Clinical Outcomes of Aspirin Interaction with Other Non-Steroidal Anti-Inflammatory Drugs: A Systematic Review

Zuhair Alqahtani1, Fakhreddin Jamali1

1Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Alberta, Canada.


Purpose: Concomitant use of some non-Aspirin nonsteroidal anti-inflammatory drugs (NANSAIDs) reduces the extent of platelet aggregation of Aspirin (acetylsalicylic acid). This is while many observational studies and clinical trials suggest that Aspirin reduces cardiovascular (CV) risk attributed to the use of NANSAIDs. Thus, the therapeutic outcome of the interaction needs to be assessed. Methods: We searched various databases up to October 2017 for molecular interaction studies between the drugs and long-term clinical outcomes based on randomized clinical trials and epidemiological observations that reported the effect estimates of CV risks (OR, RR or HR; 95% CI) of the interacting drugs alone or in combinations. Comparisons were made between outcomes after Aspirin alone, NANSAIDs alone and Aspirin with naproxen, ibuprofen, celecoxib, meloxicam, diclofenac or rofecoxib. Results: In total, 32 eligible studies (20 molecular interactions studies and 12 observational trials) were found. Conflicting in vitro/in vivo/ex vivo platelet aggregation data were found for ibuprofen, naproxen and celecoxib. Nevertheless, for naproxen, the interaction at the aggregation level did not amount to a loss of cardioprotective effects of Aspirin. Similarly, for ibuprofen, the results overwhelmingly suggest no negative clinical CV outcomes following the combination therapy. Meloxicam and rofecoxib neither interacted with Aspirin at the level of platelet aggregation nor altered clinical outcomes. The clinical outcomes data for celecoxib and diclofenac are in conflict. Conclusion: Aspirin appears to maintain its cardioprotective effect in the presence of naproxen, ibuprofen, meloxicam and rofecoxib. The limited available data suggest that the effect of interaction at the platelet aggregation level may dissipate shortly, or the reduced platelet aggregation yielded by the interaction may be sufficient for cardioprotection; i.e., no need for near complete aggregation. In addition, cardioprotective effect of Aspirin, despite reduced platelet aggregation caused by NANSAIDs, may be through its involvement in other mechanisms such as the renin-angiotensin system and/or metabolism of arachidonic acid to biologically active compounds mediated by cytochrome P450.


This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

J Pharm Pharm Sci, 21 (1s): 48s-73s, 2018

Full Text: