Drugs Loaded into Electrospun Polymeric Nanofibers for Delivery

Authors

  • Erick José Torres-Martinez Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico. Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad #14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390 Tijuana, Baja California, Mexico.
  • Graciela Lizeth Pérez-González Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico. Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad #14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390 Tijuana, Baja California, Mexico. Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000. Valle de las Palmas, 22260. Tijuana, Baja California, Mexico.
  • Aracely Serrano-Medina Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico. Facultad de Medicina y Psicología, Calzada Universidad 14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390. Tijuana, Baja California, Mexico.
  • Daniel Grande Institut de Chimie et des Matériaux Paris-Est, UMR CNRS-Université Paris-Est Créteil, 2 Rue Henri Dunant, 94320 Thiais, France.
  • Ricardo Vera-Graziano Instituto de Investigación en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N Circuito de la Investigación Científica, C.U., 04510 Ciudad de México, CDMX, Mexico.
  • Jose Manuel Cornejo-Bravo Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico; 2Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad #14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390 Tijuana, Baja California, Mexico.
  • Luis Jesús Villarreal-Gómez Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico. Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad #14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390 Tijuana, Baja California, Mexico. Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000. Valle de las Palmas, 22260. Tijuana, Baja California, Mexico. http://orcid.org/0000-0002-4666-1408

DOI:

https://doi.org/10.18433/jpps29674

Abstract

The electrospinning technique is a useful and versatile approach for conversion of polymeric solutions into continuous fibers, ranging from a few micrometers (10–100 μm) to the scale of nanometers (10–100 nm) in diameters. This technique can be used in a vast number of polymers, in some cases after modifying them to the required properties. The high surface-to-volume ratio of the fibers can improve some processes like cell binding and proliferation, drug loading, and mass transfer processes. One of the most important and studied areas of electrospinning is in the drug delivery field, for the controlled release of active substances ranging from antibiotics and anticancer agents, to macromolecules such as proteins and DNA. The advantage of this method is that a wide variety of low solubility drugs can be loaded into the fibers to improve their bioavailability or to attain controlled release. This review presents an overview of the reported drugs loaded into electrospun polymeric nanofibers to be used as drug delivery systems. These drugs are classified by their applications in pharmacy.

Downloads

Download data is not yet available.

Author Biography

Luis Jesús Villarreal-Gómez, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico. Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad #14418, Universidad Autónoma de Baja California, Parque Industrial Internacional Tijuana, 22390 Tijuana, Baja California, Mexico. Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000. Valle de las Palmas, 22260. Tijuana, Baja California, Mexico.

Research-Professor
Escuela de Ciencias de la Ingeniería y Tecnología
Universidad Autónoma de Baja California
Tijuana, México

References

(1) Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63 (15), 2223–2253 DOI: 10.1016/S0266-3538(03)00178-7.

(2) Villarreal-Gómez, L.J.; Vera-Graziano, R.; Vega-Ríos, M.R.; Pineda-Camacho, J.L.; Almanza-Reyes, H.; Mier-Maldonado, P.A.; Cornejo-Bravo, J.M. Biocompatibility Evaluation of Electrospun Scaffolds of Poly (L-Lactide) with Pure and Grafted Hydroxyapatite. J Mex Chem Soc. 2014, 58(4):435–43. DOI: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2014000400010&nrm=iso.

(3) Morais, J.M.; Papadimitrakopoulos, F.; Burgess, D.J. Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. The AAPS Journal. 2010, 12(2): 188-196. doi:10.1208/s12248-010-9175-3.

(4) Tucker, N.; Stanger, J.; Staiger, M.; Razzaq, H.; Hofman, K. The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber. Fabr. 2012, 7 (Special Issue), 63–73.

(5) Fernández de la Mora, J. The Fluid Dynamics of Taylor Cones. Annu. Rev. Fluid Mech. 2007, 39 (1), 217–243 DOI: 10.1146/annurev.fluid.39.050905.110159.

(6) Cornejo Bravo, J. M.; Villarreal Gómez, L. J.; Serrano Medina, A. Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques. In Electrospinning - Material, Techniques, and Biomedical Applications; InTech, 2016; p 14.

