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ABSTRACT - The reduction potentials of bioreductively-activated drugs represent an important design parameter 
to be accommodated in the course of creating lead compounds and improving the efficacy of older generation 
drugs.  Reduction potentials are traditionally reported as single–electron reduction potentials, E(1), measured 
against reference electrodes under strictly defined experimental conditions.  More recently, computational 
chemists have described redox properties in terms of a molecule’s highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO), in electron volts (eV).  The relative accessibility of 
HOMO/LUMO data through calculation using today’s computer infrastructure and simplified algorithms make 
the calculated value (LUMO) attractive in comparison to the accepted but rigorous experimental determination of 
E(1).  This paper describes the correlations of eV (LUMO) to E(1) for three series of bioreductively–activated 
benzotriazine di-N-oxides (BTDOs), ring-substituted BTDOs, ring-added BTDOs and a selection of aromatic nitro 
compounds. The current computational approach is a closed–shell calculation with a single optimization.  Gas 
phase geometry optimization was followed by a single–point DFT (Density Functional Theory) energy calculation 
in the gas phase or in the presence of polar solvent.  The resulting DFT–derived LUMO energies (eV) calculated 
for BTDO analogues in gas phase and in presence of polar solvent (water) exhibited very strong linear correlations 
with high computational efficiency (r2 = 0.9925) and a very high predictive ability (MAD = 7 mV and RMSD = 
9 mV) when compared to reported experimentally determined single–electron reduction potentials.  
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__________________________________________________________________________________________ 
 
INTRODUCTION 
 
Focal hypoxia is caused by microenvironmental 
deficiency of oxygen as a direct result of the rapid 
growth and aberrant vasculatures in most solid 
tumors.  As a malicious metabolic aberration, tumor 
hypoxia enhances the potential for cancer metastasis, 
treatment failure and hypoxia–based radio- and 
chemotherapy resistance as compared to oxygenated 
tumors.  Taken together, hypoxia–induced molecular 
aberrations are major obstacles for effective tumor 
management [1-5].  The main basis of hypoxic tumor 
radiosensitization therapy has been the utilization of 
electron–affinic organic compounds that are 
bioreductively–activated selectively in hypoxic 
microenvironments to induce radiation–like 
molecular damage similar to what happens in 
presence of oxygen [7-10].  Of these compounds,  
 

 
 
tirapazamine (TPZ; Fig.1) is a benzotriazine di-N-
oxide (BTDO) that has been subjected to extensive 
preclinical and clinical studies as a radiosensitizer 
[10].  TPZ requires a single–electron bioreductive 
activation [11-13] to produce free radicals which in 
turn induce single and double strand breaks in DNA, 
exploiting the hypoxic microenvironment to be 
selectively cytotoxic to solid hypoxic tumors (Fig. 1) 
[13-17].  
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Figure 1. Mechanism of TPZ–mediated hypoxia-selective cytotoxicity. 

 
 
Despite the initial clinical success of TPZ in 

conjunction with radiation therapy for the 
management of hypoxic tumor, the poor 
extravascular transport (EVT) of TPZ to the tumor 
site was a major limitation.  The first-electron 
reduction potential, E(1), and the partition 
coefficient (LogP) are the two physico–chemical 
properties that directly influence the rate of hypoxic 
metabolism and EVT, respectively, of TPZ and 
TPZ–analogues, processes that are necessary to 
achieve effective chemical concentrations in vivo for 
radiosensitization therapy [18-20].  

To overcome the poor EVT of TPZ, several 
TPZ–analogues have been synthesized in attempts to 
optimize the balance between E(1) and LogP that 
would improve hypoxia–induced radiosensitization 
and antiproliferative effects [21-28].  Recently, there 
is an increasing interest in exploiting the hypoxia–
selective properties of TPZ to develop molecular 
theranostics of hypoxia [26,27,29] and to repurpose 
TPZ–analogues for treatment of serious anerobic 
bacterial infection such as E. coli, S. aureus, C. 
difficile [30] and M. tuberculosis [31].  In drug 
discovery, the TPZ–analogues are typically 
synthesized first and then their experimentally–

derived E(1) is measured, a protocol that is time–
consuming, expensive and labor-intensive.  Ideally, 
an optimized computational method that can 
accurately predict the reduction potentials of the 
bioreductive drugs, in the current context the 
proposed TPZ–analogues, would guide medicinal 
chemists in the process of decision making by 
selecting only those compounds that show 
favourable theoretically–predicted reduction 
potentials.  Based on their E(1), potentially active 
molecules can be selected for full synthesis 
development and complete biological evaluation, 
which may substantially enhance an otherwise 
ineffective drug development approach. 

