NCNPs into both cells was the same (203). All three 
NPs internalized into cells by endocytosis pathway. 
Negatively charged AuNPs remain in endosomal 
vesicles but positively charged AuNPs escape from 
endosome (204, 205) due to the proton sponge effect 
and were mainly found in the cytosol. TPP-AuNPs 
indeed accumulate in the mitochondrial 
intermembrane space of cancer cells due to the 
presence of TPP targeting agent and positive charge. 
Since TPP-Au NPs prefer to internalize into cancer 
cells; normal cells encounter with lower damage 
(203). 
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Targeting of CNPs to cancer cells expressing 
nucleolin receptor 
Nucleolin receptor (NR) (GenBank accession no. 
P19338) is the major nuclear protein seen in the 
growing eukaryotic normal cells. It can be found in 
nuclear chromatin and pre-ribosomal particles. NR is 
overexpressed on most tumor cells, but there is 
limited expression on the normal cells. Therefore, 
NPs containing ligands specific for NR have high 
cytotoxicity on cancer cells than normal cells. This 
receptor has net negative charge (pI = 4.6) at tumor 
pH (6.5-7.2). On the other hand, N-terminal domain 
of this receptor possesses negative charge (179). 
AS1411 is a DNA aptamer which binds to nucleolin. 
AS1411 forms a stable G-quadruplex (Guanine) 
structure, which contributes to specific attachment of 
the DNA aptamer to the nucleolin (179). Guanine 
with pKa = 9-10 has the positive charge, that shows 
electrostatic interaction with the negatively charged 
domain of the receptor. Accordingly, NPs containing 
AS1411 will show higher uptake into NR expressing 
cells. 

Polymeric porous silicon NPs modified by 
methotrexate (MTX) and DNA aptamer named 
AS1411, have shown increased cellular fusion by 
NR-positive MDA-MB-231 cells. These NPs 
internalize into the cells using receptor-mediated 
endocytosis due to NR interaction with AS1411 and 
MTX interaction with folate receptor (206).  
 
Targeting of CNPs to cancer cells expressing 
HER2 receptor 
HER2 or Neu, ErbB2 (GenBank accession no. 
P04626) is a membrane tyrosine kinase that is 
overexpressed in about 20% of breast cancers and in 
some ovarian and gastric cancers. High 
multiplication and anti-apoptosis signals are the 
major drivers of tumor development for this subset 
of breast tumors. HER2 is not a high-affinity ligand 
(207). Herceptin (also known as trastuzumab) is a 
monoclonal antibody against HER2 which targets 
and inhibits activation of HER2. There are three 
loops with residues of 557–561, 570–573 and 593–
603, which are located at the C-terminal section of 
domain IV in HER2 structure. Herceptin binds 
HER2 by these three loops. Interaction between 
Herceptin and HER2 with first (pI = 8.3) and third 
(pI = 8.46) loop is essentially charge dependent, 
while the second loop makes hydrophobic contact 
with Herceptin (208). Thus, NPs containing 
Herceptin will have high cellular uptake to HER2 
expressing cells.  

For example, active targeting to HER2 receptor 
overexpressing SKBR3 cells using Herceptin 
modified silica NPs have shown higher cellular 
entrance. These NPs had the average size of 54 nm 
and ZP of -44 mV (209).  
  
Targeting of CNPs to cancer cells expressing 
transferrin receptor 
Transferrin receptor (TfR) (GenBank accession no. 
P02786) is a homo-dimeric type II transmembrane 
protein, with a small cytoplasmic domain, a single-
pass transmembrane portion, and a large 
extracellular domain (210). With the exception of 
highly differentiated cells, TfR is present on the 
surface of many cells but their levels vary greatly. 
TfR is highly expressed on cells which are active in 
hemoglobin synthesis, placental tissue, immature 
erythroid cells, and rapidly dividing cells, both 
normal and malignant (211). Expression of TfR in 
tumor cells is greater than normal cells (two- to ten-
fold) (212, 213). Hence, NPs containing Tf would 
show active targeting property. 

Iron-transferrin complex is recognized by TfR at 
physiologic pH. After endocytosis, iron releases 
from the complex at the acidic pH of endosome and 
iron-free transferrin tightly binds to the TfR (214). 
Therefore, Tf can tightly bind to TfR at acidic pH 
around the tumor.  