(7) Singh, H.; Sharma, R.; Joshi, M.; Garg, T.; Goyal, A. K.; Rath, G. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers. Artif. Cells, Nanomedicine, Biotechnol. 2015, 43 (4), 263–269 DOI: 10.3109/21691401.2014.885442.

(8) Velasco Barraza, R. Designing a low cost electrospinning device for practical learning in a bioengineering biomaterials course. Rev. Mex. Ing. Biomédica 2016, 37 (1), 27–36 DOI: 10.17488/RMIB.37.1.1.

(9) Villarreal-Gómez, L. J.; Cornejo-Bravo, J. M.; Vera-Graziano, R.; Grande, D. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J. Biomater. Sci. Polym. Ed. 2016, 27 (2), 157–176 DOI: 10.1080/09205063.2015.1116885.

(10) Tam, S.K.; Dusseault, J.; Bilodeau, S.; Langlois, G.; Hallé, J.P.; Yahia, L. Factors influencing alginate gel biocompatibility. J Biomed Mater Res A. 2011, 98(1): 40-52. doi: 10.1002/jbm.a.33047.

(11) Rottensteiner, U.; Sarker, B.; Heusinger, D.; Dafinova, D.; Rath, S.N.; Beier, J.P.; Kneser, U.; Horch, R.E.; Detsch, R.; Boccaccini, A.R.; Arkudas, A. In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Mater. 2014, 7(3): 1957-1974. doi:10.3390/ma7031957.

(12) Rodrigues, S.; Dionísio, M.; Remuñán-López, C., Grenha, A. Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater. 2012, 3(3): 615-641. doi:10.3390/jfb3030615.

(13) Yamada, S.; Yamamoto, K.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Potency of fish Collagen as a scaffold for regenerative medicine. BioMed Res Int. 2014, 2014: 302932. doi:10.1155/2014/302932.

(14) Zhang, Y.; Sun, T.; Jiang, C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018, 8(1): 34-50. doi:10.1016/j.apsb.2017.11.005.

(15) Sun, G.; Mao, J.J. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine. 2012, 7(11): 1771-1784. doi:10.2217/nnm.12.149.

(16) Khalikova, E.; Susi, P.; Korpela, T. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev. 2005, 69(2): 306-325. doi:10.1128/MMBR.69.2.306-325.2005.

(17) Khunmanee, S.; Jeong, Y.; Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017, 8: 2041731417726464. doi:10.1177/2041731417726464.

(18) Lam, J.; Truong, N.F.; Segura. T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater. 2014, 10(4): 1571-1580. doi:10.1016/j.actbio.2013.07.025.

(19) Gardner, A.B.; Lee, S. K. C.; Woods, E.C.; Acharya, A.P. Biomaterials-based modulation of the immune system. BioMed Res. Int. 2013, 732182, 1-7. https://doi.org/10.1155/2013/732182.

(20) Yu, D.-G.; Shen, X.-X.; Branford-White, C.; White, K.; Zhu, L.-M.; Annie Bligh, S. W. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009, 20 (5), 55104 DOI: 10.1088/0957-4484/20/5/055104.

(21) Wu, Y. H.; Yu, D. G.; Li, H. C.; Feng, D. N. Electrospun Nanofibers for Fast Dissolution of Naproxen Prepared Using a Coaxial Process with Ethanol as a Shell Fluid. Appl. Mech. Mater. 2014, 662, 29–32 DOI: 10.4028/www.scientific.net/AMM.662.29.

(22) Lopez, F. L.; Shearman, G. C.; Gaisford, S.; Williams, G. R. Amorphous Formulations of Indomethacin and Griseofulvin Prepared by Electrospinning. Mol. Pharm. 2014, 11 (12), 4327–4338 DOI: 10.1021/mp500391y.

(23) Samprasit, W.; Akkaramongkolporn, P.; Ngawhirunpat, T.; Rojanarata, T.; Kaomongkolgit, R.; Opanasopit, P. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int. J. Pharm. 2015, 487 (1–2), 213–222 DOI: 10.1016/j.ijpharm.2015.04.044.

(24) Um-I-Zahra, S.; Zhu, L. Novel drug loaded duplicate nanofibers and their in-vitro drug release profiles. Am. Res. Thoughts 2015, 1 (6), 1683–1698.

(25) Yu, D.-G.; Branford-White, C.; White, K.; Li, X.-L.; Zhu, L.-M. Dissolution Improvement of Electrospun Nanofiber-Based Solid Dispersions for Acetaminophen. Am. Assoc. Pharm. Sci. 2010, 11 (2), 809–817 DOI: 10.1208/s12249-010-9438-4.

(26) Akhgari, A.; Ghalambor Dezfuli, A.; Rezaei, M.; Kiarsi, M.; Abbaspour, M. The Design and Evaluation of a Fast-Dissolving Drug Delivery System for Loratadine Using the Electrospinning Method. Jundishapur J. Nat. Pharm. Prod. 2016, 11 (2) DOI: 10.17795/jjnpp-33613.

(27) Sahoo, S.K.; Mallick, A.A.; Barik, B.B.; Senapati, P.C. Preparation and in vitro evaluation of ethyl cellulose microspheres containing stavudine by the double emulsion method. Pharmazie. 2007, 62(2): 117-21. https://www.ncbi.nlm.nih.gov/pubmed/17341031.

(28) Vigh, T.; Horváthová, T.; Balogh, A.; Sóti, P. L.; Drávavölgyi, G.; Nagy, Z. K.; Marosi, G. Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. Eur. J. Pharm. Sci. 2013, 49 (4), 595–602 DOI: 10.1016/j.ejps.2013.04.034.

(29) Castillo-Ortega, M. M.; Montaño-Figueroa, A. G.; Rodríguez-Félix, D. E.; Munive, G. T.; Herrera-Franco, P. J. Amoxicillin embedded in cellulose acetate-poly (vinyl pyrrolidone) fibers prepared by coaxial electrospinning: Preparation and characterization. Mater. Lett. 2012, 76, 250–254 DOI: 10.1016/j.matlet.2012.02.093.

(30) Yu, D.-G.; Zhu; Branford-White; Yang; Wang; Li; Qian. Solid dispersions in the form of electrospun core-sheath nanofibers. Int. J. Nanomedicine 2011, 6, 3271 DOI: 10.2147/IJN.S27468.

(31) Nagy, Z. K.; Nyúl, K.; Wagner, I.; Molnár, K.; Marosi, G. Electrospun water soluble polymer mat for ultrafast release of donepezil HCL. Express Polym. Lett. 2010, 4 (12), 763–772 DOI: 10.3144/expresspolymlett.2010.92.

(32) Kadajji, V.G.; Betageri, G.V. Water Soluble Polymers for Pharmaceutical Applications. Polymers 2011, 3, 1972-2009.

(33) Kenawy, E.-R.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater. Sci. Eng. A 2007, 459 (1–2), 390–396 DOI: 10.1016/j.msea.2007.01.039.

(34) Li, X.; Kanjwal, M. A.; Lin, L.; Chronakis, I. S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surfaces B Biointerfaces 2013, 103, 182–188 DOI: 10.1016/j.colsurfb.2012.10.016.

(35) Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules. 2015, 20(12): 22833-47. doi: 10.3390/molecules201219884.

(36) Ball, C.; Krogstad, E.; Chaowanachan, T.; Woodrow, K. A. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception. PLoS One 2012, 7 (11), e49792 DOI: 10.1371/journal.pone.0049792.

(37) Xu, X.; Yang, L.; Xu, X.; Wang, X.; Chen, X.; Liang, Q.; Zeng, J.; Jing, X. Ultrafine medicated fibers electrospun from W/O emulsions. J. Control. Release 2005, 108 (1), 33–42 DOI: 10.1016/j.jconrel.2005.07.021.

(38) Xu, X.; Chen, X.; Wang, Z.; Jing, X. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur. J. Pharm. Biopharm. 2009, 72 (1), 18–25 DOI: 10.1016/j.ejpb.2008.10.015.

(39) Mahalingam, R.; Jasti, B.; Birudaraj, R.; Stefanidis, D.; Killion, R.; Alfredson, T.; Anne, P.; Li, X. Evaluation of Polyethylene Oxide Compacts as Gastroretentive Delivery Systems. AAPS PharmSciTech. 2009, 10(1): 98-103. doi:10.1208/s12249-008-9182-1.

(40) Potrč, T.; Baumgartner, S.; Roškar, R.; Planinšek, O.; Lavrič, Z.; Kristl, J.; Kocbek, P. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. Eur. J. Pharm. Sci. 2015, 75, 101–113 DOI: 10.1016/j.ejps.2015.04.004.

