Extracellular Vesicles as Natural Nanosized Delivery Systems for Small-Molecule Drugs and Genetic Material: Steps towards the Future Nanomedicines
DOI:
https://doi.org/10.18433/J36W3XAbstract
A new platform for drug, gene and peptide-protein delivery is emerging, under the common name of “extracellular vesicles”. Extracellular vesicles (EVs) are 30-1000 nm-sized cell-derived, liposome-like vesicles. Current research on EVs as nano-delivery systems for small-molecule drugs and genetic material, reveal that these tiny, biologically-derived vesicles carry a great potential to boost the efficacy of many therapeutic protocols. Several features of EVs; from efficacy to safety, from passive to active targeting ability, the opportunity to be biologically or chemically labelled, and most importantly, their eobiotic origin make them promising candidate for development of the next generation personalized nanomedicines. The aim of this article is to provide a view on the current research in which EVs are used as drug/genetic material delivery systems. Their application areas, drug loading and targeting strategies, and biodistribution properties are discussed.
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This is an open access journal with free of charge non-commercial download. At the time of submission, authors will be asked to transfer the copyright to the accepted article to the Journal of Pharmacy and Pharmaceutical Sciences. The author may purchase the copyright for $500 upon which he/she will have the exclusive copyright to the article. Nevertheless, acceptance of a manuscript for publication in the Journal is with the authors' approval of the terms and conditions of the Creative Commons copyright license Creative Common license (Attribution-ShareAlike) License for non-commercial uses.
CLOCKSS system has permission to collect, preserve, and serve this Archival Unit.