Drug Targeting Strategies Based on Charge Dependent Uptake of Nanoparticles into Cancer Cells
DOI:
https://doi.org/10.18433/jpps30318Abstract
The aim of this review was to describe the preferred charged nano-particles (CNPs) for targeted delivery in tumor cells. Zeta Potential (ZP), which represents the surface charge of NPs was highlighted in cell entrance and interactions. In this regard, various types of endocytosis pathways which are involved in NPs’ uptake were first introduced. Then, significance of positively charged NPs (PCNPs) in proton sponge effect corresponding to lysosomal escape was discussed. Cells prefer to endocyte the NPs with positive charge in passive targeting and gene delivery, while in active targeting; the charge of receptors’ ligand binding site determines the NPs cellular uptake. Moreover, pH-sensitive NPs represent charge reversible behavior depending on pH changes which leads to longer blood circulation residence and higher uptake at acidic microenvironment of the cancer media. Role of the CNPs in overcoming multidrug resistance (MDR) and bypassing p-glycoprotein was further investigated.
Downloads
References
Cheng MM-C, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, et al. Nanotechnologies for biomolecular detection and medical diagnostics. Current opinion in chemical biology. 2006;10(1):11-9. DOI:10.1016/j.cbpa.2006.01.006
Tan YF, Lao LL, Xiong GM, Venkatraman S. Controlled-release nanotherapeutics: State of translation. Journal of Controlled Release. 2018;284:39-48. DOI: 10.1016/j.jconrel.2018.06.014.
Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, et al. Essential cell biology: Garland Science; 2013. DOI:10.1093/aob/mcg023.
Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Advanced drug delivery reviews. 2007;59(8):748-58. DOI:10.1016/j.addr.2007.06.008.
Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics. 2008;83(5):761-9. DOI:10.1038/sj.clpt.6100400.
Behnam MA, Emami F, Sobhani Z, Koohi-Hosseinabadi O, Dehghanian AR, Zebarjad SM, et al. Novel Combination of Silver Nanoparticles and Carbon Nanotubes for Plasmonic Photo Thermal Therapy in Melanoma Cancer Model. Advanced pharmaceutical bulletin. 2018;8(1):49. DOI:10.15171/apb.2018.006.
De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine. 2008;3(2):133.
Bajpai A, Choubey J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. Journal of Materials Science: Materials in Medicine. 2006;17(4):345-58. DOI:10.1007/s10856-006-8235-9.
Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angewandte chemie international edition. 2008;47(8):1382-95. DOI:10.1002/anie.200703039.
Sukharev S, Klenchin V, Serov S, Chernomordik L, YuA C. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophysical journal. 1992;63(5):1320-7. DOI:10.1016/S0006-3495(92)81709-5.
Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12-21. DOI:10.1002/smll.200901158.
Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews. 2011;40(1):233-45. DOI:10.1039/c0cs00003e.
Herbig ME, Assi F, Textor M, Merkle HP. The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. Biochemistry. 2006;45(11):3598-609. DOI:10.1021/bi050923c.
Choi S, Yu J, Patel SA, Tzeng Y-L, Dickson RM. Tailoring silver nanodots for intracellular staining. Photochemical & Photobiological Sciences. 2011;10(1):109-15. DOI:10.1039/c0pp00263a.
Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids and Surfaces B: Biointerfaces. 2009;71(2):325-30. DOI:10.1016/j.colsurfb.2009.03.004.
Win KY, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713-22. DOI:10.1016/j.biomaterials.2004.07.050.
Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9(3):1080-4. DOI:10.1021/nl803487r.
Magnuson DS, Morassutti DJ, Staines WA, McBurney MW, Marshall KC. In vivo electrophysiological maturation of neurons derived from a multipotent precursor (embryonal carcinoma) cell line. Developmental brain research. 1995;84(1):130-41. DOI:10.1016/0165-3806(94)00166-W.
Steve Haltiwanger M. The Electrical Properties of Cancer Cells.
Bortner CD, Cidlowski JA. Ion channels and apoptosis in cancer. Phil Trans R Soc B. 2014;369(1638):20130104. DOI:10.1098/rstb.2013.0104.
Seiler M, Venkatachalam M, Cotran R. Glomerular epithelium: structural alterations induced by polycations. Science. 1975;189(4200):390-3.
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine. 2012;7:5577. DOI:10.2147/IJN.S36111.
Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today. 2011;6(2):176-85. DOI:10.1016/j.nantod.2011.02.003.
Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences. 2013;8(1):1-10. DOI:10.1016/j.ajps.2013.07.001.
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. Journal of controlled release. 2010;145(3):182-95. DOI:10.1016/j.jconrel.2010.01.036.
Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. Journal of nanoparticle research. 2013;15(8):1874. DOI:10.1007/s11051-013-1874-0.
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. The Journal of cell biology. 2010:jcb. 200908086. DOI:10.1083/jcb.200908086.
Vassiliou G, McPherson R. A Novel Efflux–Recapture Process Underlies the Mechanism of High-Density Lipoprotein Cholesteryl Ester-Selective Uptake Mediated by the Low-Density Lipoprotein Receptor–Related Protein. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(9):1669-75. DOI:10.1161/01.ATV.0000134295.09932.60.
Perry JW, Wobus CE. Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. Journal of virology. 2010;84(12):6163-76. DOI:10.1128/JVI.00331-10.
Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. Journal of Pharmacology and Experimental Therapeutics. 2006;317(3):1372-81. DOI:10.1124/jpet.106.101154.
Saadat M, Farhadi K. ColorImetric detection of S2O4 2- using CTAB functionalized gold nanoparticles. 2014; 2(3): 2277-5536.
Farhadi K, Saadat M, Nikoo A, Rezaei A. synthesis and phase transfer of GNPs from aqueous to organic solution containing FPTT. (22)2014.
Mahmoudian M, Valizadeh H, Zakeri-Milani P. Bortezomib-loaded solid lipid nanoparticles: preparation, characterization, and intestinal permeability investigation. Drug development and industrial pharmacy. 2018;44(10):1598-605. DOI: 10.1080/03639045.2018.1483385.
Rao CR, Kulkarni GU, Thomas PJ, Edwards PP. Metal nanoparticles and their assemblies. Chemical Society Reviews. 2000;29(1):27-35. DOI: 10.1039/A904518J.
Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Advanced drug delivery reviews. 2016;106:242-55. DOI:10.1016/j.addr.2016.04.014.
Díaz-Moscoso A. Soft versus hard nanoparticles in the delivery of aromatic macrocycles for photodynamic therapy of cancer. International Journal of Medicine and Biomedical Research. 2012;1(1):12-23. DOI: 10.14194/ijmbr.114.
Kaszuba M, Corbett J, Watson FM, Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2010;368(1927):4439-51. DOI:10.1098/rsta.2010.0175.
Kallay N, Žalac S, Kovačević D. Thermodynamics of the solid/liquid interface. Its application to adsorption and colloid stability. Surface Complexation Modelling: Elsevier; 2006. DOI: 10.5562/cca1864.
Prakash S, Mishra R, Malviya R, Sharma PK. Measurement Techniques and Pharmaceutical Applications of Zeta Potential: A Review. Journal of Chronotherapy and Drug Delivery. 2014;5(2):33-40.
Fowkes F, Jinnai H, Mostafa M, Anderson F, Moore R. Mechanism of electric charging of particles in nonaqueous liquids. Colloids and Surfaces in Reprographic Technology. 1982;200(15):307-24. DOI: 10.1021/bk-1982-0200.ch015
Labib ME, Williams R. The use of zeta-potential measurements in organic solvents to determine the donor—acceptor properties of solid surfaces. Journal of colloid and interface science. 1984;97(2):356-66. DOI:10.1016/0021-9797(84)90306-0.
Werner C, König U, Augsburg A, Arnhold C, Körber H, Zimmermann R, et al. Electrokinetic surface characterization of biomedical polymers—a survey. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999;159(2):519-29.
Sennett P, Olivier J. Colloidal dispersions, electrokinetic effects, and the concept of zeta potential. Industrial & Engineering Chemistry. 1965;57(8):32-50. DOI: 10.1021/ie50668a007.
Vane LM, Zang GM. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials. 1997;55(1-3):1-22. DOI:10.1016/S0304-38.
Chang H-C. Electrokinetic transport of red blood cells in microcapillaries. Electrophoresis. 2002;23:2165-73. DOI:10.1002/1522-2683(200207)23:14<2165:AID-ELPS2165>3.0.CO;2.
Mänttäri M, Pihlajamäki A, Nyström M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. Journal of Membrane Science. 2006;280(1):311-20. DOI: 10.1016/j.memsci.2006.01.034.
Kirby BJ, Hasselbrink EF. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25(2):187-202. DOI:10.1002/elps.200305754.
Guzelsu N, Wienstien C, Kotha S. A new streaming potential chamber for zeta potential measurements of particulates. Review of Scientific Instruments. 2010;81(1):015106. DOI:10.1063/1.3284510.
Renaud L, Kleimann P, Morin P. Zeta potential determination by streaming current modelization and measurement in electrophoretic microfluidic systems. Electrophoresis. 2004;25(1):123-7. DOI:10.1002/elps.200305696.
Seaman G, Heard D. Methods: a microelectrophoresis chamber of small volume for use with biological systems. Blood. 1961;18(5):599-604.
Thành LD, Sprik R. Zeta Potential Measurement Using Electroosmosis in Porous Media. VNU Journal of Science: Natural Sciences and Technology. 2015;31(4).
Uddin S, Minezami M, Finch JA. An approach to measure zeta potential using sedimentation potential method.
Sarraf H, Skarpova L, Louda P. Electrokinetic sonic amplitude (ESA) technique as a new tool to characterize zetapotential of carbon fibers treated by plasma oxidation. Annual transactions-nordicrheology socity. 2007;15:257.
The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH [Internet]. 2013. DOI:10.1038/mt.2012.185.
Watts C. The endosome–lysosome pathway and information generation in the immune system. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2012;1824(1):14-21. DOI:10.1016/j.bbapap.2011.07.006.
Rappuoli R. Bridging the knowledge gaps in vaccine design. Nature biotechnology. 2007;25(12):1361-6. DOI:10.1038/nbt1207-1361.
Deepthi A, Raju S, Kalyani A, Kiran UM, Vanaja A. Targeted drug delivery to the nucleus and its potential role in cancer chemotherapy. Journal of Pharmaceutical Sciences and Research. 2013;5(2):48.
Han L, Zhao J, Zhang X, Cao W, Hu X, Zou G, et al. Enhanced siRNA delivery and silencing gold–chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. Acs Nano. 2012;6(8):7340-51. DOI:10.1021/nn101638u.
Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9‐10):1521-32. DOI: 10.1002/smll.201201390.
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical Journal of Pharmaceutical Research. 2013;12(2):265-73. DOI:10.4314/tjpr.v12i2.19.
Zhang J-S, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Advanced drug delivery reviews. 2005;57(5):689-98. DOI:10.1016/j.addr.2004.12.004.
Barron LG, Gagne L, Szoka FC. Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Human gene therapy. 1999;10(10):1683-94. DOI:10.1089/10430349950017680.
Du J-Z, Du X-J, Mao C-Q, Wang J. Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. Journal of the American Chemical Society. 2011;133(44):17560-3. DOI: 10.1021/ja207150n.
Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chemical Society Reviews. 2012;41(18):5933-49. DOI: 10.1039/C2CS35103J.
Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435-46. DOI: 10.1016/j.
Vroman L, Adams A, Fischer G, Munoz P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55(1):156-9.
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano today. 2008;3(1-2):40-7.
Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews. 2012;41(7):2780-99. DOI:10.1039/c1cs15233e.
Simberg D, Park J-H, Karmali PP, Zhang W-M, Merkulov S, McCrae K, et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials. 2009;30(23):3926-33. DOI:10.1016/j.biomaterials.2009.03.056.
Gessner A, Waicz R, Lieske A, Paulke B-R, Mäder K, Müller R. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. International journal of pharmaceutics. 2000;196(2):245-9.
Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opinion on Drug Delivery. 2011;8(3):343-57. DOI:10.1517/17425247.2011.554818.
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced drug delivery reviews. 2009;61(6):428-37. DOI: 10.1016/j.addr.2009.03.009.
Gessner A, Lieske A, Paulke BR, Müller RH. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. European journal of pharmaceutics and biopharmaceutics. 2002;54(2):165-70.
Bradley AJ, Devine DV, Ansell SM, Janzen J, Brooks DE. Inhibition of liposome-induced complement activation by incorporated poly (ethylene glycol)-lipids. Archives of biochemistry and biophysics. 1998;357(2):185-94. DOI:10.1006/abbi.1998.0798.
Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20(45):455101. DOI:10.1088/0957-4484/20/45/455101.
Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, et al. The evolution of the protein corona around nanoparticles: a test study. ACS nano. 2011;5(9):7503-9. DOI:10.1021/nn202458g.
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences. 2007;104(7):2050-5. DOI.10.1073/pnas.0608582104.
Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano letters. 2007;7(4):914-20. DOI:10.1021/nl062743+.
Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Advanced drug delivery reviews. 1998;32(1-2):3-17.
De M, You C-C, Srivastava S, Rotello VM. Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. Journal of the American Chemical Society. 2007;129(35):10747-53. DOI: 10.1021/ja071642q.
Junghans M, Kreuter J, Zimmer A. Antisense delivery using protamine–oligonucleotide particles. Nucleic Acids Research. 2000;28(10):e45-e. DOI:10.1093/nar/28.10.e45.
Martínez-Carmona M, Colilla M, Vallet-Regí M. Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials. 2015;5(4):1906-37. DOI:10.3390/nano5041906.
Liu XL, Wang YT, Ng CT, Wang R, Jing GY, Yi JB, et al. Coating engineering of MnFe2O4 nanoparticles with superhigh T2 relaxivity and efficient cellular uptake for highly sensitive magnetic resonance imaging. Advanced Materials Interfaces. 2014;1(2). DOI 10.1186/s11671-015-0752-3.
Ankamwar B, Lai T-C, Huang J-H, Liu R-S, Hsiao M, Chen C-H, et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010;21(7):075102. DOI: 10.1088/0957-4484/21/7/075102.
Soleymani-Goloujeh M, Nokhodchi A, Niazi M, Najafi-Hajivar S, Shahbazi-Mojarrad J, Zarghami N, et al. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides. Artificial cells, nanomedicine, and biotechnology. 2017:1-13. DOI:10.1080/21691401.2017.1414823.
Mussa Farkhani S, Asoudeh Fard A, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides. Artificial cells, nanomedicine, and biotechnology. 2017;45(5):1029-35. DOI: 10.2174/1874070701812010154.
