
J Pharm Pharm Sci (www.cspsCanada.org) 22, 112 - 121, 2019 
 

 
 

112 

Mining Small Routine Clinical Data: A Population Pharmacokinetic 
Model and Optimal Sampling Times of Capecitabine and its Metabolites. 
 
Esther Oyaga-Iriarte1, Asier Insausti1, Lorea Bueno1, Onintza Sayar1, Azucena Aldaz2 
 

1. Pharmamodelling S.L., Pamplona, Spain. 2. Service of Hospital Pharmacy, Clínica Universidad de Navarra, Pío XII 36, 
Pamplona, Spain. 
 
Received, January 31, 2019; Revised, February 27, 2019; Accepted, April 1, 2019; Published, April 3, 2019. 
 
ABSTRACT = Purpose: The present study was performed to demonstrate that small amounts of routine 
clinical data allow to generate valuable knowledge. Concretely, the aims of this research were to build a joint 
population pharmacokinetic model for capecitabine and three of its metabolites (5-DFUR, 5-FU and 5-FUH2) 
and to determine optimal sampling times for therapeutic drug monitoring. Methods: We used data of 7 
treatment cycles of capecitabine in patients with metastatic colorectal cancer. The population pharmacokinetic 
model was built as a multicompartmental model using NONMEM and was internally validated by visual 
predictive check. Optimal sampling times were estimated using PFIM 4.0 following D-optimality criterion. 
Results: The final model was a multicompartmental model which represented the sequential transformations 
from capecitabine to its metabolites 5-DFUR, 5-FU and 5-FUH2 and was correctly validated. The optimal 
sampling times were 0.546, 0.892, 1.562, 4.736 and 8 hours after the administration of the drug. For its correct 
implementation in clinical practice, the values were rounded to 0.5, 1, 1.5, 5 and 8 hours after the 
administration of the drug. Conclusions: Capecitabine, 5-DFUR, 5-FU and 5-FUH2 can be correctly 
described by the joint multicompartmental model presented in this work. The aforementioned times are 
optimal to maximize the information of samples. Useful knowledge can be obtained for clinical practice from 
small databases. 
_______________________________________________________________________________________ 
 
INTRODUCTION 
 
Capecitabine is an oral prodrug of 5-fluorouracil 
(5-FU) used against numerous tumors such as 
colorectal cancer, among others (1–3). The active 
metabolite 5-FU, through its own metabolites, acts 
on DNA synthesis and inhibits the formation of 
RNA, producing a cellular imbalance that results 
in cell death (4). 

Capecitabine is converted principally in the 
liver to 5’-deoxy-5-fluorocytidine (5-DFCR), 
which is converted to 5’-deoxy-5-fluorouridine (5-
DFUR) in the liver and tumor tissues. Then, 5-
DFUR is metabolized to 5-FU by thymidine 
phosphorylase, an enzyme that has higher 
concentrations in tumor tissues (5). In a second 
stage, 5-FU is catalyzed to dihydro-5-fluorouracil 
(5-FUH2), α-fluoro-ureidopropionic acid (FUPA) 
and, finally, α-fluoro-β-alanine (FBAL) (6). 

The therapeutic drug monitoring (TDM) of 
capecitabine is recommended specially for 
geriatric patients and those with hepatic 
impairment (4,7,8). Furthermore, the 
individualization of the treatment is fundamental to 
achieve an optimal pharmacotherapy, maximizing 
its efficacy and reducing adverse effects (9). 
Hence, the joint pharmacokinetic study of this 
prodrug and its metabolites is necessary. The 
pharmacokinetics (PK) of this drug have been  

 
 
characterized by other authors using different 
compartmental models (10–12). The construction 
of this population PK model, followed by the 
application of Bayesian methods (13) and 
simulation techniques (14) permit the 
individualization of the dosing of capecitabine and 
the optimization of the treatment, as described in 
other works (15,16). 

The accuracy of PK models is closely related 
to the quality of the information retrieved from 
blood samples. However, to our knowledge, 
optimal sampling times for this drug have not been 
estimated in the literature. The correct collection of 
blood samples allows to maximize subsequent 
pharmacokinetic analyses (17,18) and to minimize 
the number of extractions. 

