Evaluation of the Physicochemical and Biological Stability of Cetuximab under Various Stress Condition

Authors

  • Afsaneh Farjami Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0002-9985-9418
  • Mohammadreza Siahi-Shadbad Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Parvin Akbarzadehlaleh Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Khashayar Roshanzamir CinnaGen Medical Biotechnology Research center, Alborz University of Medical Sciences, Karaj, Iran.
  • Ommoleila Molavi Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

DOI:

https://doi.org/10.18433/jpps30427

Abstract

Cetuximab is a chimeric monoclonal antibody against epidermal growth factor receptor (EGFR) and it is approved for treatment of human colorectal cancer and squamous cell carcinoma of head and neck. The aim of this research was to study the stability of cetuximab finish product (5 mg/mL) under various stress conditions including mechanical, thermal, light stress, and various freeze-thaw cycles. To determine the effects of environmental stresses on the physicochemical properties and bioactivity of cetuximab, a combination of physicochemical and cell-based biological methods including size exclusion chromatography (SEC), cation exchange chromatography (CEX), flow cytometry-based binding assay, and MTS cell viability/proliferation assay was used. The results obtained by the SEC and CEX methods revealed that incubation of cetuximab at 25 and 30 °C, shaking, and various freeze-thaw cycles caused no physicochemical instability. However, functional analysis of the samples exposed to the above-mentioned conditions revealed a significant decrease in the bioactivity of cetuximab indicated by a significant reduction in the cell binding and growth inhibitory effects of cetuximab in EGFR overexpressing cancer cell line (A431). Incubation of cetuximab at 40 and 50 °C led to polymerization and fragmentation of the mAb and resulted in a significant decrease in the bioactivity of the mAb. Our findings show that the light exposure had the most destructive effects on physicochemical and biological characteristics of cetuximab. In conclusion, we found that all mentioned stress conditions significantly affect the bioactivity of cetuximab. Our finding highlights the importance of bioactivity evaluation of biopharmaceuticals in their quality control assessment.

Downloads

Download data is not yet available.

References

Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nature reviews Immunology. 2010;10(5):345-52. DOI:10.1038/nri2747

Scolnik PA. mAbs: a business perspective. mAbs. 2009;1(2):179-84

Guideline ICH Q1B, Stability testing: photostability testing of new drug substances and products. Current Step1996.

Sparrow E, Friede M, Sheikh M, Torvaldsen S. Therapeutic antibodies for infectious diseases. Bulletin of the World Health Organization. 2017;95(3):235-7. DOI:10.2471/blt.16.178061

Bhutani D, Vaishampayan UN. Monoclonal antibodies in oncology therapeutics: present and future indications. Expert opinion on biological therapy. 2013;13(2):269-82. DOI:10.1517/14712598.2012.758705

Deiss A, Brecht I, Haarmann A, Buttmann M. Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert review of neurotherapeutics. 2013;13(3):313-35. DOI:10.1586/ern.13.17

Oliva A, Llabres M, Farina JB. Fitting bevacizumab aggregation kinetic data with the Finke-Watzky two-step model: Effect of thermal and mechanical stress. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2015;77:170-9. DOI:10.1016/j.ejps.2015.06.011

Vigneron J, Astier A, Trittler R, Hecq JD, Daouphars M, Larsson I, et al. SFPO and ESOP recommendations for the practical stability of anticancer drugs: an update. Annales pharmaceutiques francaises. 2013;71(6):376-89. DOI:10.1016/j.pharma.2013.06.002

Bardin C, Astier A, Vulto A, Sewell G, Vigneron J, Trittler R, et al. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference. Annales pharmaceutiques francaises. 2011;69(4):221-31. DOI:10.1016/j.pharma.2011.07.002

Kane CD, Nuss JE, Bavari S. Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 - 2014). Expert opinion on therapeutic patents. 2015;25(6):675-90. DOI:10.1517/13543776.2015.1030337

Schellekens H, Jiskoot W. Immunogenicity of therapeutic proteins. In: Crommelin D. SR, Meibohm B., editor. Pharmaceutical biotechnology: Springer, New York, NY; 2013. p. 133-41.

Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharmaceutical research. 2010;27(4):544-75. DOI:10.1007/s11095-009-0045-6

Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. International journal of pharmaceutics. 1999;185(2):129-88

Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J. Chemical modifications in therapeutic protein aggregates generated under different stress conditions. The Journal of biological chemistry. 2011;286(28):25134-44. DOI:10.1074/jbc.M110.160440

Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. Journal of pharmaceutical sciences. 2009;98(4):1201-5. DOI:10.1002/jps.21530

Longstaff C, Whitton CM, Stebbings R, Gray E. How do we assure the quality of biological medicines? Drug discovery today. 2009;14(1-2):50-5. DOI:10.1016/j.drudis.2008.09.010

Wong S-F. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clinical therapeutics. 2005;27(6):684-94. DOI:10.1016/j.clinthera.2005.06.003

Rizzo S, Bronte G, Fanale D, Corsini L, Silvestris N, Santini D, et al. Prognostic vs predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer treatment reviews. 2010;36 Suppl 3:S56-61. DOI:10.1016/s0305-7372(10)70021-9

van Krieken JH, Jung A, Kirchner T, Carneiro F, Seruca R, Bosman FT, et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Archiv : an international journal of pathology. 2008;453(5):417-31. DOI:10.1007/s00428-008-0665-y

Shigeta K, Hayashida T, Hoshino Y, Okabayashi K, Endo T, Ishii Y, et al. Expression of Epidermal Growth Factor Receptor Detected by Cetuximab Indicates Its Efficacy to Inhibit In Vitro and In Vivo Proliferation of Colorectal Cancer Cells. PloS one. 2013;8(6):e66302. DOI:10.1371/journal.pone.0066302

Lievre A, Bachet J-B, Le Corre D, Boige V, Landi B, Emile J-F, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer research. 2006;66(8):3992-5. DOI:10.1158/0008-5472.CAN-06-0191

Carmen J, Burger SR, McCaman M, Rowley JA. Developing assays to address identity, potency, purity and safety: cell characterization in cell therapy process development. Regenerative medicine. 2012;7(1):85-100. DOI:10.2217/rme.11.105

Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, et al. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy. 2013;15(1):9-19. DOI:10.1016/j.jcyt.2012.10.008

Lahlou A, Blanchet B, Carvalho M, Paul M, Astier A. Mechanically-induced aggregation of the monoclonal antibody cetuximab. Annales pharmaceutiques francaises. 2009;67(5):340-52. DOI:10.1016/j.pharma.2009.05.008

Hernandez-Jimenez J, Salmeron-Garcia A, Cabeza J, Velez C, Capitan-Vallvey LF, Navas N. The Effects of Light-Accelerated Degradation on the Aggregation of Marketed Therapeutic Monoclonal Antibodies Evaluated by Size-Exclusion Chromatography With Diode Array Detection. Journal of pharmaceutical sciences. 2016;105(4):1405-18. DOI:10.1016/j.xphs.2016.01.012

Farjami A, Siahi-Shadbad M, Akbarzadehlaleh P, Molavi O. Development and Validation of Salt Gradient CEX Chromatography Method for Charge Variants Separation and Quantitative Analysis of the IgG mAb-Cetuximab. Chromatographia. 2018:1-12. DOI:10.1007/s10337-018-3627-9

Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. Journal of pharmaceutical sciences. 2009;98(9):2909-34. DOI:10.1002/jps.21566

Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. Journal of pharmaceutical sciences. 2007;96(1):1-26. DOI:10.1002/jps.20727

Philo JS. Is any measurement method optimal for all aggregate sizes and types? The AAPS journal. 2006;8(3):E564-71. DOI:10.1208/aapsj080365

Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical journal. 2000;78(1):394-404. DOI:10.1016/s0006-3495(00)76602-1

Guideline ICH Q5C, Stability Testing of Biotechnological/Biological products. 1995. p. 1-8.

