Decrease in Multidrug Resistance-associated Protein 2 Activities by Knockdown of Phosphatidylinositol 4-phosphate 5-kinase in Hepatocytes and Cancer Cells

Authors

  • Atsushi Kawase Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan.
  • Yuta Inoue Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan.
  • Miho Hirosoko Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan.
  • Yuka Sugihara Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan.
  • Hiroaki Shimada Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan.
  • Masahiro Iwaki Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan. 3. Antiaging Center, Kindai University, Osaka, Japan.

DOI:

https://doi.org/10.18433/jpps30444

Abstract

Purpose: The plasma membrane localization and transport activity of multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters are governed by transporter-associated proteins. Phosphatidylinositol 4,5-bisphosphate (PIP2) formed by phosphatidylinositol 4-phosphate 5-kinase type 1 (PIP5K1) activates the linker function of radixin for efflux transporters. Radixin is involved in the plasma membrane localization of efflux transporters. We examined whether PIP5K1 could be a target for the modulation of transporter activities in hepatocytes and cancer cells. Methods: The effects of PIP5K1 depletion by siRNA in mouse primary hepatocytes, PANC1 human pancreatic carcinoma cells, and HepG2 human hepatocellular carcinoma cells on the intracellular accumulation of MRP2 and P-gp substrates were examined. Results: PIP5K1A depletion resulted in increased intracellular accumulation of carboxydichlorofluorescein, a MRP2 fluorescent substrate, in mouse primary hepatocytes, PANC1 cells, and HepG2 cells. In PANC1 and HepG2 cells, the transport activities of MRP2 were significantly decreased by PIP5K1C depletion. However, the transport activities of P-gp were unchanged by PIP5K1 depletion. PIP2 levels were unchanged between control and PIP5K1A- or PIP5K1C-depleted HepG2 cells. MRP2 mRNA levels showed few changes in HepG2 cells following PIP5K1A or PIP5K1C depletion. The expression of phosphorylated radixin was decreased by PIP5K1A and PIP5K1C depletion, although total radixin levels were unchanged. Conclusions: These data suggest that PIP5K1A and PIP5K1C could be target proteins for modulating MRP2 function, partly because of the resulting changes of the linker function of radixin.

Downloads

Download data is not yet available.

References

Cole SP, Deeley RG. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays [Internet]. 1998 Nov 12;20(11):931–40. Available from: http://doi.wiley.com/10.1002/%28SICI%291521-1878%28199811%2920%3A11%3C931%3A%3AAID-BIES8%3E3.0.CO%3B2-J

Bradley G, Ling V. P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev [Internet]. 1994 Jun;13(2):223–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7923552

Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T. The role of half-transporters in multidrug resistance. J Bioenerg Biomembr [Internet]. 2001 Dec;33(6):503–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11804192

Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx [Internet]. 2005 Jan;2(1):86–98. Available from: http://link.springer.com/10.1602/neurorx.2.1.86

Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology [Internet]. 2000 Feb;118(2):422–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10648470

Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer [Internet]. 2002 Jan 1;2(1):48–58. Available from: http://www.nature.com/doifinder/10.1038/nrc706

Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol [Internet]. 2004 Mar 1;164(5):653–9. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200307032

Ben-Aissa K, Patino-Lopez G, Belkina N V., Maniti O, Rosales T, Hao J-J, et al. Activation of Moesin, a Protein That Links Actin Cytoskeleton to the Plasma Membrane, Occurs by Phosphatidylinositol 4,5-bisphosphate (PIP2) Binding Sequentially to Two Sites and Releasing an Autoinhibitory Linker. J Biol Chem [Internet]. 2012 May 11;287(20):16311–23. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M111.304881

Morales FC, Takahashi Y, Momin S, Adams H, Chen X, Georgescu M-M. NHERF1/EBP50 Head-to-Tail Intramolecular Interaction Masks Association with PDZ Domain Ligands. Mol Cell Biol [Internet]. 2007 Apr 1;27(7):2527–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17242191

Nakamura N, Oshiro N, Fukata Y, Amano M, Fukata M, Kuroda S, et al. Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells [Internet]. 2000 Jul;5(7):571–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10947843

Oshiro N, Fukata Y, Kaibuchi K. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem [Internet]. 1998 Dec 25;273(52):34663–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9856983

Pietromonaco SF, Simons PC, Altman A, Elias L. Protein kinase C-theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem [Internet]. 1998 Mar 27;273(13):7594–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9516463

Tsukita S, Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem [Internet]. 1999 Dec 3;274(49):34507–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10574907

Fiévet B, Louvard D, Arpin M. ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta [Internet]. 2007 May;1773(5):653–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167488906001522

Suh B-C, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol [Internet]. 2005 Jun;15(3):370–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S095943880500070X

Suh B-C, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys [Internet]. 2008 Jun;37(1):175–95. Available from: http://www.annualreviews.org/doi/10.1146/annurev.biophys.37.032807.125859

Kobori T, Harada S, Nakamoto K, Tokuyama S. Changes in PtdIns(4,5)P2 induced by etoposide treatment modulates small intestinal P-glycoprotein via radixin. Biol Pharm Bull [Internet]. 2014;37(7):1124–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24989004

Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch [Internet]. 2007 Oct 12;455(1):5–18. Available from: http://link.springer.com/10.1007/s00424-007-0286-3

Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate mediates Ca2+-induced platelet alpha-granule secretion: evidence for type II phosphatidylinositol 5-phosphate 4-kinase function. J Biol Chem [Internet]. 2001 Jun 22;276(25):22410–9. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M008184200