Ghinea N, Simionescu N. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles. The Journal of cell biology. 1985;100(2):606-12. DOI: 10.1083/jcb.100.2.606.
Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600-7. DOI:10.1016/j.biomaterials.2007.07.029.
Wilhelm C, Billotey C, Roger J, Pons J, Bacri J-C, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003;24(6):1001-11. DOI:10.1016/S0142-9612(02)00440-4.
Mutsaers SE, Papadimitriou JM. Surface charge of macrophages and their interaction with charged particles. Journal of leukocyte biology. 1988;44(1):17-26. DOI:10.1002/jlb.44.1.17.
Farquhar MG. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. The Journal of cell biology. 1978;77(3):R35. DOI:10.1083/jcb.77.3.R35.
Larsen B. Redistribution of polycations bound to lymphocytes. Molecular and cellular biochemistry. 1977;15(2):117-23.
Skutelsky E, Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. The Journal of cell biology. 1976;71(1):232-41. DOI: 10.1083/jcb.71.1.232.
Chawla JS, Amiji MM. Cellular uptake and concentrations of tamoxifen upon administration in poly (ε-caprolactone) nanoparticles. The AAPS Journal. 2003;5(1):28-34. DOI:10.1208/ps050103.
Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical microdevices. 2008;10(2):321-8. DOI:10.1007/s10544-007-9139-2.
Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. Journal of Applied Toxicology: An International Journal. 2010;30(3):212-7. DOI:10.1002/jat.1486.
Hamblin M, Miller J, Rizvi I, Loew H, Hasan T. Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. British journal of cancer. 2003;89(5):937. DOI:10.1038/sj.bjc.6601210.
Khine YY, Callari M, Lu H, Stenzel MH. Direct Correlation Between Zeta Potential and Cellular Uptake of Poly (methacrylic acid) Post‐Modified with Guanidinium Functionalities. Macromolecular Chemistry and Physics. 2016;217(20):2302-9. DOI:10.1002/macp.201600161.
Cegnar M, Kos J, Kristl J. Intracellular delivery of cysteine protease inhibitor cystatin by polymeric nanoparticles. Journal of nanoscience and nanotechnology. 2006;6(9-1):3087-94.
Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Müller R, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27(1):108-18. DOI:10.1016/j.biomaterials.2005.04.041
.
Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal of Controlled Release. 2002;83(2):273-86. DOI:10.1016/S0168-3659(02)00212-2.
Perumal OP, Inapagolla R, Kannan S, Kannan RM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29(24):3469-76. DOI:10.1016/j.biomaterials.2008.04.038.
Sharma DK, Choudhury A, Singh RD, Wheatley CL, Marks DL, Pagano RE. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. Journal of Biological Chemistry. 2003;278(9):7564-72. DOI:10.1074/jbc.M210457200.
Gonçalves C, Mennesson E, Fuchs R, Gorvel J-P, Midoux P, Pichon C. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Molecular therapy. 2004;10(2):373-85. DOI:10.1016/j.ymthe.2004.05.023.
Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of controlled release. 2005;102(1):23-38. DOI:10.1016/j.jconrel.2004.09.015.
HAWLEY P, GIBSON I. Interaction of oligodeoxynucleotides with mammalian cells. Antisense and Nucleic Acid Drug Development. 1996;6(3):185-95. DOI:10.1089/oli.1.1996.6.185.
Yue Z-G, Wei W, Lv P-P, Yue H, Wang L-Y, Su Z-G, et al. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules. 2011;12(7):2440-6. DOI:10.1021/bm101482r.
Huang M, Ma Z, Khor E, Lim L-Y. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharmaceutical Research. 2002;19(10):1488-94. DOI:10.1023/A:1020404615898.
Rauch J, Kolch W, Mahmoudi M. Cell type-specific activation of AKT and ERK signaling pathways by small negatively-charged magnetic nanoparticles. Scientific reports. 2012;2:868. DOI:10.1038/srep00868.
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environmental science & technology. 2005;39(23):9370-6. DOI:10.1021/es051043o.
Gu Y, Qiao X, Zhang J, Sun Y, Tao Y, Qiao S. Effects of surface modification of upconversion nanoparticles on cellular uptake and cytotoxicity. Chemical Research in Chinese Universities. 2016;32(3):474-9. DOI:10.1007/s40242-016-6026-5.
Yu J, Baek M, Chung H, Choi S, editors. Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake. Journal of Physics: Conference Series; 2011: IOP Publishing. DOI:10.1088/1742-6596/304/1/012007.
Nambiar S, Osei E, Fleck A, Darko J, Mutsaers AJ, Wettig S. Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line. Applied Nanoscience. 2018;8(3):347-57. DOI:10.1007%2Fs13204-018-0728-6.
Bhattacharjee S, Ershov D, Fytianos K, van der Gucht J, Alink GM, Rietjens IM, et al. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Particle and fibre toxicology. 2012;9(1):11. DOI:10.1186/1743-8977-9-11.
Sanchez-Salcedo S, Vallet-Regí M, Shahin SA, Glackin CA, Zink JI. Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chemical Engineering Journal. 2018;340:114-24. DOI: 10.1016/j.cej.2017.12.116.
