Current prevention and potential treatment options for dengue infection
DOI:
https://doi.org/10.18433/jpps30216Abstract
Currently, treatments for dengue infection are only symptomatic as no antiviral agents nor vaccines are available to combat this virus. Despite challenges faced by researchers, many efforts are ongoing to reduce cases of dengue infection either by targeting the vector or the virus. Vector population is monitored and reduced by using mechanical, chemical and biological controls. Chemical control is achieved either by using synthetic or natural insecticides where the latter is more preferable. In biological control, bacteria, fungi and larvivorous fish are utilised to reduce the vector population. Moreover, genes of mosquitoes are also explored to produce progenies which are sterile with low survival ability. Vaccines are among the most effective ways to prevent viral infection. Various approaches have been used and are still being explored towards producing vaccines for dengue. These include live attenuated, inactivated, recombinant subunit, nucleic acid and virus-like particles vaccines. The aim is to produce a vaccine which can target all the four serotypes of the virus. Monoclonal antibodies are widely researched on to equip the host defense mechanism against the dengue virus. Deeper understanding of the virus replication cycle warrants the development of antiviral agents which target viral proteins vital for the replication process. Bioactive compounds are also utilised in the development of antiviral agents. The importance of surveillance and supportive therapy are also discussed.
Downloads
References
Tukasan C, Furlan NB, Estofolete CF, Nogueira ML, Santos da Silva N (2017) Evaluation of the importance of fever with respect to dengue prognosis according to the 2009 WHO classification: a retrospective study. BMC Infec Dis 17:6. doi: 10.1186/s12879-016-2128-4
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al (2013) The global distribution and burden of dengue. Nature 496:504-507. doi:10.1038/nature12060
Yung CF, Lee KS, Thein TL, Tan LK, Gan VC, Wong JGX, et al (2015) Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. Am J Trop Med Hyg 92(5):999–1005. doi: 10.4269/ajtmh.14-0628
Ministry of Health (MOH) (2012) Communicable Disease Surveillance in Singapore 2011. Singapore: Ministry of Health
Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon IK, et al (2010) Serotype-specific differences in the risk of dengue hemorrhagic fever: An analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS March 2 doi: 10.1371/journal.pntd.0000617
Ponlawat A. Harrington LC (2005) Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42:844-849
Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke ABB, et al (2014) Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Visual Exp 83:3579. doi: 10.3791/3579
Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5:377-383. doi: 10.1038/nrmicro1638
Iturbe-Ormaetxe I, Walker T, O' Neill SL (2011) Wolbachia and the biological control of mosquito‐borne disease. EMBO Rep 12:508-518. doi: 10.1038/embor.2011.84
Sanofi Pasteur (2015) Dengvaxia®, world’s first dengue vaccine, approved in Mexico. http://www.sanofipasteur.ca/node/47201 (accessed 15 March 2018)
Scott T., Morrison, AC (2010) Vector dynamics and transmission of dengue virus: Implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr Top Microbiol Immunol 338:115-128. doi: 10.1007/978-3-642-02215-9_9
Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE (2012) Ross, Macdonald and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog 8(4):13. https://doi.org/10.1371/journal.ppat.1002588
