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ABSTRACT 
 
There are two main branches of Mathematics: Calculus and Geometry; in Physics there are Constructive 
Theories and Principle Theories. Similarly in Pharmacokinetics we can build models with two opposite 
approaches, the Bottom-Up and the Top-Down method. In this short opinion article I try to show, with the help 
of a few examples, the advantages of each one of the two approaches. 
__________________________________________________________________________________ 
 
CALCULUS AND GEOMETRY 
 
In my first year of graduate school I followed the 
lectures of a professor of Calculus and of a 
professor of Geometry; no two persons could have 
been more different. At that time, space travel was 
not yet fashionable, but if I had believed in it I 
would probably have said that the first Professor 
was from Jupiter and the second one from Mercury. 
On Jupiter a man weighs two or three times more 
than on Earth, so I guess he must move more 
slowly, has more time to think where to go, and 
when he reaches his destination he can stay there on 
very solid ground. On Mercury it is all the opposite; 
one feels lighter and can move fast, but must also 
decide quickly lest he falls into a trap. 

I was completely captivated by my Calculus 
course; I could navigate through it with a minimum 
of effort and felt completely at ease with the logical 
connections of all its proofs. My feelings for the 
Geometry course were very different; even though I 
understood all theorems and their proofs, I could 
never or very seldom anticipate their logical 
connections. It was as though I had to follow a 
mysterious fairy; I trusted her, but could never 
predict her moves. 
 
CONSTRUCTIVE THEORIES AND 
PRINCIPLE THEORIES IN PHYSICS 
 A similar dichotomy is present in Physics, 
where we can distinguish two kinds of theories. 
With the first one we attempt to build a picture of 
more complex phenomena from a relatively simple 
formal scheme. Thus the kinetic theory of gases 
seeks to reduce mechanical, thermal, and diffusion 
processes to movements of molecules. When we 

say that we understand a group of natural 
phenomena, we invariably mean that a Constructive 
Theory has been found which covers  the processes 
in question. 
 Along with the class of Constructive Theories 
there exists a second class, which can be called 
Principle Theories. These theories employ the 
analytic, not the synthetic, method. The elements 
forming their basis and starting-point are not 
hypothetically constructed but empirically 
discovered ones; from the general principles of the 
observed natural phenomena we can formulate the 
mathematical processes their theoretical 
representations have to satisfy. Thus the science of 
thermodynamics, starting from the universally 
experienced fact that perpetual motion is 
impossible, seeks, by analytical means, to deduce 
necessary conditions which separate events have to 
satisfy. 
 In the words of Einstein,[i] the advantages of 
the Constructive Theories are completeness, 
adaptability, and clearness; those of Principle 
Theories are logical perfection and security of the 
foundations. 
 
PHARMACOKINETICS 
 How can we construct a model to help us 
understand what happens in a Pharmacokinetic 
experiment? The Calculus way or the Geometry 
way? Using a Constructive Theory or a Principle 
Theory? 
_________________________________________ 
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 The dual aspects of Mathematics and of Physics 
are certainly present in Pharmacokinetics too. The 
two approaches that we can use in all 
pharmacokinetic problems could be called Bottom-
up and Top-down. 
 
Bottom-up 
 
 The first approach to Pharmacokinetics started 
with a number of basic hypotheses; even though 
they were not always explicitly expressed, they 
were: 
1. The substance administered to a subject is 
distributed among a number of compartments that 
can be recognized by their location and/or their 
chemical form; 
2. All compartments are homogeneous; 
3. The rate of elimination of substance by a 
compartment, or its rate of transfer from one 
compartment to another, is proportional to the 
amount of substance in the originating 
compartment. 
 In the case of a single compartment with bolus 
feeding those hypotheses lead to the mathematical 
model 
 

(1)

 

dx
dt

 K x(t)

x(0)  D





  
 
where K is the turnover rate of the compartment 
and D is the bolus dose. The solution of the above 
differential equation is 

 
x(t)  DeK t

, 
 
an exponential function with negative slope. 
 This compartmental model can be expanded at 
will by connecting any number of compartments 
among them. With n compartments we have n first 
order differential equations that can be written in 
matrix notation 
 

(2) 
dX

dt
 X(t) K, 

 
to be completed by appropriate initial conditions.  
 