Dolatabadi JEN, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Advanced pharmaceutical bulletin. 2015;5(2):151. DOI:10.15171/apb.2015.022.
Chen AM, Nair SK, Thomas T, Thomas T, He H. Condensation of Therapeutic Oligodeoxynucleotides and Plasmid DNA with PPI Dendrimers and PPI-Modified Gold Nanoparticles. NSTI-Nanotech. 2006;0-9767985-7-3 (2).
Bhattarai SR, Kc RB, Aryal S, Bhattarai N, Kim SY, Yi HK, et al. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. Journal of Nanoparticle Research. 2008;10(1):151-62. DOI:10.1007/s11051-007-9233-7.
Ramesh R, Saeki T, Templeton NS, Ji L, Stephens LC, Ito I, et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Molecular Therapy. 2001;3(3):337-50. DOI: 10.1006/mthe.2001.0266.
Zhang M, Kim Y-K, Cui P, Zhang J, Qiao J, He Y, et al. Folate-conjugated polyspermine for lung cancer–targeted gene therapy. Acta Pharmaceutica Sinica B. 2016;6(4):336-43. DOI:10.1016/j.apsb.2016.03.010.
Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chemistry. 2000;11(6):926-32. DOI: 10.1021/bc0000637.
Singh M, Briones M, Ott G, O'Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proceedings of the National Academy of Sciences. 2000;97(2):811-6. DOI:10.1073/pnas.97.2.811.
Reszka R, Zhu J-H, Weber F, Walther W, Greferath R, Dyballa S. Liposome mediated transfer of marker and cytokine genes into rat and human glioblastoma cells in vitro and in vivo. Journal of Liposome Research. 1995;5(1):149-67. DOI: 10.3109/08982109509039915.
Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly (β-amino esters). Biomaterials. 2012;33(27):6495-506. DOI: 10.1016/j.biomaterials.2012.05.039.
Yhee JY, Song S, Lee SJ, Park S-G, Kim K-S, Kim MG, et al. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release. 2015;198:1-9. DOI:10.1016/j.jconrel.2014.11.019.
Gao Y, Chen L, Zhang Z, Chen Y, Li Y. Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials. 2011;32(6):1738-47. DOI:10.1016/j.biomaterials.2010.11.001.
Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomaterials science. 2017;5(1):77-88. DOI:10.1039/C6BM00449K.
Han Y, Li Y, Zhang P, Sun J, Li X, Sun X, et al. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharmaceutical development and technology. 2016;21(3):277-81. DOI:10.3109/10837450.2014.996900.
Wu Y-F, Wu H-C, Kuan C-H, Lin C-J, Wang L-W, Chang C-W, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific reports. 2016;6. DOI:10.1038/srep21170.
Bahram M, Hoseinzadeh F, Farhadi K, Saadat M, Najafi-Moghaddam P, Afkhami A. Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:517-24. DOI: 10.1016/j.colsurfa.2013.09.024.
Antoniraj MG, Kumar CS, Kumari HLJ, Natesan S, Kandasamy R. Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. CARBOHYDRATE POLYMERS. 2017;157:1677-86. DOI:10.1016/j.carbpol.2016.11.049.
Wang H, He J, Zhang M, Tao Y, Li F, Tam KC, et al. Biocompatible and acid-cleavable poly (ε-caprolactone)-acetal-poly (ethylene glycol)-acetal-poly (ε-caprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. Journal of Materials Chemistry B. 2013;1(48):6596-607. DOI: 10.1039/C3TB21170C.
Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, et al. Morpholino-terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity. Polymer. 2016;84:189-97. DOI:10.1016/j.polymer.2015.12.056.
Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, et al. One‐Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acid‐Switchable Surface Charge for Overcoming Drug Resistance. Small. 2017;13(9). DOI:10.1016/j.polymer.2015.12.056.
Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials. 2012;33(36):9246-58. DOI:10.1016/j.biomaterials.2012.09.027.
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews. 2011;63(3):131-5. DOI:10.1016/j.addr.2010.03.011.
Herrlich P, Sleeman J, Wainwright D, König H, Sherman L, Hilberg F, et al. How tumor cells make use of CD44. Cell Communication & Adhesion. 1998;6(2-3):141-7. DOI:10.3109/15419069809004470.
Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995;82(1):19-28. DOI:10.1016/0092-8674(95)90048-9.
Fuchs SM, Raines RT. Pathway for polyarginine entry into mammalian cells. Biochemistry. 2004;43(9):2438-44. DOI:10.1021/bi035933x.
He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. Journal of Controlled Release. 2016;229:80-92. DOI:10.1016/j.jconrel.2016.03.001.
Mo R, Sun Q, Li N, Zhang C. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials. 2013;34(11):2773-86. DOI:10.1016/j.biomaterials.2013.01.030.