Pettit WJ, Whelan PI, McDonnel lJ, Jacups SP (2010) Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J Am Mosq Control Assoc 26(4):387– 397. doi: 10.2987/09-5962.1
Tun-Lin W, Lenhart A, Nam VS, Rebollar-Tellez E, Morrison AC, Barbazan P, et al. (2009) Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: A multi country non-inferiority cluster randomized trial. Trop Med Int Health 14(9):1143–1153. doi: 10.1111/j.1365-3156.2009.02341.x
Reiter P, Nathan MB (2001) Guidelines for assessing the efficacy of insecticidal space sprays for control of the dengue vector Aedes aegypti. Geneva: World Health Organization. http://www.who.int/iris/handle/10665/67047
Frances SP, Sithiprasasna R, Linthicum KJ (2011) Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to Deet. J Med Entomol 48 (2):334–336
Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al (2006) Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: Cluster randomized trials. Brit Med J 332(7552):1247–1250A. https://doi.org/10.1136/bmj.332.7552.1247
Arunachalam N, Tyagi BK, Samuel M, Krishnamoorthi R, Manavalan R, Tewari SC, et al (2012) Community based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India. Pathog Glob Health 106(8):488–496. doi: 10.1179/2047773212Y.0000000056
Vanlerberghe V, Toledo ME, Rodriguez M, Gomez D, Baly A, Benitez JR, et al (2009) Community involvement in dengue vector control: Cluster randomized trial. Brit Med J 338. https://doi.org/10.1136/bmj.b1959
Ooi EE, Goh KT, Gubler DJ (2006) Dengue prevention and 35years of vector control in Singapore Emerg Infect Dis 12(6):887–893
Achee NL, Gould F, Perkins TA, Reiner Jr RC, Morrison AC, Ritchie SA, et al (2015) A critical assessment of vector control for dengue prevention. Plos Neglect Trop D May7:1-19. https://doi.org/10.1371/journal.pntd.0003655
Duranet DuraNet© LLIN. http://duranetllin.com/specifications/ (accessed 12 April 2018)
BASF (2018) Interceptor® long-lasting insecticidal nets. https://agriculture.basf.com/en/PestControl/Interceptor.html (accessed 12 April 2018)
Le Goff G, Damiens D, Ruttee AH, Payet L, Lebon C, Dehecq JS, Geier M, Gouagna LC (2017) Comparison of efficiency of BG-Sentinel traps baited with mice, mouse-litter, and CO₂ Lures for field sampling of male and female Aedes albopictus mosquitoes. Insects 8(3):E95. doi: 10.3390/insects8030095
Vestergaard. PermaNet® 2.0 (2014) https://www.vestergaard.com/permanet-2-0 (accessed 12 April 2018)
Vestergaard. PermaNet®3.0 (2015) https://www.vestergaard.com/images/pdf/PN3_Tech_Eng_2015.pdf (accessed 12 April 2018)
Disease Control Technologies (DCT). Royal Sentry® (2014) http://www.diseasecontroltechnologies.com/royal-sentry-llins#royal-sentry-specifications (accessed 12 April 2018)
Yorkool International (YI). Yorkool® http://treated-bednet.eu/specification.html (accessed 12 April 2018)
Allossogbe M, Gnanguenon V, Yovogan B, Akinro B, Anagonou R, Agossa F, et al (2017) WHO cone bio-assays of classical and new-generation long-lasting insecticidal nets call for innovative insecticides targeting the knock-down resistance mechanism in Benin. Malaria J 16(1):77. doi: 10.1186/s12936-017-1727-x
LeClair C, Cronery J, Kessy E, Tomás EVE, Kulwa Y, Mosha FW, et al. (2017) 'Repel all biters': an enhanced collection of endophilic Anopheles gambiae and Anopheles arabiensis in CDC light-traps, from the Kagera Region of Tanzania, in the presence of a combination mosquito net impregnated with piperonyl butoxide and permethrin. Malaria J 16(1):336. https://doi.org/10.1186/s12936-017-1972-z
Biogents (2018) Product catalog for researchers and professionals. https://www.biogents.com/wpcontent/uploads/Biogents-Product-Catalog-for-Professionals.pdf (accessed 12 April 2018)