A good linear correlation between the Hückel–
calculated LUMO (lowest unoccupied molecular 
orbital) energies and the experimentally–derived 
reduction potentials of hydrocarbons was first 
demonstrated by Maccoll in 1949 [32].  This finding 
prompted extensive research in the field of 
computational chemistry, with the purpose of finding 
better computational methods that include both the 
solvent stabilisation and molecular reorganizational 
energies in the calculation of LUMO energies, which 
Maccoll`s method excluded.  Interested researchers 
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are referred to selected papers for more detailed 
information [33-39].  It is noteworthy to mention that 
both Fry et al [37] and Gillmore et al [38] have 
provided good computational methods for accurately 
predicting the redox potentials of mainly polycyclic 
aromatic hydrocarbons (PAHs), expanded to few 
other classes in case of Gillmore`s method [39], with 
good correlation to the experimentally–derived 
reduction potentials.  Despite both methods having 
been proven to provide accurate values, they are 
computationally expensive and require an 
experienced computational chemist, as they rely on 
three [38] to six [37] calculations per molecule.  The 
high computational cost and complexity of both 
methods were resolved by Mujica et al [40]. These 
authors reported a simple computational method that 
accurately correlates DFT (Density Functional 
Theory)–calculated HOMO (highest occupied 
molecular orbital) /LUMO energies (HLE) to the 
experimentally–derived redox potentials through a 
single point calculation per molecule using 
B3LYP/6-31G(d) functional.  This method provided 
good correlation between the DFT–calculated 
HOMO/LUMO energies and the redox potentials of 
51 PAHs, as well as to other organic compounds of 
different structural families [41].  Despite the 
accuracy and efficiency of this method, a linear 
correlation must be established and calibrated before 
any prediction can be made. Therefore, Mujica et al 
suggested that new correlations should be 
established for other structural families of 
compounds, functional groups or solvents to 
maintain accurate predictability, especially because 
most compounds used in their methodology were 
rigid organic compounds [40].  

Our special interest is to design new TPZ–
analogues as theranostic tools for management of 
hypoxia and treatment of anaerobic bacterial 
infections.  The aim of this work is to exploit a 
quantitative tool to predict the reduction potentials of 
newly proposed molecules that is accurate, fast, 
cost–efficient and simple enough to be conducted in 
medicinal chemistry laboratories.  With this purpose 
in mind, the implementation, calibration and 
application of a linear correlation between the DFT–
calculated LUMO energies and experimental first 
electron reduction potentials using the method 
reported by Mujica et al are now reported for a series 
of TPZ and nitroimidazole analogues. 

Computational Method 
All calculations were done on an HP Envy Phoenix 
810–160 with 4th generation Intel® Core i7-4770 
processor, 16GB of DDR3 system memory and 16 
GB SATA 6G SSD acceleration cache.  Spartan 16 
Parallel Suit (Wavefunction Inc., Irvine CA) was 
used for optimization of the calibrant molecules 
[42,43].  Molecules 1–64 were constructed using the 
3D model kit of the program and preliminarily 
minimized by the program’s comprehensive 
molecular mechanics tool.  These structures were 
subsequently submitted to geometry optimization in 
gas phase and followed by single–point energy 
calculation in gas phase and in polar solvent (water).  
The Conductor-like Polarizable Continuum Model 
(CPCM) [44,45] was employed in calculations 
involving polar solvent (water).  All calculations 
were carried out at DF level of theory with the 
B3LYP [46,47] hybrid density functional and 6-
31G(d) [48-50] basis set.  Geometry optimization 
and single–point energy calculations were performed 
in a single step using the intuitive graphical user 
interface (GUI) of Spartan 16 Parallel Suit.  
 