Liu R, Li D, He B, Xu X, Sheng M, Lai Y, et al. Anti-tumor drug delivery of pH-sensitive poly (ethylene glycol)-poly (L-histidine-)-poly (L-lactide) nanoparticles. Journal of controlled release. 2011;152(1):49-56. DOI:10.1016/j.jconrel.2011.02.031.
Wang Y, Chen H, Liu Y, Wu J, Zhou P, Wang Y, et al. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181-90. DOI:10.1016/j.biomaterials.2013.05.081.
Zhou Q, Hou Y, Zhang L, Wang J, Qiao Y, Guo S, et al. Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity. Theranostics. 2017;7(7):1806. DOI:10.7150/thno.18607.
Tran TH, Ramasamy T, Choi JY, Nguyen HT, Pham TT, Jeong J-H, et al. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells. International journal of nanomedicine. 2015;10:5249. DOI:10.2147/IJN.S89584.
Chavanpatil MD, Patil Y, Panyam J. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. International Journal of Pharmaceutics. 2006;320(1):150-6. DOI:10.1016/j.ijpharm.2006.03.045.
Jiang L, Li L, He X, Yi Q, He B, Cao J, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials. 2015;52:126-39. DOI:10.1016/j.biomaterials.2015.02.004.
Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nature reviews Cancer. 2010;10(2):147. DOI:10.1038/nrc2789.
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature reviews Cancer. 2009;9(9):665. DOI:10.1038/nrc2714.
Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual review of pharmacology and toxicology. 1999;39(1):361-98. DOI:10.1146/annurev.pharmtox.39.1.361.
Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. New England Journal of Medicine. 2007;357(20):2016-27. DOI:10.1056/NEJMoa073600.
Niazi M, Zakeri-Milani P, Najafi Hajivar S, Soleymani Goloujeh M, Ghobakhlou N, Shahbazi Mojarrad J, et al. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert opinion on drug metabolism & toxicology. 2016;12(9):1021-33. DOI:10.1080/17425255.2016.1196186.
Abbasi MM, Valizadeh H, Hamishehkar H, Zakeri-Milani P. Inhibition of P-glycoprotein expression and function by anti-diabetic drugs gliclazide, metformin, and pioglitazone in vitro and in situ. Research in pharmaceutical sciences. 2016;11(3):177.
Omote H, Al-Shawi MK. Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Biophysical journal. 2006;90(11):4046-59. DOI:10.1529/biophysj.105.077743.
Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clinical Cancer Research. 2000;6(5):1949-57.
Consortium IT. Membrane transporters in drug development. Nature reviews Drug discovery. 2010;9(3):215. DOI: 10.1038/nrd3028.
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced drug delivery reviews. 2013;65(13-14):1866-79. DOI:10.1016/j.addr.2013.09.019.
Xue X, Liang X-J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chinese journal of cancer. 2012;31(2):100. DOI:10.5732/cjc.011.10326.
Shen J, Yin Q, Chen L, Zhang Z, Li Y. Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials. 2012;33(33):8613-24. DOI:10.1016/j.biomaterials.2012.08.007.
Su W-P, Cheng F-Y, Shieh D-B, Yeh C-S, Su W-C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. International journal of nanomedicine. 2012;7:4269. DOI:10.2147/IJN.S33666.
Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine. 2008;3(6):761-76. DOI:10.2217/17435889.3.6.761.
Liu X, Zhang J, Lynn DM. Polyelectrolyte multilayers fabricated from ‘charge-shifting’anionic polymers: a new approach to controlled film disruption and the release of cationic agents from surfaces. Soft Matter. 2008;4(8):1688-95. DOI:10.1039/B804953J.
Huang W-T, Larsson M, Lee Y-C, Liu D-M, Chiou G-Y. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. European Journal of Pharmaceutics and Biopharmaceutics. 2016;109:165-73. DOI:10.1016/j.ejpb.2016.10.014.
Zhao Y, Huan M-l, Liu M, Cheng Y, Sun Y, Cui H, et al. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Scientific reports. 2016;6. DOI:10.1038/srep35267.
Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. Journal of controlled release. 2006;116(3):275-84. DOI:10.1016/j.jconrel.2006.09.007.
Teodori E, Dei S, Scapecchi S, Gualtieri F. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Il Farmaco. 2002;57(5):385-415. DOI:10.1016/S0014-827X(02)01229-6.
Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Molecular pharmaceutics. 2010;8(1):185-203. DOI:10.1021/mp1002653.
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine. 2005;1(3):193-212. DOI:10.1016/j.nano.2005.06.004.
Pan J, Feng S-S. Targeted delivery of paclitaxel using folate-decorated poly (lactide)–vitamin E TPGS nanoparticles. Biomaterials. 2008;29(17):2663-72. DOI:10.1016/j.biomaterials.2008.02.020.
Khare V, Alam N, Saneja A, Dubey RD, Gupta PN. Targeted drug delivery systems for pancreatic cancer. Journal of biomedical nanotechnology. 2014;10(12):3462-82. DOI:10.1166/jbn.2014.2036.
Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale. 2015;7(42):17745-55. DOI:10.1039/C5NR04831A.