(41) Vrbata, P.; Berka, P.; Stránská, D.; Doležal, P.; Musilová, M.; Čižinská, L. Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int. J. Pharm. 2013, 457 (1), 168–176 DOI: 10.1016/j.ijpharm.2013.08.085.

(42) Canbolat, M. F.; Celebioglu, A.; Uyar, T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surfaces B Biointerfaces 2014, 115, 15–21 DOI: 10.1016/j.colsurfb.2013.11.021.

(43) Hira, S.K.; Mishra, A.K.; Ray, B.; Manna, P.P. Targeted delivery of doxorubicin-loaded poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) micelles enhances antitumor effect in lymphoma. Bansal V, ed. PLoS ONE. 2014, 9(4): e94309. doi:10.1371/journal.pone.0094309.

(44) Liu, H.; Tang, C. Electrospinning of cellulose acetate in solvent mixture N, N-dimethylacetamide (DMAc)/acetone. Polymer J. 2007, 39: 65–72. https://doi.org/10.1295/polymj.PJ2006117.

(45) Karthikeyan, K.; Guhathakarta, S.; Rajaram, R.; Korrapati, P. S. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int. J. Pharm. 2012, 438 (1–2), 117–122 DOI: 10.1016/j.ijpharm.2012.07.075.

(46) Reda, R.I.; Wen, M.M.; El-Kamel, A.H. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine. 2017, 12: 2335-2351. doi:10.2147/IJN.S131253.

(47) Dott, C.; Tyagi, C.; Tomar, L. K.; Choonara, Y. E.; Kumar, P.; du Toit, L. C.; Pillay, V. A Mucoadhesive Electrospun Nanofibrous Matrix for Rapid Oramucosal Drug Delivery. J. Nanomater. 2013, 2013, 1–19 DOI: 10.1155/2013/924947.

(48) Aydogdu, A.; Sumnu, G.; Sahin, S. A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydr Polym. 2018, 181: 234-246. https://doi.org/10.1016/j.carbpol.2017.10.071.

(49) Buschle-Diller, G.; Cooper, J.; Xie, Z.; Wu, Y.; Waldrup, J.; Ren, X. Release of antibiotics from electrospun bicomponent fibers. Cellulose 2007, 14 (6), 553–562 DOI: 10.1007/s10570-007-9183-3.

(50) Simamora, P.; Chern, W. Poly-L-lactic acid: an overview. J Drugs Dermatol. 2006, 5(5): 436-40. https://www.ncbi.nlm.nih.gov/pubmed/16703779.

(51) Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014, 15(3): 3640-3659. doi:10.3390/ijms15033640.

(52) Chen, H.-M.; Yu, D.-G. An elevated temperature electrospinning process for preparing acyclovir-loaded PAN ultrafine fibers. J. Mater. Process. Technol. 2010, 210 (12), 1551–1555 DOI: 10.1016/j.jmatprotec.2010.05.001.

(53) Sinha, M.K.; Das, B.R.; Srivastava, A.; Saxena, A.K. Study of Electrospun Polyacrylonitrile (PAN) and PAN/CNT Composite Nanofibrous Webs. Res J Textile Apparel 2015, 19 (1): 36-45. https://doi.org/10.1108/RJTA-19-01-2015-B004.

(54) Nagy, Z. K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B. T.; Horák, P.; Marosi, G.; et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm. 2015, 480 (1–2), 137–142 DOI: 10.1016/j.ijpharm.2015.01.025.

(55) Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Dijck, A. Van; Mensch, J.; Noppe, M.; Brewster, M. E. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Control. Release 2003, 92 (3), 349–360 DOI: 10.1016/S0168-3659(03)00342-0.

(56) Nangrejo, M.; Bragmana, F.; Ahmad, Z.; Stride, E.; Edirisinghe, M. Hot electrospinning of polyurethane fibres. Mater. Letters 2012, 68: 482-485. https://doi.org/10.1016/j.matlet.2011.11.019.

(57) Huang, Z.-M.; He, C.-L.; Yang, A.; Zhang, Y.; Han, X.-J.; Yin, J.; Wu, Q. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J. Biomed. Mater. Res. Part A 2006, 77A (1), 169–179 DOI: 10.1002/jbm.a.30564.