There are two binding sites on TfR, which bind 
to N- and C-lobes of Tf. The N-lobe of Tf binds to 
its binding site on TfR in a nonspecific way; while, 
C-lobe interacts with the receptor specifically. Leu 
619, Arg 623 of helix α1, Arg 629 of helix α2, and 
Gln 640, Try 643, Arg 646, Phe 650 and Arg 651 of 
helix α3 are the residues in the helical domain of 
TfR, which are conducting by the C-lobe of Tf. 
These portions have a positive charge (pI = 10.84) 
and establish electrostatic interaction with the 
negatively charged portion of the Tf C-lope. The 
residues in the C-lobe positioned close to the helical 
domain of TfR are His 349, Arg 352, Leu 353, Asp 
356, Glu 357, Ser 359, Val 360, Glu 367, Glu 369, 
Ser 370, and Glu 372 have a negative charge (214) 
(pI = 3.9). Leu 122, Tyr 123, Trp 124, and Asp 125 
of the protease-like domain and Asn 662 and Glu 664 
of the helical domain are residues of TfR which are 
involved in the binding with N-lobe of Tf. These 
residues have a negative charge (pI = 3.67) which 
interact electrostatically with the N-lobe of Tf. The 
residues in the N-lobe positioned close to TfR are 
Pro 142, Arg 143, Lys 144, and Pro 145 of the N2 
domain, and Tyr 71, Leu 72, Ala 73, and Pro 74 of 
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the N1 domain. These portions have a positive 
charge (214) (pI = 9.01). Dual interactions between 
C-lope of the Tf and its binding site on the TfR is 
specific, and the predominant positively charged 
patch of the TfR and the negatively charged patch on 
the C-lobe of the Tf are involved in receptor-ligand 
connection. Briefly, negatively charged C-lope of Tf 
interacts specifically with the positively charged 
portion of TfR, while the positively charged N-lope 
of Tf interacts non-specifically with the negatively 
charged portion of TfR (214). Accordingly, NPs 
containing Tf ligand can be used in active targeting 
to cells expressing TfR. Dual-functional magnetic 
NPs with the average size of 184 nm and ZP of -16.7 
mV show higher uptake into MCF-7 cells. These 
NPs transfer Doxorubicin (DOX) and transferrin 
antibody to MCF-7 cells for treatment and imaging 
purposes (215). Studying on gene delivery to A549 
cells using Tf coated NLC (157.3 ± 4.9 nm, ZP = + 
15.9 ±1.9 mV) including plasmid-containing 
enhanced green fluorescence protein (pEGFP), 
showed increased cell internalization via receptor-
mediated endocytosis (134). 

 Targeting of CNPs to tumor cells expressing lectin 
receptor 
Targeting of endogenous ligands with different 
carbohydrate moieties such as mannose, galactose, 
fructose, and lactose are mediated by Lectin 
receptors (216). These receptors are over-expressed 
on macrophages of the brain, splenic, alveolar, 
peritoneal, and macrophages of liver endothelial as 
well as Kupffer cells (217-219). Extracellular 
binding sites of lectin receptor are approximately 
neutral and a little anionic at acidic pH (pI = 5, 6.52). 
Hence, electrostatic interactions are less important in 
active targeting to this receptor. 

For example, Gemcitabine loaded mannosylated 
solid lipid NPs (GmcH-M-SLNs), with the size of 
228.8±5.42 nm and ZP of 7.71±0.87 mV showed 
high cellular uptake by A549 cells due to the lectin 
receptor-mediated endocytosis (185). Schematic 
representation of receptors and desired charged NPs 
are shown in Figure 5. More examples of NPs used 
in targeted delivery to pulmonary tumor cells are 
indicated in Table 7.

 

Table 7. Examples of CNPs used in active targeting goals. Some overexpressed receptors on tumor cells have electrostatic 
connection with the decorated ligands on NPs. 