Hardingham TE, Muir H. Binding of oligosaccharides of hyaluronic acid to proteoglycans. Biochemical Journal. 1973;135(4):905-8. DOI:10.1042/bj1350905.
Lyon M. Specific chemical modifications of link protein and their effect on binding to hyaluronate and cartilage proteoglycan. Biochimica et Biophysica Acta (BBA)-General Subjects. 1986;881(1):22-9. DOI:10.1016/0304-4165(86)90092-9.
Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. Journal of Biological Chemistry. 1998;273(1):338-43. DOI:10.1074/jbc.273.1.338.
Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486. DOI: 10.1038/nature12327.
Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, et al. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Molecular pharmacology. 2009;76(5):984-91. DOI:10.1124/mol.109.055947.
Oommen OP, Duehrkop C, Nilsson B, Hilborn Jn, Varghese OP. Multifunctional hyaluronic acid and chondroitin sulfate nanoparticles: impact of glycosaminoglycan presentation on receptor mediated cellular uptake and immune activation. ACS applied materials & interfaces. 2016;8(32):20614-24. DOI:10.1021/acsami.6b06823.
Han X, Li Z, Sun J, Luo C, Li L, Liu Y, et al. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. Journal of Controlled Release. 2015;197:29-40. DOI:10.1016/j.jconrel.2014.10.024.
Molinari AM, Medici N, Moncharmont B, Puca GA. Estradiol receptor of calf uterus: interactions with heparin-agarose and purification. Proceedings of the National Academy of Sciences. 1977;74(11):4886-90. DOI: 10.1073/pnas.74.11.4886.
Holm J, Hansen SI, Høier-Madsen M. Ionic charge, hydrophobicity and tryptophan fluorescence of the folate binding protein isolated from cow's milk. Bioscience reports. 2001;21(3):305-13. DOI:10.1023/A:1013234231960.
Zhang F, Correia A, Mäkilä E, Li W, Salonen J, Hirvonen JJ, et al. Receptor-mediated surface charge inversion platform based on porous silicon nanoparticles for efficient cancer cell recognition and combination therapy. ACS Applied Materials & Interfaces. 2017;9(11):10034-46. DOI:10.1021/acsami.7b02196.
Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. Journal of colloid and interface science. 2016;481:107-16. DOI:10.1016/j.jcis.2016.07.020.
Goebeler M, Kaufmann D, Brocker E, Klein CE. Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. Journal of Cell Science. 1996;109(7):1957-64.
Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Molecular Cancer Research. 2011;9(12):1573-86. DOI:10.1158/1541-7786.MCR-11-0156.
Kohda D, Morton CJ, Parkar AA, Hatanaka H, Inagaki FM, Campbell ID, et al. Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell. 1996;86(5):767-75. DOI:10.1016/S0092-8674(00)80151-8.
Saneja A, Nayak D, Srinivas M, Kumar A, Khare V, Katoch A, et al. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. European Journal of Pharmaceutical Sciences. 2017;97:79-91. DOI:10.1016/j.ejps.2016.10.028.
Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Analytical biochemistry. 2005;338(2):284-93. DOI:10.1016/j.ab.2004.12.026.
Garin-Chesa P, Campbell I, Saigo P, Lewis Jr J, Old L, Rettig W. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. The American journal of pathology. 1993;142(2):557.
Lacey S, Sanders J, Rothberg K, Anderson R, Kamen B. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. The Journal of clinical investigation. 1989;84(2):715-20. DOI:10.1172/JCI114220.
Orr RB, Kamen BA. UMSCC38 cells amplified at 11q13 for the folate receptor synthesize a mutant nonfunctional folate receptor. Cancer research. 1994;54(14):3905-11.
Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous GJ. Endocytosis of GPI-linked membrane folate receptor-alpha. The Journal of cell biology. 1996;132(1):35-47. DOI:10.1083/jcb.132.1.35.
Wibowo AS, Singh M, Reeder KM, Carter JJ, Kovach AR, Meng W, et al. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proceedings of the National Academy of Sciences. 2013;110(38):15180-8. DOI:10.1073/pnas.1308827110.
Yuan H, Miao J, Du Y-Z, You J, Hu F-Q, Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. International journal of pharmaceutics. 2008;348(1):137-45. DOI:10.1016/j.ijpharm.2007.07.012.
Dey S, Sherly MCD, Rekha M, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydrate polymers. 2016;136:71-80. DOI:10.1016/j.carbpol.2015.09.016.
Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 2005;21(19):8858-64. DOI:10.1021/la0503451.
Trippett TM, Garcia S, Manova K, Mody R, Cohen-Gould L, Flintoff W, et al. Localization of a human reduced folate carrier protein in the mitochondrial as well as the cell membrane of leukemia cells. Cancer research. 2001;61(5):1941-7. DOI:Published March 2001.
Ragg R, Natalio F, Tahir MN, Janssen H, Kashyap A, Strand D, et al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS nano. 2014;8(5):5182-9. DOI:10.1021/nn501235j.