This work aimed at building a joint population 
pharmacokinetic model for capecitabine, 5-DFUR, 
5-FU and 5-FUH2 and at determining optimal 
sampling times for TDM. The fulfillment of these 
objectives demonstrates that even small amounts 
of routine clinical data generate valuable 
knowledge for clinical practice. 
________________________________________ 
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MATERIALS AND METHODS 
 
Study population.  
The data, which came from routine clinical 
practice, consisted of plasma concentrations of 
capecitabine, 5-DFUR, 5-FU and 5-FUH2 from 
seven treatment cycles of seven patients with 
metastatic colorectal cancer. They received a dose 
of 825 mg/m2 of capecitabine every 12 hours and 
60 mg/m2 of oxaliplatin in 1 hour during 14 days, 
followed by a rest of 7 days. During the 12 hours 
after capecitabine administration, between 7-10 
blood extractions were collected from each patient 
and they were frozen at -70ºC until further 
analysis. The quantification of the samples 
followed high-performance liquid chromatography 
(HPLC), described by Zufia et al. (19). 
 
Population pharmacokinetic modelling. 
Capecitabine, 5-DFUR, 5-FU and 5-FUH2 plasma 
concentrations were modeled by 
multicompartment models using non-linear mixed 
effects modelling (NONMEM) (20). 
Every compartment was parameterized in terms of 
volume of distribution and clearance. The model 
was built stepwise. First, capecitabine was 
characterized testing with mono, bi and 

tricomparmental models. Then, 5-DFUR was 
included and tested following the same criteria. 
Lastly, we proceeded analogously with 5-FU and 
5-FUH2. Intersubject variabilities (ISV) were 
tested for all PK parameters using an exponential 
error model and intrasubject variabilities (EPS) 
were tested using the combined residual error. The 
inclusion of covariates was not recommended for 
such small samples, as they are prone to selection-
bias, causing overlearning of the model, and may 
falsely appear to be clinically relevant (21–23). 

The evaluation of our model was made in 
accordance to the values given by the objective 
function (OF=-2log_likelihood), the Akaike 
information criterion (AIC), Bayesian information 
criterion (BIC) and the coefficient of determination 
of linear regression of the observed versus 
predicted values. Additionally, different diagnostic 
plots were used to visually evaluate the model: 
observed versus population and versus individual 
predicted values and weighted residuals versus 
time, versus population and versus individual 
predicted concentrations. 

Visual predictive check (VPC) with 1000 
Monte Carlo simulations was carried out to 
validate the final model (24). 
 

 

 

Table 1. Demographic, anthropometric and basal analytical data. 
Patient characteristics Median value Min-Max 

Age (years) 47.00 32.00-77.00 
Body surface (m2) 1.95 1.71-2.14 
CEA (ng/mL) 9.10 2.10-2598.2 
AST (UI/L) 17.00 6.00-175.00 
ALT (UI/L) 14.00 4.00-100.00 
ALP (UI/L) 133.00 94.00-1785.00 
GGTP (UI/L) 39.50 16.00-850.00 
DBil (mg/dL) 0.19 0.03-5.80 
TBil (mg/dL) 0.70 0.36-8.27 
LDH (UI/L) 212.00 180.00-1299.00 
SCr (mg/dL) 1.00 0.70-4.30 
Hb (g/dL) 11.20 8.30-15.50 
Ht (%) 32.25 25.00-45.00 
MCV (fL) 82.60 75.70-92.00 
MCH (pg) 28.20 25.20-30.80 
Platelets (/pL) 214.00 196.00-502.00 
Leukocytes(/pL) 7.40 5.60-38.50 
Neutrophils (/pL) 4.83 3.30-31.93 
Lymphocytes (/pL) 1.62 1.44-2.52 
Monocytes (/pL) 0.74 0.59-2.89 
Eosinophils (/pL) 0.19 0.08-0.92 
Basophils (/pL) 0.07 0.05-0.35 
CEA: Carcinoembryonic antigen. AST: Aspartate aminotransferase. ALT: Alanine aminotransferase. ALP: Alkaline 
phosphatase. GGTP: Gamma glutamyltranspeptidase. DBil: Direct bilirubin. TBil: Total bilirubin. LDH: Lactate 
dehydrogenase. SCr: Serum creatinine. Hb: Hemoglobin. Ht: Hematocrit. MCV: Mean corpuscular volume. MCH: 
Mean corpuscular hemoglobin. 
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Optimal sampling times. 
Optimal times were estimated according to D-
optimality criterion, using PFIM Interface 4.0 (25). 
The model employed in this process was designed 
to prioritize the correct adjustment of the active 
metabolite, 5-FU, using the same methodology as 
in the joint population PK model. 
       Monte Carlo simulations, used to perform 
VPC, allowed to visually validate the adequacy of 
the established optimal sampling times. 
 