RESULTS AND DISCUSSION 
 
The experimental E(1) values for tirapazamine 
analogues (1 – 64, Tables 1 – 4) were obtained from 
the literature [21-24].  The E(1) experiments are 
usually conducted in anaerobic aqueous solution at 
pH 7 by measuring the one–electron transfer 
equilibrium constants between the radical anions of 
the test compounds and a reference standard 
(viologen or quinone), with compensation for the 
effect of ionic strength on the equilibrium constant 
by collecting the data at three concentration ratios at 
room temperature (22 ± 2 °C) and using them to 
calculate the ∆E between the test compounds and the 
appropriate reference [24,51,52].  

The DFT–calculated LUMO energies of 
compounds 1–64, calculated for the gas phase and 
for the presence of polar solvent (water), were 
plotted against their experimental E(1) values to 
construct linear correlations, Figure 2.  A summary 
of the parameters of the linear correlations between 
the computed LUMO energies and the experimental 
E(1) values established in the current study is 
provided in Table 5. 

 
 



J Pharm Pharm Sci (www.cspsCanada.org) 23, 231 - 242, 2020 
 

 
 

234 

    
 

    
 
Figure 2. Plots of linear correlations between the computed LUMO energies (eV), in gas phase and in the presence of polar 
solvent, vs. the experimental E(1) values, (V), of compounds 1-64. 
 
 
 
Table 1. Chemical structures, published experimental E(1) values [21], and computed LUMO energies for compounds 1-32. 
 
  
 
 
 
 
 
 
 

Comp. 
# 

 
R1 R2 R3 R4 E1 

(V)* 
LUMO Energy 

(eV)/ Gas Phase** 

LUMO Energy (eV)/ 
Polar Solvent 

(H2O)** 
1  H H H H -0.456 -2.44 -2.49 
2  (Et)2N H H H -0.554 -2.40 -2.39 
3  (Me)2N H H H -0.545 -2.41 -2.37 
4  OCH3 H H H -0.503 -2.39 -2.42 
5  F H H H -0.400 -2.50 -2.58 
6  Cl H H H -0.388 -2.60 -2.62 
7  CF3 H H H -0.372 -2.76 -2.65 
8  SO2CH3 H H H -0.309 -2.94 -2.77 
9  SO2Bu H H H -0.314 -2.89 -2.74 
10  H (Me)2N H H -0.525 -2.11 -2.39 
11  H OCH3 H H -0.494 -2.32 -2.43 

N

N

N

O

O

NH2

R4

R3

R2

R1

1-32
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Table 2. Chemical structures, reported experimental E1 values [22], and computed LUMO energies for compounds 33-36. 
 

 
 

Compd. # X n Oxide E1 (V)* 
LUMO Energy (eV)/ 

Gas Phase** 
LUMO Energy (eV)/ 

Polar Solvent (H2O)** 
33 NCH3 3 1,4-dioxide -0.444 -2.4 -2.47 
34 NH 3 1,4-dioxide -0.421 -2.29 -2.49 
35 O 2 1,4-dioxide -0.466 -2.31 -2.53 
36 NCH3 3 1-oxide -0.580 -2.19 -2.32 

*published, **new data 

 
 

 
Table 1. Continued… 
 

12  H CH3 H H -0.474 -2.35 -2.44 
13  H F H H -0.400 -2.62 -2.59 
14  H Cl H H -0.397 -2.68 -2.60 
15  H CF3 H H -0.345 -2.76 -2.66 
16  H SO2CH3 H H -0.297 -2.83 -2.75 
17  H SO2Bu H H -0.296 -2.84 -2.75 
18  H NO2 H H -0.260 -3.00 -2.82 
19  H H (Et)2N H -0.671 -1.92 -2.14 
20  H H (Me)2N H -0.668 -1.95 -2.16 
21  H H OCH3 H -0.558 -2.21 -2.33 
22  H H CH3 H -0.493 -2.32 -2.41 
23  H H F H -0.443 -2.54 -2.53 
24  H H Cl H -0.391 -2.66 -2.62 
25  H H CF3 H -0.335 -2.80 -2.71 
26  H H SO2CH3 H -0.258 -2.96 -2.82 
27  H H SO2Bu H -0.240 -3.10 -2.85 
28  H H H (Et)2N -0.489 -2.40 -2.45 
29  H H H (Me)2N -0.481 -2.41 -2.46 
30  H H H OCH3 -0.427 -2.40 -2.57 
31  H H H Cl -0.401 -2.60 -2.61 
32  H H H F -0.394 -2.53 -2.60 

*published, **new data 
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Table 3. Chemical structures, published experimental E1 values [23], and computed LUMO energies for compounds 37-52. 
 