Clarke JH, Irvine RF. The activity, evolution and association of phosphatidylinositol 5-phosphate 4-kinases. Adv Biol Regul [Internet]. 2012 Jan;52(1):40–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065257111000501

Campbell RB, Liu F, Ross AH. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem [Internet]. 2003 Sep 5;278(36):33617–20. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.C300296200

D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. J Cell Sci [Internet]. 2008 Jun 15;121(Pt 12):1955–63. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.023630

Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L, et al. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A [Internet]. 2014 Sep 2;111(35):E3689-98. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1405801111

Xie Z, Chang SM, Pennypacker SD, Liao E-Y, Bikle DD. Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell [Internet]. 2009 Mar 15;20(6):1695–704. Available from: http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E08-07-0756

Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H, et al. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I {alpha}. J Exp Med [Internet]. 2005 Mar 21;201(6):859–70. Available from: http://www.jem.org/lookup/doi/10.1084/jem.20041891

Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, et al. Role of activation of PIP5Kgamma661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J [Internet]. 2007 Feb 21;26(4):1105–16. Available from: http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7601573

Song X, Yang J, Hirbawi J, Ye S, Perera HD, Goksoy E, et al. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion. Cell Res [Internet]. 2012 Nov 19;22(11):1533–45. Available from: http://www.nature.com/articles/cr201297

Singhal RL, Prajda N, Yeh YA, Weber G. 1-Phosphatidylinositol 4-phosphate 5-kinase (EC 2.7.1.68): a proliferation- and malignancy-linked signal transduction enzyme. Cancer Res [Internet]. 1994 Nov 1;54(21):5574–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7923199

Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol [Internet]. 1976;13:29–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/177845

Kawase A, Fujii A, Negoro M, Akai R, Ishikubo M, Komura H, et al. Differences in cytochrome P450 and nuclear receptor mRNA levels in liver and small intestines between SD and DA rats. Drug Metab Pharmacokinet [Internet]. 2008;23(3):196–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18574324

Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, et al. Increased effects of ginsenosides on the expression of cholesterol 7α-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J Nat Med [Internet]. 2013 Jul 30;67(3):545–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23108811

Kawase A, Tateishi S, Kazaoka A. Profiling of hepatic metabolizing enzymes and nuclear receptors in rats with adjuvant arthritis by targeted proteomics. Biopharm Drug Dispos [Internet]. 2018 Jun;39(6):308–14. Available from: http://doi.wiley.com/10.1002/bdd.2147

Kawase A, Kaneto A, Ishibashi M, Kobayashi A, Shimada H, Iwaki M. Involvement of diclofenac acyl-β- d -glucuronide in diclofenac-induced cytotoxicity in glutathione-depleted isolated murine hepatocytes co-cultured with peritoneal macrophages. Toxicol Mech Methods [Internet]. 2018 Nov 29;1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30489186

Kawase A, Araki Y, Ueda Y, Nakazaki S, Iwaki M. Impact of a high-cholesterol diet on expression levels of Niemann–Pick C1-like 1 and intestinal transporters in rats and mice. Eur J Drug Metab Pharmacokinet [Internet]. 2016 Aug 26;41(4):457–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25716431

Suda J, Zhu L, Karvar S. Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes. Am J Physiol Cell Physiol [Internet]. 2011 Mar;300(3):C416-24. Available from: http://www.physiology.org/doi/10.1152/ajpcell.00467.2010

Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet [Internet]. 2002 Jul 17;31(3):320–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12068294

Sekine S, Ito K, Saeki J, Horie T. Interaction of Mrp2 with radixin causes reversible canalicular Mrp2 localization induced by intracellular redox status. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2011 Nov;1812(11):1427–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21839169

Bayot A, Rustin P. Friedreich’s Ataxia, Frataxin, PIP5K1B: Echo of a Distant Fracas. Oxid Med Cell Longev [Internet]. 2013;2013:1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24194977

Loijens JC, Anderson RA. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem [Internet]. 1996 Dec 20;271(51):32937–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8955136

Hasegawa H, Noguchi J, Yamashita M, Okada R, Sugimoto R, Furuya M, et al. Phosphatidylinositol 4-phosphate 5-kinase is indispensable for mouse spermatogenesis. Biol Reprod [Internet]. 2012 May 1;86(5):136, 1–12. Available from: https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod.110.089896

Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, et al. Decreased Radixin Function for ATP-Binding Cassette Transporters in Liver in Adjuvant-Induced Arthritis Rats. J Pharm Sci [Internet]. 2014 Dec;103(12):4058–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022354915303002

Alswied A, Parekh AB. Ca2+ Influx through Store-operated Calcium Channels Replenishes the Functional Phosphatidylinositol 4,5-Bisphosphate Pool Used by Cysteinyl Leukotriene Type I Receptors. J Biol Chem [Internet]. 2015 Dec 4;290(49):29555–66. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M115.678292

Choi S, Hedman AC, Sayedyahossein S, Thapa N, Sacks DB, Anderson RA. Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol [Internet]. 2016 Dec 21;18(12):1324–35. Available from: http://www.nature.com/articles/ncb3441

Downloads

Published

2019-11-19

How to Cite

Kawase, A., Inoue, Y., Hirosoko, M., Sugihara, Y., Shimada, H., & Iwaki, M. (2019). Decrease in Multidrug Resistance-associated Protein 2 Activities by Knockdown of Phosphatidylinositol 4-phosphate 5-kinase in Hepatocytes and Cancer Cells. Journal of Pharmacy & Pharmaceutical Sciences, 22(1), 576–584. https://doi.org/10.18433/jpps30444

Issue

Section

Pharmaceutical Sciences; Original Research Articles