Neuropeptide FF (FLFQPQRF-NH2) and its Fragments Bind to α2δ Subunit of Voltage-Gated Calcium Channels

Authors

  • Hanna Skubatz NeoPro Pain, 2023 120th Ave NE, Suite S128, Bellevue, WA.

DOI:

https://doi.org/10.18433/jpps30358

Abstract

Purpose: Gabapentin, a drug for neuropathic pain, exerts its therapeutic effect via inhibition of the a2d subunit of N-type Ca2+ channels. Thus, finding peptides that specifically displace gabapentin from its binding site may lead to the development of new drugs. Methods: Displacement of bound [3H]-gabapentin in membrane preparations of rat cerebral cortex and of human Cav2.2/β32δ1 expressed in CHO cell line. Results: Neuropeptide FLFQPQRF-NH2 specifically displaced bound [3H]-gabapentin in membrane preparations from rats and CHO cells. Truncation of the C-terminus of FLFQPQRF-NH2 by three amino acid residues to produce FLFQP-NH2 improved the displacement of gabapentin. FLFQP-NH2 displaced bound  [3H]-gabapentin with IC50 and Ki values of 2.7 µM and 1.7 µM, respectively. Deletion of two amino acid residues (FQ) in the middle of the FLFQP-NH2 sequence yielded FLP-NH2 that displaced bound [3H]-gabapentin with a lower affinity.  IC50 and Ki values were 11.9 µM and 7.8 µM, respectively. Neutral binding cooperativity existed when of FLFQP-NH2, FLP- NH2 and gabapentin when incubated together. FLFQPQRF-NH2 but not FLFQP-NH2 displaced bound [3H]-gabapentin to membrane preparations of human Cav2.2/b3/a2d1 expressed in CHO cells. Conclusion: FLFQPQRF-NH2, FLFQP-NH2 and FLP-NH2 displace bound gabapentin in membrane preparations of rat cerebral cortex. Binding cooperativity was detected when GBP/FLFQP-NH2/FLP-NH2 were incubated together. These novel binding sites may provide new approaches to modulate L-type Ca2+ channels.

Downloads

Download data is not yet available.

References

Perry SJ, Yi-Kung Huang E, Cronk D, Bagust J, Sharma R, Walker RJ, Wilson S, Burke JF. (1997) A human gene encoding morphine modulating peptides related to NPFF and FMRFamide. FEBS Lett, 409(3):426–430.

Vilim FS, Aarnisalo AA, Nieminen ML, Lintunen M, Karlstedt K, Kontinen VK, Kalso E, States B, Panula P, Ziff E. (1999) Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol Pharmacol 55(5): 804-811.

Lameh J, Bertozzi F, Kelly N, Jacobi PM, Nguyen D, Bajpai A, Gaubert G, Olsson R, Gardell LR. (2010) Neuropeptide FF receptors have opposing modulatory effects on nociception. J. Pharmacol. Exp. Ther. 334(1):244-54.

Lacinová L. Voltage-dependent calcium channels. Gen. Physiol. (2005) Biophys. Suppl. 1:1-78.

Perret D, Luo ZD. (2009) Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics 6(4):679–692.

Davies A, Hendrich J, Van Minh .T, Wratten J, Douglas L, Dolphin AC. (2007) Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol. Sci. 28(5):220-228.

Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC. (2010) The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc. Natl. Acad. Sci. USA 107(4):1654-1659.

Park JF, Luo ZD. (2010) Calcium channel functions in pain processing. Channels (Austin) 4(6):510–517.

Snutch TP. (2005) Targeting chronic and neuropathic pain: The N-type calcium channel comes of age. NeuroRx 2(4): 662–670.

Fossat P, Dobremez E, Bouali-Benazzouz R, Favereaux A, Bertrand SS, Kilk K, Léger C, Cazalets JR, Langel U, Landry M, Nagy F. (2010) Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. J. Neurosci. 30(3):1073–1085.

Chiechio S, Zammataro M, Caraci F, Rampello L, Copani A, Sabato AF, Nicoletti F. (2009) Pregabalin in the treatment of chronic pain: an overview. Clin. Drug Invest. 29(3):203-213.

Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J. Biol. Chem. 271(10):5768-5776.

Gong HC, Hang J, Kohler W, Li L, Su TZ. (2001) Tissue-specific expression and gabapentin-binding properties of calcium channel alpha2delta subunit subtypes. J. Membr. Biol. 184(1):35–43.

van Hooft JA, Dougherty JJ, Endeman D, Nichols RA, Wadman WJ. (2002) Gabapentin inhibits presynaptic Ca2+ influx and synaptic transmission in rat hippocampus and neocortex. Eur. J. Pharmacol. 449(3):221–228.