Ju-Nam Y, Bricklebank N, Allen DW, Gardiner PH, Light ME, Hursthouse MB. Phosphonioalkylthiosulfate zwitterions—new masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Organic & biomolecular chemistry. 2006;4(23):4345-51. DOI:10.1039/B610480K.
Michelakis ED. Mitochondrial Medicine. Am Heart Assoc; 2008.
Yang Y, Gao N, Hu Y, Jia C, Chou T, Du H, et al. Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting. 2015. DOI:10.4155/tde.14.115.
Guo S, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. Journal of Nanomaterials. 2011;2011:11. DOI:10.1155/2011/742895.
Akita H, Enoto K, Masuda T, Mizuguchi H, Tani T, Harashima H. Particle tracking of intracellular trafficking of octaarginine-modified liposomes: a comparative study with adenovirus. Molecular Therapy. 2010;18(5):955-64. DOI:10.1038/mt.2010.33.
Zhang F, Correia A, Makila E, Li W, Salonen J, Hirvonen JJ, et al. Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS applied materials & interfaces. 2017;9(11):10034-46. DOI:10.1021/acsami.7b02196.
Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications. Archives of pathology & laboratory medicine. 2011;135(1):55-62. DOI:10.1043/2010-0454-RAR.1.
Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756-60. DOI:10.1038/nature01392.
Shirshahi V, Shamsipour F, Zarnani AH, Verdi J, Saber R. Active targeting of HER2-positive breast cancer cells by Herceptin-functionalized organically modified silica nanoparticles. Cancer nanotechnology. 2013;4(1-3):27-37. DOI:10.1007/s12645-013-0035-6.
Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC. Crystal structure of the ectodomain of human transferrin receptor. Science. 1999;286(5440):779-82. DOI:10.1126/science.286.5440.779.
Ponka P, Lok CN. The transferrin receptor: role in health and disease. The international journal of biochemistry & cell biology. 1999;31(10):1111-37. DOI:10.1016/S1357-2725(99)00070-9.
Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert opinion on drug delivery. 2009;6(3):285-304. DOI:10.1517/17425240902780166.
Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacological reviews. 2002;54(4):561-87.
Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565-76. DOI:10.1016/S0092-8674(04)00130-8.
Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharmaceutical research. 2010;27(11):2283-95. DOI:10.1007/s11095-010-0260-1.
Barak R, Elad Y, Mirelman D, Chet I. Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology. 1985;75(4):458-62.
Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. Journal of drug delivery. 2010;2011. DOI:10.1155/2011/727241.
Takagi H, Numazaki M, Kajiwara T, Abe Y, Ishii M, Kato C, et al. Cooperation of specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) and complement receptor type 3 (CR3) in the uptake of oligomannose-coated liposomes by macrophages. Glycobiology. 2008;19(3):258-66. DOI:10.1093/glycob/cwn128.
Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug discovery today. 2015;20(5):536-47. DOI:10.1016/j.drudis.2014.12.012.
Singh A, Thotakura N, Kumar R, Singh B, Sharma G, Katare OP, et al. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: cellular uptake, cytotoxic and pharmacokinetic evidences. International journal of biological macromolecules. 2017;95:750-6. DOI:10.1016/j.ijbiomac.2016.11.111.
Junyaprasert VB, Dhanahiranpruk S, Suksiriworapong J, Sripha K, Moongkarndi P. Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated D-α-tocopheryl polyethylene glycol 1000 succinate. Colloids and Surfaces B: Biointerfaces. 2015;136:383-93. DOI:10.1016/j.colsurfb.2015.09.013.
Spänkuch B, Steinhauser I, Wartlick H, Kurunci-Csacsko E, Strebhardt KI, Langer K. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia. 2008;10(3):223-34. DOI:10.1593/neo.07916.
Mi Y, Liu X, Zhao J, Ding J, Feng S-S. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials. 2012;33(30):7519-29. DOI:10.1016/j.biomaterials.2012.06.100.
Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, et al. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. Journal of Controlled Release. 2008;128(3):209-16. DOI:10.1016/j.jconrel.2008.03.010.
Das M, Dilnawaz F, Sahoo SK. Targeted nutlin-3a loaded nanoparticles inhibiting p53–MDM2 interaction: novel strategy for breast cancer therapy. Nanomedicine. 2011;6(3):489-507. DOI:10.2217/nnm.10.102.
Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces. 2015;134:47-58. DOI:10.1016/j.colsurfb.2015.06.027.
Downloads
Published
How to Cite
Issue
Section
License
This is an open access journal with free of charge non-commercial download. At the time of submission, authors will be asked to transfer the copyright to the accepted article to the Journal of Pharmacy and Pharmaceutical Sciences. The author may purchase the copyright for $500 upon which he/she will have the exclusive copyright to the article. Nevertheless, acceptance of a manuscript for publication in the Journal is with the authors' approval of the terms and conditions of the Creative Commons copyright license Creative Common license (Attribution-ShareAlike) License for non-commercial uses.
CLOCKSS system has permission to collect, preserve, and serve this Archival Unit.