RESULTS 
 
A total of 227 samples were analyzed, of which 63 
corresponded to capecitabine, 69 to 5-DFUR, 47 to 
5-FU and 48 to 5-FUH2. Table 1 summarizes the 
characteristics of the population of the study. 
 
Pharmacokinetic final model.  
The final population pharmacokinetic model that 
best described capecitabine and its metabolites is 
shown in Figure 1. This model converged to a nadir 
in the OF with a minimum value of -368.683. 
 In this multicompartmental model, m denoted 
the amount of drug in the dosing compartment. 
Capecitabine was represented by a single 
compartment (A1), parameterized by the central 
volume of distribution (V1), an absorption rate 
constant (ka), a lag time (tlag), a clearance (Cl0) and 
the clearance of the compartment to the metabolite 
5-DFUR (Clcap). 5-DFUR was described by two 
compartments (A2 and A3), in which the central and 
peripheral distribution volumes of 5-DFUR (V2, V3, 
respectively), the flow between both compartments 
(Cl23 and Cl32) and the clearance of the central 
compartment to the metabolite 5-FU (Cl5-DFUR) 
were used. 5-FU was described by a single 
compartment (A4), parameterized by the central 
volume of distribution (V4) and the clearance of the 
compartment to the last characterized metabolite, 
5-FUH2, (Cl5-FU). The metabolite 5-FUH2 was 

represented by a single compartment (A5), the 
parameterization used consisted of the central 
distribution volume of 5-FUH2 (V5) and the 
clearance of 5-FUH2 (Cl5-FUH2). Consequently, the 
following equations described this 
multicompartmental model: 
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       Population pharmacokinetic parameters of 
capecitabine and its metabolites can be seen in 
Table 2. 
 Individual predictions of capecitabine, 5-
DFUR, 5-FU and 5-FUH2 are shown in Figure 2. 
R squared values of each of the linear regression 
were 0.873, 0.810, 0.886 and 0.571, respectively. 
Capecitabine R squared value was conditioned by 
a single point (observed value 7.87 and individual 
predicted value 7.43). Omitting this point the R 
squared value was 0.374.  
 

 
 

 
 

Figure 1. Scheme of the joint pharmacokinetic model for capecitabine, 5-DFUR, 5-FU and 5-FUH2. 
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Table 2. Population pharmacokinetic parameters of capecitabine, 5-DFUR, 5-FU and 5-FUH2. 

Parameter Estimate RSE (%) CI 95 
𝑘ୟ (h-1) 0.995 7.39 (0.85-1.14) 
𝑡୪ୟ୥ (h) 0.0172 87.79 (0.0001-0.047) 
𝐶𝑙ୡୟ୮ (L/h) 4.05 20.07 2.42-5.68 
𝐶𝑙଴ (L/h) 396 10.02 (316.6-475.4) 
𝑉ଵ (L) 423 12.76 (315-531) 
𝐶𝑙ହିୈ୊୙ୖ (L/h) 2.56 21.29 (1.47-3.65) 
𝑉ଶ (L) 1 FIX - - 
𝑉ଷ (L) 1 FIX - - 
𝐶𝑙ଶଷ (L/h) 3.42 73.39 (0.0001-8.44) 
𝐶𝑙ଷଶ(L/h) 0.626 53.83 (0.0001-1.3) 
𝐶𝑙ହି୊୙ (L/h) 10.9 31.84 (3.96-17.84) 
𝑉ସ (L) 1 FIX - - 
𝐶𝑙ହି୊୙ୌଶ (L/h) 2.2 19.95 (1.32-3.08) 
𝑉ହ (L) 1 FIX - - 
ISV 𝑘ୟ (%) 101.49 85.53 (0.0001-2.79) 
ISV 𝑡୪ୟ୥ (%) 233.67 76.92 (0.0001-13.86) 
ISV 𝐶𝑙ୡୟ୮ (%) 39.87 58.36 (0.0001-0.34) 
ISV𝐶𝑙଴ (%) - - - 
ISV 𝑉ଵ (%) 99.89 94.69 (0.0001-0.34) 
ISV 𝐶𝑙ହିୈ୊୙ୖ (%) - - - 
EPS1 (%) 80.56 22.34 (0.359-0.94) 
EPS2 (%) 4.21 86.11 (0.00001-0.00127) 
EPS3 (%) 60.17 21.35 (0.21-0.52) 
EPS4 (%) - - - 
EPS5 (%) 41.35 47.6 (0.0082-0.334) 
EPS6 (%) 27.52 37.1 (0.000436-0.003) 
EPS7 (%) 33.62  128 (0.0001-0.40) 
EPS8 (%) 50.96 43.42 (0.03-0.36) 
RSE: Residual standard error. CI: Confidence interval. ISV: Intersubject variability. EPS1: Proportional error of the 
combined capecitabine residual error. EPS2: Additive error of the combined capecitabine residual error. EPS3: 
Proportional error of the combined 5-DFUR residual error. EPS4: Additive error of the combined 5-DFUR residual 
error. EPS5: Proportional error of the combined 5-FU residual error. EPS6: Additive error of the combined 5-FU 
residual error. EPS7: Proportional error of the combined 5-FUH2 residual error. EPS8: Additive error of the combined 
5-FUH2 residual error. 