 The row vector X(t) is formed by the functions 
x1(t), x2(t), …, xn(t) of the individual compartments, 
while matrix K is formed by the turnover rates Ki of 
compartments and transfer rates kij  between 
compartments, thus 
 

 
 
 A through description of the properties of 
matrix K was published by Hearon.[ii] A number of 
pharmacokinetic parameters can be evinced from 
that matrix; for instance the inverse T = K–1 of that 
matrix, 
  

 
 
if it exists, is formed by the permanence times tii of 
compartment i and by the residence times tij from 
compartment i to compartment j.[iii] 
 The hypotheses listed above can be modified in 
many ways. For instance hypothesis 3 can be 
substituted by the hypothesis that the substance in a 
particular compartment is eliminated by a process 
of order zero, or according to a catalyzed 
monomolecular irreversible reaction (Michaelis-
Menten kinetics). In all those cases the solution of 
the corresponding differential equations includes 
one or more terms that are not exponential; those 
cases may still be tractable, though not as simply as 
with the standard hypothesis 3.[iv] 
 Modifying hypothesis 2 implies more serious 
complications. In a non-homogeneous compartment 
the rates of elimination and of transfer do not 
depend upon the total amount of substance in the 
compartment, but upon its concentration at various 
locations inside the compartment. The concentration 
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itself is a function of time and of location; the 
ordinary differential equations (1) and (2) must be 
substituted by partial differential equations. They 
must be solved case by case. Of course, all 
hypotheses need to be confirmed by appropriate 
experimental evidence.[v] 
 According to Einstein’s statement quoted 
before, the bottom-up approach to 
Pharmacokinetics is a principle theory, and as such 
it has the advantages of logical perfection and 
security of foundations; it has been used for many 
years to investigate and describe the behavior of 
many drugs. 
 Why many pharmacokineticists at one point felt 
the need to elaborate a different approach to 
Pharmacokinetics? One reason, the one most 
frequently cited, was that the constants Ki and kij 
contained in matrix K of equation (2) were not 
always given a physiological interpretation. The 
indiscriminate use of software packages allowing 
the fitting of experimental data with sums of a very 
large number of exponential functions, contributed 
to the need for a different approach. The goodness 
of fitting was prevailing upon the physiological 
meaning. 
 
Top-down 
 
 The bottom-up approach to pharmacokinetic 
model building started from first principles, using 
differential equations; the top-down approach 
started from end results, using integral equations. 
 The top-down approach, often called 
physiological modeling, was a constructive theory, 
and as such had the advantages of completeness, 
adaptability, and clearness. Clearness, in particular, 
made it the method of choice in many cases when 
the available data were not sufficiently detailed to 
allow the computation of many pharmacokinetic 
parameters. 
 If f(t) measures the concentration of a substance 
in a certain point of a subject, and h(t) the 
concentration of the same substance or one of its 
products in a point where it has been transferred, we 
can write the integral equation 
 

f ( )g(t, )d
0

t

  h(t). 

 
 This is a Volterra integral equation of the 
second type; function g(t), called kernel of the 

equation, describes the transport of the substance of 
interest from one point, the precursor, to another 
point, the product. The expression g(t,)d can be 
interpreted as the probability that a particle that left 
the precursor in the interval of time from   to  + 
d will be in the product at time t.[vi] 
 The solution of this equation implies difficulties 
of a high order, unless we make the additional 
hypothesis that its kernel is a function of one 
variable only, i. e., that 
 

g(t, )  g(t   ) . 
 
 This hypothesis means that the probability of 
transfer from precursor to product depends upon the 
interval of time between the two observations and 
not on the absolute time; in other words, this 
transfer is time-invariant. Function g(t – ) is called 
transfer function from precursor f(t) to product h(t). 
 The simpler form of the Volterra integral 
equation, 
 

f ( )g(t  )d
0

t

  h(t) , 

 
is called convolution of function f(t) and g(t). 
 The use of transfer functions and convolutions 
in Pharmacokinetics started many years ago.[vii] 
 From the convolution equation, by integration 
of both sides from 0 to ∞, we get 
 

(3) f (t)dt
0



  g(t)dt
0



  h(t)dt
0



 . 

 
 If we multiply both sides of the convolution 
equation by dt, then integrate as before, we get 
 

t f (t)dt
0



  g(t)dt
0



  f (t)dt
0



  t g(t)dt
0



  th(t)dt
0



  

 
this equation can be written in the form 

 

(4) 
t f (t)dt

0




f (t)dt

0






tg(t)dt
0




g(t)dt

0






th(t)dt
0




h(t)dt

0




. 

 
 Both equations (3) and (4) have an important 
phenomenological interpretation; see for instance 
Rescigno [viii] and Rescigno and Gurpide.[ix] 
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 The two expressions c(t)dt
0



  and 

tc(t)dt
0



 c(t)dt
0



 , where c(t) is the concentration 

of a given substance at a generic point of a subject, 
have been frequently used in Pharmacokinetics, 
with various interpretations. I shall examine here 
just a few possible interpretations. 
 