 

Compd. 
# 

Ring C R 
E1 

(V)* 
LUMO Energy (eV)/ 

Gas Phase** 

LUMO Energy (eV)/ 
Polar Solvent 

(H2O)** 
37 na (Me)2N -0.500 -2.29 -2.45 

38 

 

(Me)2N -0.486 -2.13 -2.45 

39 

 

(Me)2N -0.480 -2.14 -2.44 

40 CH2N–morpholine -0.510 -2.2 -2.45 

41 

 

(Me)2N -0.488 -2.1 -2.44 

42 

 

(Me)2N–(CH2)2 -0.487 -2.15 -2.45 

43 

 

(Me)2N–(CH2)2 -0.545 -2.04 -2.36 

44 

 

(Me)2N–(CH2)2 -0.541 -2.09 -2.38 

45 

 

(Me)2N–(CH2)2 -0.453 -2.12 -2.48 
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Table 3. Continued… 
 

46 

 

H -0.390 -2.33 -2.53 

47 

 

Et -0.462 -2.22 -2.51 

48 CH2OH H -0.452 -2.37 -2.58 
49 CH2OH CH2N–morpholine -0.408 -2.32 -2.53 

50 
(CH2)3 N–
morpholine 

H -0.431 -2.36 -2.56 

51 

 

CH2N–morpholine -0.468 -2.27 -2.46 

52 

 

H -0.344 -2.42 -2.63 

na, not applicable, *published, **new data 
 
  
Table 4. Chemical structures, experimental E(1) values [24] and computed LUMO energies for compounds 37-52. 

 
Compd. 

# 
R1 R2 E1 (V)* 

LUMO Energy 
(eV)/ Gas Phase** 

LUMO Energy (eV)/ 
Polar Solvent (H2O)** 

53 –CH3 H -0.364 -2.58 -2.59 
54 –CH2CH3 H -0.376 -2.58 -2.59 
55 –(CH2)2–OCH3 H -0.353 -2.53 -2.61 
56 –(CH2)2–OH H -0.360 -2.91 -2.75 
57 –(CH2)3–OH H -0.364 -2.87 -2.71 
58 –C4H6 H -0.352 -2.58 -2.62 
59 –(CH2)2–N(CH3)2 H -0.327 -2.43 -2.6 

60 
NH–

(CH2)2N(CH3)2 
6-CH3O– -0.500 -2.07 -2.39 

61 –CH2CH3 6-CH3– -0.418 -2.46 -2.51 
62 –CH2CH3 6-CH3O– -0.472 -2.35 -2.44 

63 –CH2CH3 
6-morpholine-N–

(CH2)3–O– 
-0.440 -2.29 -2.43 

64 –CH2CH3 
7-morpholine-N–

(CH2)3–O– 
-0.396 -2.36 -2.5 

*published, **new data 
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Table 5. Parameters of correlations 1–4 established between DFT – computed LUMO energies and experimental 
E(1). 

 
# 

Calculation 
type 

r2 MADa 

residuals (V) 
RMSDb 

residuals (V) 
Slope m 
(V/eV) 

X-intercept 
(eV) 

Y-intercept 
(V) 

1 
Gas Phase 

(1-64) 
0.7373 0.034816 0.186590 -0.28237 -3.989628 -1.1155 

2 
Gas Phase 

(1-32) 
0.9151 0.022061 0.028973 -0.3576 -3.738814 -1.3370 

3 
C-PCM (water) 

(1-64) 
0.9515 0.014760 0.019662 -0.59960 -3.256338 -1.952500 

4 
C-PCM (water) 

(1-32) 
0.9925 0.007272 0.009389 -0.60920 -3.250164 -1.98000 

aMean average deviation calculated from individual residuals for each compound as predicted by the trend line 
(Supporting Information). bRoot mean square deviation calculated from individual residuals for each compound 
as predicted by the trend line (Supporting Information) 