Sliney DH, Gilbert DW, Lyon T (2016) Ultraviolet safety assessments of insect light traps. J Occup Environ Hyg 13(6):413–424. doi: 10.1080/15459624.2015.1125489
Harwood JF, Rama V, Hash JM, Gordon SW (2018) The attractiveness of the gravid Aedes trap to dengue vectors in Fiji. J Med Entomol 55(2):481–484. doi: 10.1093/jme/tjx221
Lee SC, Kim JH, Lee SJ (2017) Floating of the lobes of mosquito (Aedes togoi) larva for respiration. Sci Rep 7:43050. doi: 10.1038/srep43050
Sivagnaname N, Amalraj DD, Mariappan T (2005) Utility of expanded polystyrene (EPS) beads in the control of vector-borne diseases. Indian J Med Res 122(4):291-296
Polson KA, Brogdon WG, Rawlins SC, Chadee DD (2012) Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev Panam Salud Publ 32(1):1-8
De Simone JM (2017) Molecular mosquitocides. http://desimone-group.chem.unc.edu/?p=1855 (accessed 27 October 2017)
Hemingway J (2014) The role of vector control in stopping the transmission of malaria: Threats and opportunities. Philos Trans R Soc B-Biol Sci 369(1645):5. doi: 10.1098/rstb.2013.0431
Bellows TS, Fisher TW (1999) Handbook of Biological Control: Principles and Applications of Biological Control. Academic Press: San Diego, CA, USA
Sriwimol W, Aroonkesorn A, Sakdee S, Kanchanawarin C, Uchihashi T, Ando T, et al (2015) Potential prepore trimer formation by the Bacillus thuringiensis mosquito-specific toxin: Molecular insights into a critical prerequisite of membrane-bound monomers. J Biol Chem 290:20793–20803. doi: 10.1074/jbc.M114.627554
Alto BW, Lord CC (2016) Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl Trop 10:e0004370. https://doi.org/10.1371/journal.pntd.0004370
Ohashi K, Shono Y (2015) Recent progress in the research and development of new products for malaria and dengue vector control. Sumimoto Kagaku 1-13
World Health Organisation (WHO) (2007) Pyriproxyfen in drinking-water: use for vector control in drinking-water sources and containers
Matsuo N, Ujihara K, Shono Y, Iwasaki T, Sugano M, Yoshiyama T. et al (2005) Discovery and development of a novel pyrethroid insecticide ‘metofluthrin (SumiOne®, Eminence®). Sumimoto Kagaku 2:1-14
de Omena MC, Navarro DMAF, de Paula JE, Luna JS, Ferreira de Lima MR, Sant’Ana AEG (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresource Technol 98(13):2549-2556. doi: 10.1016/j.biortech.2006.09.040
Govindarajan M (2011) Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (Family: Sapindaceae) leaf extract against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmaco 15:787-794
Jantan I, Wong OP, Visuvalingam SD, Wasi Ahmad N (2003) Larvicidal activity of the essential oils and methanol extracts of Malaysian plants on Aedes aegypti. Pharm Biol. 41(4):234-236. https://doi.org/10.1076/phbi.41.4.234.15665
Jantan I, Yalvema MF, Wasi Ahmad N, Jamal JA (2005) Insecticidal activities of the leaf oils of eight Cinnamomum. species against Aedes aegypti. and Aedes albopictus. Pharm Biol 43(6):526-532. https://doi.org/10.1080/13880200500220771
Oliveira PV, Ferreira Jr JC, Moura FS, Lima GS, de Oliveira FM, Oliveira PE et al (2010) Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 107(2):403-407. doi: 10.1007/s00436-010-1880-4
Appadurai DR, Munusamy RG, Micheal GP, Savarimuthu I (2015) Ovicidal and oviposition deterrent activities of medicinal plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say mosquitoes (Diptera: Culicidae). Osong Public Health Res Per 6(1):64-69. doi: 10.1016/j.phrp.2014.08.009
de Lima Santos ND, de Moura KS, Napoleão TH, Novais Santos GK, Barroso Coelho LCB, Ferraz Navarro DMA, et al (2012) Oviposition-stimulant and ovicidal activities of Moringa oleifera Lectin on Aedes aegypti. PLOS Sept 6. https://doi.org/10.1371/journal.pone.0044840