 
 

Using the final model, 1000 Monte Carlo 
simulations of individual concentration over time 
profiles for capecitabine, 5-DFUR, 5-FU and 5-
FUH2 were carried out following VPC scheme 
(Figure 5). A high percentage of the raw data was 
included in the percentile 5 and 95 range of the 
simulations. Specifically, the percentage of points 
that fell within the simulated range was 95.24%, 
98.55%, 87.23% and 93.75% for capecitabine, 5-
DFUR, 5-FU and 5-FUH2, respectively. 

 
Optimal sampling times. 
The model of the active metabolite, 5-FU, used for 
the estimation of optimal sampling times was a 
monocompartmental model parameterized by the 
volume of distribution (V), first order constant rate 
(ka) and clearance (Cl). Mean (and interpatient 

variance) population parameters were: V=5.97×102 
(3.31) L, ka=2.59×10-2 (1×10-6) h-1and 
Cl=9.91×101 (1×10-6) L/h. VPC validation on this 
model resulted in 91.49% of the 5-FU samples 
within the 90% confidence interval. 
 

This model was used to calculate optimal 
sampling times using PFIM. The results obtained 
for 5-FU were: 0.546, 0.892, 1.562, 4.736 and 8 
hours after capecitabine administration. The value 
of D-optimality criterion was 5.9940×10-3. 

Moreover, Monte Carlo simulations using the 
final joint model permitted to visually validate the 
adequacy of the computed optimal sampling times. 
Figure 6 shows the population PK profiles of the 
four molecules and, in vertical lines, the computed 
optimal sampling times. 
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Figure 2. Individual predictions by the joint model for capecitabine, 5-DFUR, 5-FU and 5-FUH2. 

 
 
Scatter plots of weighted residuals versus time, versus population predicted concentrations and versus 
individual predicted concentrations are shown in Figure 3. 

 
Figure 3. Weighted residuals versus time (left), weighted residuals versus population predicted concentrations (center) 
and weighted residuals versus individual predicted concentrations (right). WRES: weighted residuals. PRED: population 
predicted concentrations. IPRED: individual predicted concentrations.  
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Concentration-time profiles of the observations and predictions of capecitabine, 5-DFUR, 5-FU and 5-FUH2 
are shown in Figure 4 for each of the seven patients. 

 
Figure 4. Individual predictions (gray) and observed data (green) of capecitabine, 5-DFUR, 5-FU and 5-FUH2 (columns 
1-4) for each patient (rows 1-7). X label: time (hours). Y label: plasma concentrations (µg/mL). 

 
DISCUSSION 
 
This work demonstrated that even small samples of 
data are valid to extract useful knowledge in 
clinical practice. Specifically, from the information 
of only 7 patients with colorectal cancer who were 
administered capecitabine, a joint population 
pharmacokinetic model of capecitabine, 5-DFUR, 
5-FU and 5-FUH2 was developed. In combination 
with Bayesian methods and simulation techniques, 
this model allows to individualize posology 

adjustments (26,27). These data were also used to 
estimate the optimal time point for monitoring the 
concentration of capecitabine, enabling the 
maximization of the potential value of new 
collected data (28). All this knowledge, generated 
from a small clinical routine sample, will allow 
clinicians to optimize and personalize treatments 
based on capecitabine and to improve the quality 
of new data collected in the future. 

Regarding the structure of the final model, 
capecitabine, 5-FU and 5-FUH2 were described  
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Figure 5. VPC for capecitabine, 5.DFUR, 5-FU and 5-FUH2. Green circles represent observed data. Dark grey areas 
represent the region between the lower and upper percentiles (5 and 95%). Light grey lines represent the median. 
 
 
with a single compartment and 5-DFUR with two 
compartments, assembling a multicompartmental 
model that described jointly the four compounds. 
This drug has been characterized using 
compartmental pharmacokinetic models by several 
authors (10–12,29). In these works, capecitabine 
was described using a monocompartmental model 
with a first order absorption constant and a lag 
time. The metabolites were described by means of 
a linear series of monocompartmental models. 