(58) Shrestha, R.; Palat, A.; Punnoose, A.M.; Joshi, S.; Solomon, P.; Paula, F.D. Electrospun cellulose acetate phthalate nanofibrous scaffolds fabricated using novel solvent combinations biocompatible for primary chondrocytes and neurons. Tissue Cell. 2016, 48 (6): 634-643. https://doi.org/10.1016/j.tice.2016.07.007.

(59) Torres-Martinez, E,J.; Cornejo Bravo, J.M.; Serrano Medina, A.; Pérez González, G.L.; Villarreal Gómez LJ. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr Drug Deliv. 2018, 15(10): 1360-1374. DOI: 10.2174/1567201815666180723114326.

(60) Topuz, F.; Uyar, T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics 2019, 11(1): 6; https://doi.org/10.3390/pharmaceutics11010006.

(61) Buer, J. K. Origins and impact of the term “NSAID.” Inflammopharmacology 2014, 22 (5), 263–267 DOI: 10.1007/s10787-014-0211-2.

(62) Goodman, L. S.; Brunton, L. L.; Chabner, B.; Knollmann, B. C. Goodman & Gilman’s pharmacological basis of therapeutics.; McGraw-Hill: New York, 2011.

(63) Yu, D.-G.; Zhang, X.-F.; Shen, X.-X.; Brandford-White, C.; Zhu, L.-M. Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning. Polym. Int. 2009, 58 (9), 1010–1013 DOI: 10.1002/pi.2629.

(64) Quan, J.; Yu, Y.; Branford-White, C.; Williams, G. R.; Yu, D.-G.; Nie, W.; Zhu, L.-M. Preparation of ultrafine fast-dissolving feruloyl-oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloids Surfaces B Biointerfaces 2011, 88 (1), 304–309 DOI: 10.1016/j.colsurfb.2011.07.006.

(65) Karmoker, J. R.; Sarkar, S.; Joydhar, P.; Chowdhury, S. F. Comparative in vitro equivalence evaluation of some Aceclofenac generic tablets marketed in Bangladesh. Pharma Innov. J. TPI 2016, 5 (3), 3–7 DOI: http://www.thepharmajournal.com/archives/2016/vol5issue3/PartA/5-1-7.pdf.

(66) Tyagi, C.; Tomar, L.; Choonara, Y. E.; Toit, L. C. Du; Kumar, P.; Pillay, V. Electrospun Nanofiber Matrix with a Mucoadhesive Backing Film for Oramucosal Drug Delivery. Int. J. Mater. Mech. Manuf. 2014, 2 (1), 81–85 DOI: 10.7763/IJMMM.2014.V2.105.

(67) Zitek, T.; Gates, M.; Pitotti, C.; Bartlett, A.; Patel, J.; Rahbar, A.; Forred, W.; Sontgerath, J. S.; Clark, J. M. A Comparison of Headache Treatment in the Emergency Department: Prochlorperazine Versus Ketamine. Ann. Emerg. Med. 2017, 1–10 DOI: 10.1016/j.annemergmed.2017.08.063.

(68) Jaber, B. M.; Petroianu, G. A.; Rizvi, S. A.; Borai, A.; Saleh, N. A.; Hala, S. M.; Saleh, A. M. Protective effect of metoclopramide against organophosphate-induced apoptosis in the murine skin fibroblast L929. J. Appl. Toxicol. 2017, n/a--n/a DOI: 10.1002/jat.3543.

(69) Tiwari, S. K.; Tzezana, R.; Zussman, E.; Venkatraman, S. S. Optimizing partition-controlled drug release from electrospun core–shell fibers. Int. J. Pharm. 2010, 392 (1–2), 209–217 DOI: 10.1016/j.ijpharm.2010.03.021.

(70) Singh, B.; Garg, T.; Goyal, A. K.; Rath, G. Development, optimization, and characterization of polymeric electrospun nanofiber: a new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif. Cells, Nanomedicine, Biotechnol. 2015, No. April, 1–10 DOI: 10.3109/21691401.2015.1052472.

(71) Maton, A. Human Biology and Health; Prentice Hall science; Pearson Prentice Hall, 1997.