Munusamy RG, Appadurai DR, Kuppusamy S, Michael GP, Savarimuthu I (2016) Ovicidal and larvicidal activities of some plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say (Diptera: Culicidae). Asian Pac J Trop Dis 6(6):468-471. https://doi.org/10.1016/S2222-1808(16)61070-8
Veni T, Pushpanathan T, Mohanraj J (2017) Larvicidal and ovicidal activity of Terminalia chebula Retz. (Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. J Paras Dis 41(3):693–702. doi: 10.1007/s12639-016-0869-z
Suman DS, Wang Y, Bilgrami AL, Gaugler R (2013) Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop 128(1):103-109. doi: 10.1016/j.actatropica.2013.06.025
Chapagain BP, Wiesman Z (2005) Larvicidal activity of the fruit mesocarp extract of Balanites aegyptiaca and its saponin fractions against Aedes aegypti. Dengue Bulletin 29:203-207. http://www.who.int/iris/handle/10665/164114
Pelah D, Abramovich Z, Markus A, Wiesman Z (2002) The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens. J Ethnopharmacol 81(3):407-409
Kannathasan K, Senthilkumar A, Venkatesalu V (2011) Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Trop 120(1-2):115-118. doi: 10.1016/j.actatropica.2011.07.001
Dayananda KVR, Ranaweera SS (2013) Mosquito-larvicidal activity of Ceylon citronella {Cymbopogon Nardus (L.) Rendle} oil fractions. J Natl Sci Found Sri 24(4):1-9. http://dx.doi.org/10.4038/jnsfsr.v24i4.5557
Gandhi MR, Reegan AD, Ganesan P, Sivasankaran K, Paulraj MG, Balakrishna K, et al (2016) Larvicidal and pupicidal activities of alizarin Isolated from roots of Rubia cordifolia against Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). Neotrop Entomol 45(4):441-448. doi: 10.1007/s13744-016-0386-x
Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364. doi: 10.1146/annurev.ento.48.091801.112731
Sakulpanich A, Attrapadung S, Gritsanapana W (2017) Insecticidal activity of Stemona collinsiae root extract against Parasarcophaga ruficornis (Diptera: Sarcophagidae). Acta Trop 173:62-68. doi: 10.1016/j.actatropica.2017.05.027
Casida JE, Durkin KA (2013) Neuroactive Insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117. doi: 10.1146/annurev-ento-120811-153645
Soonwera M, Phasomkusolsil S (2015) Efficacy of Thai herbal essential oils as green repellent against mosquito vectors. Acta Trop 142:127-130. doi: 10.1016/j.actatropica.2014.11.010
Chattopadhyay P, Dhiman S, Borah S, Rabha B, Chaurasia AK, Veer V (2015) Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop 147:45-53. doi: 10.1016/j.actatropica.2015.03.027
Jesus FLM, de Almeida FB, Duarte JL, Oliveira AEMFM, Cruz RAS, Souto RNP, et al (2017) Preparation of a nanoemulsion with Carapa guianensis Aublet (Meliaceae) oil by a low-energy/solvent-free method and evaluation of its preliminary residual larvicidal activity. Evid-Based Compl Alt 2017:6756793. https://doi.org/10.1155/2017/6756793
Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A (2017) Encapsulation of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): synthesis and characterization of the inclusion complexes. Bioengineering (Basel) 4(3):74. doi: 10.3390/bioengineering4030074
Mc Graw EA, O'Neill SL (2013) Beyond insecticides: New thinking on an ancient problem. Nat. Rev. Microbiol 11(3):181–193. doi: 10.1038/nrmicro2968
Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328. doi: 10.1126/science.1117607
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF et al. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144. doi: 10.1126/science.1165326. doi: 10.1126/science.1165326