Robinson CJ, Jones C. Quality control and analytical techniques for biopharmaceuticals. Bioanalysis. 2011;3(1):81-95. DOI:10.4155/bio.10.161

O'Hara DM, Xu Y, Liang Z, Reddy MP, Wu DY, Litwin V. Recommendations for the validation of flow cytometric testing during drug development: II assays. Journal of immunological methods. 2011;363(2):120-34. DOI:10.1016/j.jim.2010.09.036

Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer cell. 2005;7(4):301-11. DOI:10.1016/j.ccr.2005.03.003

Zinsky R, Bolukbas S, Bartsch H, Schirren J, Fisseler-Eckhoff A. Analysis of KRAS Mutations of Exon 2 Codons 12 and 13 by SNaPshot Analysis in Comparison to Common DNA Sequencing. Gastroenterology research and practice. 2010;2010:789363. DOI:10.1155/2010/789363

Kupfer M, Scriba G, Hartmann M. Stability of alemtuzumab in infusion-bags. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2009;64(9):622-3

Wang W, Wang YJ, Wang DQ. Dual effects of Tween 80 on protein stability. International journal of pharmaceutics. 2008;347(1-2):31-8. DOI:10.1016/j.ijpharm.2007.06.042

Sousa F, Sarmento B, Neves-Petersen MT. Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2017;105:127-36. DOI:10.1016/j.ejps.2017.05.019

Vermeer AW, Norde W, van Amerongen A. The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments. Biophysical journal. 2000;79(4):2150-4. DOI:10.1016/s0006-3495(00)76462-9

Paul M, Vieillard V, Jaccoulet E, Astier A. Long-term stability of diluted solutions of the monoclonal antibody rituximab. International journal of pharmaceutics. 2012;436(1-2):282-90. DOI:10.1016/j.ijpharm.2012.06.063

Alexander AJ, Hughes DE. Monitoring of IgG antibody thermal stability by micellar electrokinetic capillary chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Analytical chemistry. 1995;67(20):3626-32

Usami A, Ohtsu A, Takahama S, Fujii T. The effect of pH, hydrogen peroxide and temperature on the stability of human monoclonal antibody. Journal of pharmaceutical and biomedical analysis. 1996;14(8-10):1133-40

Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharmaceutical development and technology. 2007;12(5):505-23. DOI:10.1080/10837450701481157

Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2009;38(2):79-87. DOI:10.1016/j.ejps.2009.06.001

Martínez-Ortega A, Salmerón-García A, Navas-Iglesias N, Hernández-Jiménez J, Cabeza-Barrera J, Capitán-Vallvey L. TCH-026 Long-Term Study of the Formation of Aggregates in Undiluted Cetuximab 5 mg/ml. European Journal of Hospital Pharmacy: Science and Practice. 2013;20(Suppl 1):A78-A. DOI:10.1136/ejhpharm-2013-000276.217

Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, et al. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. Journal of pharmaceutical sciences. 2009;98(9):3117-30. DOI:10.1002/jps.21617

Mason BD, Schoneich C, Kerwin BA. Effect of pH and light on aggregation and conformation of an IgG1 mAb. Molecular pharmaceutics. 2012;9(4):774-90. DOI:10.1021/mp2004719

Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Current pharmaceutical biotechnology. 2008;9(6):468-81

Kerwin BA, Remmele RL, Jr. Protect from light: photodegradation and protein biologics. Journal of pharmaceutical sciences. 2007;96(6):1468-79. DOI:10.1002/jps.20815

Singh SR, Zhang J, O'Dell C, Hsieh MC, Goldstein J, Liu J, et al. Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech. 2012;13(2):422-30. DOI:10.1208/s12249-012-9759-6

Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. Journal of molecular biology. 1999;285(5):2177-98

Downloads

Published

2019-05-21

How to Cite

Farjami, A., Siahi-Shadbad, M., Akbarzadehlaleh, P., Roshanzamir, K., & Molavi, O. (2019). Evaluation of the Physicochemical and Biological Stability of Cetuximab under Various Stress Condition. Journal of Pharmacy & Pharmaceutical Sciences, 22(1), 171–190. https://doi.org/10.18433/jpps30427

Issue

Section

Pharmaceutical Sciences; Original Research Articles