(72) Blakney, A.; Jiang, Y.; Woodrow, K.; Krogstad, E. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int. J. Nanomedicine 2014, 9, 2967 DOI: 10.2147/IJN.S61664.

(73) Zhang, Y.; Liu, S.; Wang, X.; Zhang, Z.; Jing, X. Prevention of Local Liver Cancer Recurrence after Surgery Using Multilayered Cisplatin-loaded Polylactide Electrospun Nanofibers. 2014, 32 (8), 1111–1118 DOI: 10.1007/s10118-014-1491-0.

(74) Salehi, R.; Irani, M.; Rashidi, M.-R.; Aroujalian, A.; Raisi, A.; Eskandani, M.; Haririan, I.; Davaran, S. Stimuli-responsive nanofibers prepared from poly (N-isopropylacrylamide-acrylamide-vinylpyrrolidone) by electrospinning as an anticancer drug delivery. Des. Monomers Polym. 2013, 16 (6), 515–527 DOI: 10.1080/15685551.2013.771303.

(75) Katzung, B. G.; Masters, S. B.; Trevor, A. J. Basic & clinical pharmacology; McGraw-Hill Medical ; McGraw-Hill (distributor): New York; London, 2012.

(76) Xie, J.; Wang, C.-H. Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in vitro. Pharm. Res. 2006, 23 (8), 1817–1826 DOI: 10.1007/s11095-006-9036-z.

(77) Modgill, V.; Garg, T.; Goyal, A. K.; Rath, G. Permeability study of ciprofloxacin from ultra-thin nanofibrous film through various mucosal membranes. Artif. Cells, Nanomedicine, Biotechnol. 2016, 44 (1), 122–127 DOI: 10.3109/21691401.2014.924007.

(78) He, C.; Huang, Z.; Han, X.; Liu, L.; Zhang, H.; Chen, L. Coaxial electrospun poly (L ‐lactic acid) ultrafine fibers for sustained drug delivery. J. Macromol. Sci. Part B 2006, 45 (4), 515–524 DOI: 10.1080/00222340600769832.

(79) Borbás, E.; Balogh, A.; Bocz, K.; Müller, J.; Kiserdei, É.; Vigh, T.; Sinkó, B.; Marosi, A.; Halász, A.; Dohányos, Z.; et al. In vitro dissolution–permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFluxTM. Int. J. Pharm. 2015, 491 (1–2), 180–189 DOI: 10.1016/j.ijpharm.2015.06.019.

(80) Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44(D1): D1202-13. doi: 10.1093/nar/gkv951.

(81) Hamori, M.; Yoshimatsu, S.; Hukuchi, Y.; Shimizu, Y.; Fukushima, K.; Sugioka, N.; Nishimura, A.; Shibata, N. Preparation and pharmaceutical evaluation of nano-fiber matrix supported drug delivery system using the solvent-based electrospinning method. Int J Pharm. 2014, 464 (1–2): 243-251. https://doi.org/10.1016/j.ijpharm.2013.12.036.

(82) Xu, Q.; Zhang, N.; Qin, W.; Liu, J.; Jia, Z.; Liu, H. Preparation, in vitro and in vivo evaluation of budesonide loaded core/shell nanofibers as oral colonic drug delivery system. J Nanosci Nanotechnol. 2013, 13(1): 149-56. https://www.ncbi.nlm.nih.gov/pubmed/23646710.

(83) Liu, D.; Liu, S.; Jing, X.; Li, X.; Li, W.; Huang, Y. Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomater. 2012, 33(17): 4362-9. doi: 10.1016/j.biomaterials.2012.02.062.

(84) Kataria, K.; Gupta, A.; Rath, G.; Mathur, R. B.; Dhakate, S.R. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm. 2014, 469(1): 102-10. doi: 10.1016/j.ijpharm.2014.04.047.

Downloads

Published

2019-07-16

How to Cite

Torres-Martinez, E. J., Pérez-González, G. L., Serrano-Medina, A., Grande, D., Vera-Graziano, R., Cornejo-Bravo, J. M., & Villarreal-Gómez, L. J. (2019). Drugs Loaded into Electrospun Polymeric Nanofibers for Delivery. Journal of Pharmacy & Pharmaceutical Sciences, 22(1), 313–331. https://doi.org/10.18433/jpps29674

Issue

Section

Review Articles