Saleeza SNR, Norma-Rashid Y, Sofian-Azirun M (2014) Guppies as predators of common mosquito larvae in Malaysia. S Asian J Trop Med Pub Health 45:299–308
Tietze NS, Hester PG, Hallmon CF, Olson M, Shaffer KR (1991) Acute toxicity of mosquitocidal compounds to young mosquito fish, Gambusia affinis. J Am Mosq Control Assoc 7:290–293
Linden AL Cech JJ (1990) Prey selection by mosquitofish (Gambusia affinis) in California rice fields: Effect of vegetation and prey species. J Am Mosq Control Assoc 6:115–120
Azevedo-Santos VM, Vitule JRS, Pelicice FM, García-Berthou E, Simberloff D (2017) Non-native fish to control Aedes mosquitoes: A controversial, harmful tool. BioScience 67(1): 84-90. https://doi.org/10.1093/biosci/biw156
Kay BH, Tuyet Hanh TT, Le NH, Quy TM, Nam VS, Hang PV, et al. (2010) Sustainability and cost of a community-based strategy against Aedes aegypti in northern and central Vietnam. Am J Trop Med Hyg 82:822–830. doi: 10.4269/ajtmh.2010.09-0503
Darbro JM, Johnson PH, Thomas MB, Ritchie SA, Kay BH, Ryan PA (2012) Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am J Trop Med Hyg 86:656–664. doi: 10.4269/ajtmh.2012.11-0455
Patel KJ, Rueda LM, Axtell RC, Stinner RE (1991) Temperature-dependent development of the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) in larvae of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 28:95–100. https://doi.org/10.1093/jmedent/28.1.95
Scholte EJ, Knols BG, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: A review J Insect Sci 4:19
Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 511. https://doi.org/10.1186/1741-7007-5-11
Harris AF, Mc Kemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, et al. (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30(9):828–830
Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, et al (2006) Engineering RNA interference-based resistance to dengue virus type2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103(11):4198–4203
Okamoto KW, Robert MA, Gould F, Lloyd AL (2014) Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive. PLoS Negl Trop Dis 8(7):e2827. https://doi.org/10.1371/journal.pntd.0002827
Akbari OS, Chen CH, Marshall JM, Huang H, Antoshechkin I, Hay BA (2012) Novel synthetic medea selfish genetic elements drive population replacement in Drosophila; A theoretical exploration of medea-dependent population suppression. ACS Synth Biol 3(12):915-928. doi: 10.1021/sb300079h
Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Concerning RNA-guided gene drives for the alteration of wild populations. eLife:e03401. doi: 10.7554/eLife.03401
Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, et al (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328(5979):745-748. doi: 10.1126/science.1185181
Halstead SB, Deen J (2002) The future of dengue vaccines. Lancet 360:1243-1245. https://doi.org/10.1016/S0140-6736(02)11276-1
Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption. J Virol 75:7769-7773. doi: 10.1128/JVI.75.16.7769-7773.2001
Blaney JE, Durbin AP, Murphy BR, Whitehead SS (2006) Development of a live attenuated dengue virus vaccine using reverse genetics. Viral Immunol 19(10):10-32. doi: 10.1089/vim.2006.19.10
Thomas SJ, Endy TP (2011) Critical issues in dengue vaccine development. Curr Opin Infect Dis 24:442-450. doi: 10.1097/QCO.0b013e32834a1b0b
Williams KL, Zompi S, Beatty PR, Harris E A (2009) Mouse Model for Studying Dengue Virus Pathogenesis and Immune Response. Ann N Y Acad Sci 1171:E12-23. doi: 10.1111/j.1749-6632.2009.05057.x
Cassetti MC, Durbin A, Harris E, Rico-Hesse R, Roehrig J, Rothman A, et al (2010) Report of an NIAID workshop on dengue animal models. Vaccine 28:4229-4234. doi: 10.1016/j.vaccine.2010.04.045