 
 

Four linear correlations between the DFT–
computed LUMO energies and the experimental 
E(1) were established in the current study.  
Correlation #1, between the DFT–calculated LUMO 
energies of all calibrant compounds (1–64) and their 
experimental E(1) values in gas phase, resulted in 
low r2 (0.737), indicative of low computational 
efficiency.  Correlation #3 included the solvent in the 
calculation, which improved the r2 (0.951).  This 
variance is due to the absence of the solvent 
stabilization effect on compounds 1–64 in gas phase 
calculations, which span a wide range of structural 
substitutions in the tirapazamine parent structure that 
in turn induce various levels of structural flexibility 
and therefore different solvent reorganization 
energies [39].  It is noteworthy that Correlation #2 
for compounds 1–32 yielded an higher r2 (0.915) for 
the gas phase calculation, an effect primarily due to 
the similar solvent reorganization energies of 
compounds 1–32, as they differ only in the 
substitution pattern of the aromatic ring of the 
tirapazamine parent structure.  The substitution 
pattern imparts only a limited effect on the structural 
flexibility of these molecules, and hence the error 
associated with not including the solvent in the 
calculation is very small.  Furthermore, when the 
solvent was included in the calculation for 
compounds 1–32 (correlation #4), the r2 was greatly 
improved, approaching the optimal value of 1 
(0.9925), demonstrating high computational 
efficiency and high predictive ability as reflected in 
the very small values of MAD and RMSD.  To 
further test and establish the predictive ability of the 
current method, Correlation #4, which demonstrated 
the strongest correlation in the current study, was 
used to predict the reduction potentials of five test 
compounds, 65–69 [53] that were not included in the 

data set used to establish these correlations (Figure 
3).  Furthermore, test compounds are not structurally 
related to TPZ; 65–67 are 5-nitroimidazoles, 68 is a 
2-nitrofuran and 69 is a 2-nitroimidazole.  The 
experimental one–electron reduction potentials E(1) 
of these test compounds were determined at pH 7 in 
aqueous solution using pulse radiolysis [7].  The 
predicted E(1) values calculated from Correlation #4 
for the test compounds were very close to the 
experimental values, providing a further 
demonstration of the robust predictive ability of this 
correlation (Table 6).  

 
CONCLUSION 
 
These analytical data show that a very strong linear 
correlation between the DFT–calculated LUMO 
energies and the experimental E(1)s of TPZ 
analogues can be established using a polar solvent 
model. The established correlation has a high 
computational efficiency (r2 = 0.9925) and a very 
high predictive ability (MAD = 7 mV and RMSD = 
9 mV), which can be extended to other hypoxia–
selective compounds, e.g., 65–69, that are 
structurally unrelated to TPZ.  The current 
methodology used a closed–shell calculation and a 
single optimization.  Gas phase geometry 
optimization followed by a single–point energy 
calculation for the presence of polar solvent reduced 
both the number and the complexity of the 
computations.  

In conclusion, this approach provides a simple, 
quick and accurate quantitative method to predict 
reduction potential without requiring the skills, 
computing resources and expense normally 
associated with molecular computation. By 
removing the necessity for a strong background in 
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computational chemistry and the knowledge of 
complex computational protocols, our objective is to 
encourage medicinal chemists to exploit 
computational tools through easy-to-use graphical 
user interfaces.  This can accelerate research in drug 
discovery and optimization, and as applied in this 
case, lead to better management of hypoxia.  
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Figure 3. Structures of test compounds 65–69. 
 
 
 

Table 6. Experimental and predicted E(1) values [53] and computed LUMO energies for test compounds 65-69. 

Compound # Correlation # 
LUMO 
(eV)* 

Experimental E(1) (V)** Predicted E(1) (V) * 

65 4 -2.48 -0.464 -0.469 
66 4 -2.47 -0.467 -0.475 
67 4 -2.51 -0.457 -0.450 
68 4 -2.82 -0.257 -0.262 
69 4 -2.62 -0.380 -0.384 

*new, **published data 
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