Decrease in Multidrug Resistance-associated Protein 2 Activities by Knockdown of Phosphatidylinositol 4-phosphate 5-kinase in Hepatocytes and Cancer Cells
DOI:
https://doi.org/10.18433/jpps30444Abstract
Purpose: The plasma membrane localization and transport activity of multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters are governed by transporter-associated proteins. Phosphatidylinositol 4,5-bisphosphate (PIP2) formed by phosphatidylinositol 4-phosphate 5-kinase type 1 (PIP5K1) activates the linker function of radixin for efflux transporters. Radixin is involved in the plasma membrane localization of efflux transporters. We examined whether PIP5K1 could be a target for the modulation of transporter activities in hepatocytes and cancer cells. Methods: The effects of PIP5K1 depletion by siRNA in mouse primary hepatocytes, PANC1 human pancreatic carcinoma cells, and HepG2 human hepatocellular carcinoma cells on the intracellular accumulation of MRP2 and P-gp substrates were examined. Results: PIP5K1A depletion resulted in increased intracellular accumulation of carboxydichlorofluorescein, a MRP2 fluorescent substrate, in mouse primary hepatocytes, PANC1 cells, and HepG2 cells. In PANC1 and HepG2 cells, the transport activities of MRP2 were significantly decreased by PIP5K1C depletion. However, the transport activities of P-gp were unchanged by PIP5K1 depletion. PIP2 levels were unchanged between control and PIP5K1A- or PIP5K1C-depleted HepG2 cells. MRP2 mRNA levels showed few changes in HepG2 cells following PIP5K1A or PIP5K1C depletion. The expression of phosphorylated radixin was decreased by PIP5K1A and PIP5K1C depletion, although total radixin levels were unchanged. Conclusions: These data suggest that PIP5K1A and PIP5K1C could be target proteins for modulating MRP2 function, partly because of the resulting changes of the linker function of radixin.
Downloads
References
Cole SP, Deeley RG. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays [Internet]. 1998 Nov 12;20(11):931–40. Available from: http://doi.wiley.com/10.1002/%28SICI%291521-1878%28199811%2920%3A11%3C931%3A%3AAID-BIES8%3E3.0.CO%3B2-J
Bradley G, Ling V. P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev [Internet]. 1994 Jun;13(2):223–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7923552
Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T. The role of half-transporters in multidrug resistance. J Bioenerg Biomembr [Internet]. 2001 Dec;33(6):503–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11804192
Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx [Internet]. 2005 Jan;2(1):86–98. Available from: http://link.springer.com/10.1602/neurorx.2.1.86
Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology [Internet]. 2000 Feb;118(2):422–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10648470
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer [Internet]. 2002 Jan 1;2(1):48–58. Available from: http://www.nature.com/doifinder/10.1038/nrc706
Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol [Internet]. 2004 Mar 1;164(5):653–9. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200307032
Ben-Aissa K, Patino-Lopez G, Belkina N V., Maniti O, Rosales T, Hao J-J, et al. Activation of Moesin, a Protein That Links Actin Cytoskeleton to the Plasma Membrane, Occurs by Phosphatidylinositol 4,5-bisphosphate (PIP2) Binding Sequentially to Two Sites and Releasing an Autoinhibitory Linker. J Biol Chem [Internet]. 2012 May 11;287(20):16311–23. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M111.304881
Morales FC, Takahashi Y, Momin S, Adams H, Chen X, Georgescu M-M. NHERF1/EBP50 Head-to-Tail Intramolecular Interaction Masks Association with PDZ Domain Ligands. Mol Cell Biol [Internet]. 2007 Apr 1;27(7):2527–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17242191
Nakamura N, Oshiro N, Fukata Y, Amano M, Fukata M, Kuroda S, et al. Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells [Internet]. 2000 Jul;5(7):571–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10947843
Oshiro N, Fukata Y, Kaibuchi K. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem [Internet]. 1998 Dec 25;273(52):34663–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9856983
Pietromonaco SF, Simons PC, Altman A, Elias L. Protein kinase C-theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem [Internet]. 1998 Mar 27;273(13):7594–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9516463