Cox RJ, Brokstad KA, Ogra P (2004) Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol 59(1):1-15
Guirakhoo F, Kitchener S, Morrison D, Forrat R, McCarthy K, Nichols R, et al. (2006) Live attenuated Chimeric Yellow Fever Dengue Type 2 (ChimeriVax™-DEN2) Vaccine: Phase I Clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all. Hum Vaccin 2:60-67
Whitehead SS, Blaney JE, Durbin AP, Murphy BR (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol 5:518-528. doi: 10.1038/nrmicro1690
Sun W, Edelman R, Kanesa-Thasan N, Eckels KH, Putnak JR, King AD, et al (2003) Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am J Trop Med Hyg 69:21-34
Blaney Jr JE, Hanson CT, Hanley KA, Murphy BR, Whitehead SS (2004) Vaccine candidates derived from a novel infectious cDNA clone of an American genotype dengue virus type 2. BMC Infect Dis 4:39. https://doi.org/10.1186/1471-2334-4-39
Blaney Jr JE, Matro JM, Murphy BR, Whitehead SS (2005) Recombinant, live-attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J Virol 79:5516-5528. doi: 10.1128/JVI.79.9.5516-5528.2005
Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al (2012) Protective efficacy of the recombinant, live attenuated, CYD tetravalent dengue vaccine in Thai
schoolchildren: A randomized, controlled phase 2b trial. Lancet 380:1559-1567. doi: 10.1016/S0140-6736(12)61428-7
Putnak JR, Coller BA, Voss G, Vaughn DW, Clements D, Peters I, et al. (2005) An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine 23:4442-4452. https://doi.org/10.1016/j.vaccine.2005.03.042
World Health Organisation (WHO) (2016) Dengue vaccine: WHO position paper – July 2016
Sanofi Pasteur (2017) Sanofi updates information on dengue vaccine, http://mediaroom.sanofi.com/sanofi-updates-information-on-dengue-vaccine/; (accessed 15 March 2018)
Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al (2018) Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med 379:327-340. doi: 10.1056/NEJMoa1800820
Inquirer.net (2017) http://newsinfo.inquirer.net/949866/breaking-news-health-medicine-sanofi-pasteur-food-and-drug-administration-suspension-dengvaxia (accessed 15 March 2018)
Simmons M, Porter KR, Hayes CG, Vaughn DW, Putnak R (2006) Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques. J Virol 80:9577-9585. doi: 10.1128/JVI.00284-06
Leroux-Roels G (2010) Unmet needs in modern vaccinology: Adjuvants to improve the immune response. Vaccine 28:C25-36. doi: 10.1016/j.vaccine.2010.07.021
Maves RC, Castillo Oré RM, Porter KR, Kochel TJ (2011) Immunogenicity and protective efficacy of a psoralen-inactivated dengue-1 virus vaccine candidate in Aotus nancymaae monkeys. Vaccine 29:2691-2696. doi: 10.1016/j.vaccine.2011.01.077
Konishi E, Fujii A (2002) Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20:1058-1067
Johansen H, van der Straten A, Sweet R, Otto E, Maroni G, Rosenberg M (1989) Regulated expression at high copy number allows production of a growth-inhibitory oncogene product in Drosophila Schneider cells. Genes & Dev 3:882-889
Clements DE, Coller BAG, Lieberman MM, Ogata S, Wang G, Harada KE, et al. (2010) Development of a recombinant tetravalent dengue virus vaccine: Immunogenicity and efficacy studies in mice and monkeys. Vaccine 28:2705-2715. doi: 10.1016/j.vaccine.2010.01.022
Coller BAG, Clements DE, Bett AJ, Sagar SL, Ter Meulen JH (2011) The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine 29:7267-7275. doi: 10.1016/j.vaccine.2011.07.021
Raviprakash K, Ewing D, Simmons M, Porter KR, Jones TR, Hayes CG, et al (2003) Needle-free biojector injection of a dengue virus type 1 DNA vaccine with human immunostimulatory sequences and the GM-CSF gene increases immunogenicity and protection from virus challenge in Aotus monkeys. Virology 315:345-352