Among the cited works, our model resembled 
mostly the one by Urien et al. (12) and the ones by 
Blesch et al. (29) and Gieschke et al. (10). 
Specifically, our model described capecitabine in 
accordance with the model by Urien et al. The 
obtained population parameters for the model by 

Urien et al. and our model had on average 2.07 and 
0.995 h-1 for ka, 0.28 and 0.0172 h for tlag, 338 and 
423 L for V1, 218 and 396 L/h for Cl0 and 12.9 and 
4.05 L/h for Clcap, respectively. In our model, RSE 
values for tlag, Cl23 and Cl32 were quite high (87.9%, 
73.39% and 53.83%, respectively), which could be 
due to sample size. Regarding the metabolites, 
although many works characterize 5-DFUR with a 
single compartment, our model described this 
metabolite with two compartments. Moreover we 
fixed the volumes of the metabolites to 1 in order 
to achieve a successful convergent model and, 
hence, the comparison of the obtained population 
parameters with those of other models was 
problematic. However, the ratios of volume to 
clearance (V/Cl) of Blesch et al. and Gieschke et  
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Figure 6. Population profiles for capecitabine, 5-DFUR, 5-FU and 5-FUH2 simulations and optimal sampling times 
(0.546, 0.892, 1.562, 4.736 and 8 hours) after capecitabine administration. 
 
 
al. were similar to ours. The obtained ratios for 
Blesch et al., Gieschke et al. and our model were 
1.19, 1.15 and 0.39 h for V2/Cl5-DFUR and 0.01, 
0.014 and 0.09 h for V4/Cl5-FU, respectively. A 
particularity of our model with respect to those of 
the literature was that the last characterized 
metabolite was 5-FUH2, as opposed to the rest of 
the discussed models which characterized FBAL. 

One of the limitations of the study was the 
small sample size. Due to this fact, the model was 
not able to estimate all the necessary parameters to 
characterize four molecules simultaneously and, 
therefore, it was necessary to fix the volumes of the 
metabolites to achieve a successful convergent 
model. This technique has been used by other 
authors and is supported in small samples (30–32). 

On the other hand, optimal sampling times 
were estimated using an auxiliary model that 
correctly adjusted the active metabolite 5-FU, 
responsible for the effect and toxicities derived 
from capecitabine. This model contained 91.94% 
of the observations within the 90% confidence 
interval of 1000 Monte Carlo simulations. The 
estimated optimal sampling times were 0.546, 
0.892, 1.562, 4.736 and 8 hours after capecitabine 
administration. Rounding the times to achieve 
realistic sampling times for health personnel, the 
optimal sampling times can be established to be: 
0.5, 1, 1.5, 5 and 8 hours after capecitabine 
administration. Capecitabine TDM is 
recommended specially for geriatric patients and 
those with hepatic dysfunction (4,7,8). 

To our knowledge, it is the first time that the 
optimal sampling times for capecitabine are 
estimated. Other authors have used a similar 

methodology to estimate optimal sampling times 
for other drugs. For example, Baille et al., (33), 
studied the optimal times of docetaxel and Jia et 
al., (28), for cyclosporin A in patients with heart 
transplantation. 
 
CONCLUSIONS 
 
We have established a joint multicompartmental 
pharmacokinetic model for capecitabine and its 
metabolites 5-DFUR, 5-FU and 5-FUH2 in 
patients with metastatic colorectal cancer. The 
carried out internal validation concludes that the 
proposed model describes the data adequately and, 
consequently, the application of Bayesian and 
simulation techniques will allow to predict 
concentration-time profiles of new patients from a 
single plasma sample. 

Additionally, we have established the optimal 
sampling times of capecitabine, which are 0.546, 
0.892, 1.562, 4.736 and 8 hours (0.5, 1 1.5, 5 and 8 
hours, rounded) after capecitabine administration. 
Following these sampling times will maximize the 
PK information of new patients. 

This work allows to conclude that even small 
samples of clinical routine data can contribute to 
the generation of useful knowledge to improve 
clinical care. 

As a goal for future research, we intend to 
perform a TDM study at the proposed sampling 
times to make further improvements and externally 
validate the proposed population PK model. 
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