NPs 
Drug/gene/ac
tive agent 

Particl
e size 
(nm) 

ZP (mV) Cell line 
Receptor/ 
organelle 

Ligand 
Ref 
 

Functional NPs 
Chondroitin 
sulfate 

123 -23.9 HCT116  MCF-7 CD44 HA (180) 

PLGA-PEG 
NPs 

IC87114 200 -10 MDA-MB-231 CD44 HA (189) 

HPCD/ADA-
PEG NPs 

DOX 100 -14 A549 CD44 HA (181) 

PLGA-soya 
lecithin 
Micelleus 
polymer 

MTX 114.6 -0.97 MDA-MB-231 Folate MTX (220) 

TPGS MTX 374 -11.7 MCF-7 Folate MTX and  folate (221) 
Alg-Gold NPs MTX 187 -25.8 MCF-7 Folate MTX (197) 
Gold NPs NO 50 +45 MDA-MB-231 mitochondria TPP (203) 

PEI MTX 245 +40 MDA-MB-231 
Nucleolin 
Folate 

DNA aptamer,  
AS1411 

(206) 

Human serum 
albumin 

Trastuzumab
-modified 
P12 

277 --36.5 
BT-474, 
SK-BR-3 

HER2 
Oligo-
nucleotide 

(222) 

Silica NPs 
DOX,  
Herceptin 
iron oxide 

155.2 -18.6 SK-BR-3 HER2 Herceptin (69) 

PLGA NPs PE38KDEL 124 +12 BT-474 cells HER2 Herceptin (223) 
PLGA NPs Mutlin-3a 220 -7.8 MCF-7 Transferrin Transferrin (224) 
Magnetic NPs DOX 184 -16.7 MCF-7 Transferrin Transferrin (215) 
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PEI: polyethylenimine, PLGA: poly (DL-lactic-co-glycolic acid), PEG: poly (ethylene glycol), HPCD: HP-β-cyclodextrin, 
ADA: 1-adamantane carboxylic acid, TPGS: D-α-tocopheryl polyethylene glycol 1000 succinate, Alg: Alginate, TPP: Tri-
Phenyl-Phosphonium, Herceptin: Humanized monoclonal antibody (Trastosumab), PE38KDEL: A model protein toxin. 
 
 
CONCLUSION 
 
Surface charge plays an important role in cellular 
uptake. ZP consideration can dominantly guide 
researchers using active and passive targeting 
methods to enhance therapeutic output and cell 
entrance. In passive targeting, PCNPs show higher 
cellular entrance. In active targeting, interactions 
between ligand and receptor are more important. 
Moreover, in gene delivery; PCNPs show higher 
cellular uptake as well. ZP is also important in 
designing NPs to conquest MDR. To target 
mitochondria, PCNPs are the promising vehicles. 
Using NCNPs for lysosomal delivery seems rational; 
whereas, PCNPs are suitable for lysosomal escape. 
NPs with pH-sensitive behavior have negative 
charge at physiologic pH and positive charge at 
acidic pH around the cancer cells, so these NPs have 
longer blood circulation and higher cellular uptake in 
target site. 
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ABBREVIATIONS 
 
ABC: ATP binding cassette  
ADA: 1-Adamantane Carboxylic Acid  
Alg: Alginate  
CeO: Cerium Oxide 

CHC: Carboxymethyl-Hexanoyl Chitosan 
CNPs: Charged Nano-Particles   
CSC: Cancer Stem-like Cells  
EPR: Enhanced Permeability and Retention  
ER: Estrogen Receptor  
FA: Folic Acid 
HAase: Hyaluronidase  
HPCD: HP-β-cyclodextrin 
MDR: Multi Drug Resistance 
 NCNPs: Negatively Charged Nano-Particles 
NPs: Nano-Particles  
ODN: Oligo-Deoxy-Nucleotides  
PCNPs: Positively Charged Nano-Particles  
PEG: poly (ethylene glycol)  
PEI: polyethylenimine  
PLGA: poly (DL-lactic-co-glycolic acid) 
PLN: Polymer-lipid hybrid Nano-Particles, 
PPI: Poly Propylene Imine 
RES: Reticulo Endothelial System   
SPE: Spermine  
TfR: Transferrin Receptor 
TPGS: D-α-Tocopheryl Polyethylene Glycol 1000 
Succinate  
TPP: Tri-Phenyl-Phosphonium 
ZP: Zeta Potential  
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