Nicholson B. (2000) Gabapentin use in neuropathic pain syndromesActa Neurol. Scand. 101(6):359–371.

Dolphin AC. (2013) The α2δ subunits of voltage-gated calcium channels BBA-Biomembranes 1828(7):1541-1549.

Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, Bramwell S, Corradini L, England S, Winks J, Kinloch RA, Hendrich J, Dolphin AC, Webb T, Williams D. (2006) Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl. Acad. Sci. USA 103(46):7537-17542.

Patel R, Dickenson AH. (2016) Mechanisms of the gabapentinoids and α 2 δ‐1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 4: e00205.

Skubatz H, Brot MD, Stock KM, Klatt B, Thomas GP. (2009) Analgesic and antipyretic activities of a novel tetrapeptide in rats. Inter. J. Peptide Res. Therapeut. 15(4):293-301.

Kuryshev YA, Brown AM, Duzic E, Kirsch GE. (2014) Evaluating state dependence and subtype selectivity of calcium Channel modulators in automated electrophysiology assays. Assay Drug Dev Technol. 12(2): 110–119.

Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN. (1993) Characterization of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur. J. Pharmacol. 244(3): 293–301.

Ananda K, Aravinda S, Vasudev PG, Raja KMP, Sivaramakrishnan H, Nagarajan K, Shamala N, Balaram P. (2003) Stereochemistry of gabapentin and several derivatives: Solid state conformations and solution equilibria. Current Sci. 85:1002-1011.

Dyson HJ, Wright PE. (1991) Defining solution conformations of small linear peptides. Annu. Rev. Biophys. Biophys. Chem. 20:19-38.

Ma B, Shatsky M, Wolfson HJ, Nussinov R. (2002) Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations. Protein Sci. 11(2): 184–197.

Dolphin AC. (2012) Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nature Rev. Neurosci. 13:542-555

Dissanayake VUK, Gee NS, Brown JP, Woodruff GN. (1997) Spermine modulation of specific [3H]-gabapentin binding to the detergent-solubilized porcine cerebral cortex α2/δ calcium channel subunit. Br. J. Pharm. 120(5):833-840.

Taylor MT, Bonhaus DW. (2000) Allosteric modulation of [3H]gabapentin binding by ruthenium red. Neuropharm. 39(7):1267-1273.

Lanzafame AA, Sexton PM, Christopoulos A. (2006) Interaction studies of multiple binding sites on m4 muscarinic acetylcholine receptors. Mol. Pharmacol. 70(2):736-746.

Sol JC, Roussin A, Proto S, Mazarguil H, Zajac J-M. (1999) Enzymatic degradation of neuropeptide FF and SQA-neuropeptide FF in the mouse brain. Peptides 20(10):1219-1227

Garber K. (2005) Peptide leads new class of chronic pain drugs. Nature Biotechnol. 23(4): 399.

Allard M, Jordan D, Zajac JM, Ries C, Martin D, Monkounga D, Kopp N, Simonnet G. (1994) Autoradiographic localization of receptors for neuropeptide FF, FLFQPQRFamide, in human spinal sensory system. Brain Res. 633(1-2):127-132.

Panula P, Kalso E, Nieminen ML, Kontinen VK, Brandt A, Pertovaara A. (1999) Neuropeptide FF and modulation of pain. Brain Res. 848(1-2):191–196.

Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G. (2005) RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc. Natl. Acad. Sci. USA 103(2):466-471.

Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith KE, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao W-J, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, JM, Wetzel JM, Branchek TA, Gerald C, Borowsky B. (2003) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. Biol. Chem. 275(50):39324-39331.

Gicquel S, Fioramonti J, Bueno L, Zajac JM. (1993) Effects of F8Famide analogs on intestinal transit in mice. Peptides 14(4):749–753.

Pertovaara A, Östergård, Änkö M-L, Lehti-Koivunend S, Brandt A, Hong W, Korpi ER, P. Panula. (2005) RFamide-related peptides signal through the neuropeptide FF receptor and regulate pain-related responses in the rat. Neurosci. 134(3):1023–1032.

Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, Wratten J, Davies A, Dolphin AC. (2008) Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A. 105(9):3628-33.

Tran-Van-Minh A, Dolphin AC. (2010) The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J. Neurosci. 30(38):12856-12867.

Craig AD. (2003) A new view of pain as a homeostatic emotion. Trends Neurosci. 26(6):303-307.

Downloads

Published

2019-07-08

How to Cite

Skubatz, H. (2019). Neuropeptide FF (FLFQPQRF-NH2) and its Fragments Bind to α2δ Subunit of Voltage-Gated Calcium Channels. Journal of Pharmacy & Pharmaceutical Sciences, 22(1), 292–300. https://doi.org/10.18433/jpps30358

Issue

Section

Pharmaceutical Sciences; Original Research Articles