Availability 
 
 According to the Food and Drug 
Administration,[x] “Bioavailability means the rate 
and extent to which the active ingredient or active 
moiety is absorbed from a drug product and 
becomes available at the site of action.” This 
description of Bioavailability cannot easily be 
quantified; while the extent of absorption may be 
defined as the ratio between amount of drug 
absorbed and amount delivered, the rate may not be 
unique if the absorption is not a simple one-
compartment distribution without recycling. 
 On second thought, what really matters is not 
the rate of absorption per se, but how much drug is 
present at the site of action and when it is there; in 
short the function c(t) tells us all we need to know, 
i. e., how much is available at the site of action and 
when. Thus the Bioavailability can be easily 
quantified not as a single parameter, but as a 
function of time, by defining it as the fraction 
c(t)/D. 
 If we make the two additional hypotheses that 
the effect of the drug is proportional to its 
concentration at the site of action and to the 
duration of its presence there, and that the effects at 
different intervals of time add linearly, we can say 

that the integral c(t)dt
0



 D  is a measure of the 

exposure of a drug. 
 
Clearance 
 
 If a drug is eliminated from an organ with a 
uniform concentration c(t), by definition of 
clearance Cl we can write Cl c(t)  r(t), where 
r(t) is the rate of elimination from that organ. If we 
multiply by dt and integrate from 0 to ∞ we get 
 

Cl c(t)dt
0



  r(t)dt
0



 ; 

 

but the integral at the right-hand side is the total 
drug eliminated; we can call it Q. If the clearance is 
constant over time, we can export it from the left-
hand side integral to get 

c(t)dt
0



 
Q

Cl
. 

 
 This formula can be used to compute the 
clearance when the clearance is constant over time 
and the concentration in the organ is uniform. In all 
other cases that formula is approximate, and the 
approximation depends upon the deviation of the 
experimental conditions from the necessary 
hypotheses stated above.[xi] 
 
Exit Time and Transfer Time 
 

 The ratio tc(t)dt
0



 c(t)dt
0



  can be given 

different interpretations. Without any additional 
hypotheses this ratio is the average age of the drug 
at the point of sampling; in other words it is the 
average time elapsed from the beginning of the 
experiment to the presence of the drug at the point 
of sampling. 
 If we make the hypothesis that the clearance in 
a definite volume around the sampling point is 
constant in time, we can write the identity 

 

tc(t)dt
0




c(t)dt

0






t Cl c(t)dt
0




Cl c(t)dt

0




; 

 
but the product Cl·c(t)dt is the amount of drug 
cleared in the interval of time from t to t + dt, and t 
is the time of this event; therefore the above ratio is 
the average time when the drug is cleared from the 
sampling point. This time is called exit time, symbol 
:[xii] 

 
t c(t)dt

0




c(t)dt

0




. 

 
 Looking at equation (4), if the hypotheses made 
above are valid for both precursor and product, 
when we sample the concentration f(t) of a 
precursor and h(t) of its product, the difference 
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t g(t)dt
0




g(t)dt

0






t h(t)dt
0




h(t)dt

0






t  f (t)dt
0




f (t)dt

0




, 

 
may be called transfer time; it measures the average 
time taken by the drug to transfer from precursor 
products. 
 
CONCLUSION 
 
 The top-down approach has certainly the 
advantages of adaptability and clearness; what 
makes it particularly attractive, is its ability to 
connect some simple geometrical properties, like 
area under a curve, to well known physiological 
properties, like clearance and availability; and this 
may be done with a minimum of mathematical 
speculation. 
 It hides a possible danger, though, what the 
logicians call petitio principii, of assuming as a true 
premise a proposition that is yet to be proved. The 
following remarks should clarify this point. 
 Model building always goes through two 
phases; they are what the French call histoire and 
récit.[xiii] The first phase or histoire, is the 
uncritical description of the observed facts. Of 
course, we observe only the facts that we consider 
relevant to a problem, therefore there is never a 
completely uncritical collection of observations; 
nevertheless in the histoire the mere description of 
the experimental facts is prevalent, and it is 
presented as a temporal succession of facts, without 
any cause-effect relationship. 
 The second phase or récit, is not any more an 
objective description of facts, but a subjective 
interpretation of the histoire; the cause-effect 
relationship is prevalent and all facts are logically 
connected among them. 
 If you observe carefully the few examples I 
presented, it should be evident that the hypotheses 
necessary for the transition from histoire to récit in 
the top-down approach to Pharmacokinetics are 
exactly the same hypotheses that were used in the 

bottom-up approach. The inescapable conclusion of 
all modeling is: “Use the bottom-up or the top-
down approach, whichever you are more 
comfortable with; but in either case the same 
fundamental hypotheses are necessary for your 
conclusions to have any physiological meaning.” 
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