Schmitz J, Roehrig J, Barrett A, Hombach J (2011) Next generation dengue vaccines: A review of candidates in preclinical development. Vaccine 29:7276-7284. doi: 10.1016/j.vaccine.2011.07.017
Ramanathan MP, Kuo YC, Selling BH, Li Q, Sardesai NY, Kim JJ, et al (2009) Development of a novel DNA SynCon™ tetravalent dengue vaccine that elicits immune responses against four serotypes. Vaccine 27:6444-6453. doi: 10.1016/j.vaccine.2009.06.061
Purdy DE, Chang GJ (2005) Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology 333:239-250. doi: 10.1016/j.virol.2004.12.036
Konishi E, Kosugi S, Imoto J (2006) Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine 24:2200-2207. doi: 10.1016/j.vaccine.2005.11.002
Imoto J, Konishi E (2007) Dengue tetravalent DNA vaccine increases its immunogenicity in mice when mixed with a dengue type 2 subunit vaccine or an inactivated Japanese encephalitis vaccine. Vaccine 25:1076-1084. https://doi.org/10.1016/j.vaccine.2006.09.059
Raviprakash K, Apt D, Brinkman A, Skinner C, Yang S, Dawes G, et al (2006) A chimeric tetravalent dengue DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology 353:166-173. doi: 10.1016/j.virol.2006.05.005
Jennings GT1, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389(5):521-536
Spohn G, Keller I, Beck M, Grest P, Jennings GT, Bachmann MF (2008) Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur J Immunol 38:877-887. doi: 10.1002/eji.200737989
Bisht H, Chugh DA, Raje M, Swaminathan S, Khanna N (2002) Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. J Biotechnol 99:97-110
Robinson LN, Tharakaraman K, Rowley KJ, Costa VV, Chan KR, Wong YH, et al (2015) Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell 162:493-504. doi: 10.1016/j.cell.2015.06.057
Ng JKW, Zhang SL, Tan HC, Yan B, Gomez JMM, Tan WY, et al (2014) First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PloS Pathog 10:e1004031. doi: 10.1371/journal.ppat.1004031
Screaton G, JMongkolsapaya J, Yacoub S, Roberts C (2015) New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15:745-759. doi: 10.1038/nri3916
Chan KR, Wang X, Saron WAA, Gan ES, Tan HC, Mok DZL, et al (2016) Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity. Nat Microbiol 1:16164. doi: 10.1038/nri3916
Luo D, Vasudevan SG, Lescar J (2015) The flavivirus NS2B–NS3 protease–helicase as a target for antiviral drug development. Antiviral Res 118:148-158. doi: 10.1016/j.antiviral.2015.03.014
Sung C, Kumar GS, Vasudevan SG (2014) Dengue drug development, dengue and dengue hemorrhagic fever. 2nd ed. UK:CABI
Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25:1435-1443. doi: 10.1038/nbt1369
Sanchez-Vargas I, Travanty EA, Keene KM, Franz AWE, Beaty BJ, Blair CD, et al (2004) RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102:65-74. doi: 10.1016/j.virusres.2004.01.017
Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex: protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388-24398. doi: 10.1074/jbc.M301717200
Alhoot MA, Wang SM, Sekaran SD (2012) RNA interference mediated inhibition of dengue virus multiplication and entry in HepG2 cells. PLos One 7:e34060. https://doi.org/10.1371/journal.pone.0034060
Vilegas-Rosales PM, Mendez-Tenorio A, Ortega-Soto E, Baron LB (2012) Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses. Bioinformation 8(11):519-522. doi: 10.6026/97320630008519
Tan SK, Pippen R, Yusof R, Ibrahim H, Khalid N, Abd Rahman N (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16(12):3337-3340. doi: 10.1016/j.bmcl.2005.12.075
de Sousa LRF, Wu H, Nebo L, Fernandes JB, das Graças Fernandes da Silva MF, Kiefer W, et al (2015) Flavonoids as noncompetitive inhibitors of dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg Med Chem 23:466–470. doi: 10.1016/j.bmc.2014.12.015
Yao X, Ling Y, Guo S, He S, Wang J, Zhang Q, et al (2018b) Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur J Pharmacol 821:11–20. doi: 10.1016/j.ejphar.2017.12.029
Yao X, Ling Y, Guo S, Wu W, He S, Zhang Q, et al (2018a) Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine 42:258–267. doi: 10.1016/j.phymed.2018.03.018
Yu JS, Tseng CK, Lin CK, Hsu YC, Wu YH, Hsieh CL, et al (2017)
Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res 137:49-57. doi: 10.1016/j.antiviral.2016.11.010
Gómez-Calderón C, Mesa-Castro C, Robledo S, Gómez S, Bolivar-Avila S, Diaz-Castillo F, et al (2017) Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on dengue and chikungunya virus infection. BMC Complement Altern Med 17:57. doi: 10.1186/s12906-017-1562-1
Tarasuk M, Songprakhon P, Chimma P, Sratongno P, Na-Bangchang K, Yenchitsomanus PT (2017) Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res 240:180-189. doi: 10.1016/j.virusres.2017.08.011
Peng M, Watanabe S, Chan KWK, He Q, Zhao Y, Zhang Z, et al (2017) Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res 143:176-185. doi: 10.1016/j.antiviral.2017.03.026
Tang LIC, Ling APK, Koh RY, Chye SM, Voon KGL (2012) Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Comp Alt Med 12:3. https://doi.org/10.1186/1472-6882-12-3
Edwin ES, Prabhakaran VS, Sengottayan SN, Thanigaivel A, Ponsankar A, Pradeepaa V, et al (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167-178. doi: 10.1016/j.actatropica.2016.07.009
Parida MM, Upadhyay C, Pandya G, Jana AM (2002) Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol 79(2):273-278
Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R (2008) Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med 5(3):362–366. https://doi.org/10.1371/journal.pmed.0050068
Bowman LR, Runge-Ranzinger S, McCall PJ (2014) Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl Trop 8(5):e2848. doi: 10.1371/journal.pntd.0002848
Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U (2009) A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol 46(6):1256–1259
Krockel U, Rose A, Eiras AE, Geier M (2006) New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J Am Mosq Control Assoc 22(2):229–238. doi: 10.2987/8756 971X(2006)22[229:NTFSOA]2.0.CO;2
Ritchie SA, Buhagiar TS, Townsend M, Hoffmann A, van den Hurk AF, McMahon JL, et al (2014) Field validation of the gravid Aedes trap (gat) for collection of Aedes aegypti (Diptera:Culicidae). J Med Entomol 51(1):210–219
Lum LCS, Ng CJ, Khoo EM (2014) Managing dengue fever in primary care: A practical approach. Malay Fam Physician 9(2):1-10
World Health Organisation (WHO) (1997) Dengue haemmorrhagic fever: diagnosis, treatment and control. http://www.who.int/iris/handle/10665/41988
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Pharmacy & Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open access journal with free of charge non-commercial download. At the time of submission, authors will be asked to transfer the copyright to the accepted article to the Journal of Pharmacy and Pharmaceutical Sciences. The author may purchase the copyright for $500 upon which he/she will have the exclusive copyright to the article. Nevertheless, acceptance of a manuscript for publication in the Journal is with the authors' approval of the terms and conditions of the Creative Commons copyright license Creative Common license (Attribution-ShareAlike) License for non-commercial uses.
CLOCKSS system has permission to collect, preserve, and serve this Archival Unit.