Tsukita S, Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem [Internet]. 1999 Dec 3;274(49):34507–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10574907
Fiévet B, Louvard D, Arpin M. ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta [Internet]. 2007 May;1773(5):653–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167488906001522
Suh B-C, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol [Internet]. 2005 Jun;15(3):370–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S095943880500070X
Suh B-C, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys [Internet]. 2008 Jun;37(1):175–95. Available from: http://www.annualreviews.org/doi/10.1146/annurev.biophys.37.032807.125859
Kobori T, Harada S, Nakamoto K, Tokuyama S. Changes in PtdIns(4,5)P2 induced by etoposide treatment modulates small intestinal P-glycoprotein via radixin. Biol Pharm Bull [Internet]. 2014;37(7):1124–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24989004
Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch [Internet]. 2007 Oct 12;455(1):5–18. Available from: http://link.springer.com/10.1007/s00424-007-0286-3
Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate mediates Ca2+-induced platelet alpha-granule secretion: evidence for type II phosphatidylinositol 5-phosphate 4-kinase function. J Biol Chem [Internet]. 2001 Jun 22;276(25):22410–9. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M008184200
Clarke JH, Irvine RF. The activity, evolution and association of phosphatidylinositol 5-phosphate 4-kinases. Adv Biol Regul [Internet]. 2012 Jan;52(1):40–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065257111000501
Campbell RB, Liu F, Ross AH. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem [Internet]. 2003 Sep 5;278(36):33617–20. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.C300296200
D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. J Cell Sci [Internet]. 2008 Jun 15;121(Pt 12):1955–63. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.023630
Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L, et al. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A [Internet]. 2014 Sep 2;111(35):E3689-98. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1405801111
Xie Z, Chang SM, Pennypacker SD, Liao E-Y, Bikle DD. Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell [Internet]. 2009 Mar 15;20(6):1695–704. Available from: http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E08-07-0756
Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H, et al. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I {alpha}. J Exp Med [Internet]. 2005 Mar 21;201(6):859–70. Available from: http://www.jem.org/lookup/doi/10.1084/jem.20041891
Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, et al. Role of activation of PIP5Kgamma661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J [Internet]. 2007 Feb 21;26(4):1105–16. Available from: http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7601573
Song X, Yang J, Hirbawi J, Ye S, Perera HD, Goksoy E, et al. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion. Cell Res [Internet]. 2012 Nov 19;22(11):1533–45. Available from: http://www.nature.com/articles/cr201297
Singhal RL, Prajda N, Yeh YA, Weber G. 1-Phosphatidylinositol 4-phosphate 5-kinase (EC 2.7.1.68): a proliferation- and malignancy-linked signal transduction enzyme. Cancer Res [Internet]. 1994 Nov 1;54(21):5574–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7923199
Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol [Internet]. 1976;13:29–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/177845
Kawase A, Fujii A, Negoro M, Akai R, Ishikubo M, Komura H, et al. Differences in cytochrome P450 and nuclear receptor mRNA levels in liver and small intestines between SD and DA rats. Drug Metab Pharmacokinet [Internet]. 2008;23(3):196–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18574324
Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, et al. Increased effects of ginsenosides on the expression of cholesterol 7α-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J Nat Med [Internet]. 2013 Jul 30;67(3):545–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23108811
Kawase A, Tateishi S, Kazaoka A. Profiling of hepatic metabolizing enzymes and nuclear receptors in rats with adjuvant arthritis by targeted proteomics. Biopharm Drug Dispos [Internet]. 2018 Jun;39(6):308–14. Available from: http://doi.wiley.com/10.1002/bdd.2147
Kawase A, Kaneto A, Ishibashi M, Kobayashi A, Shimada H, Iwaki M. Involvement of diclofenac acyl-β- d -glucuronide in diclofenac-induced cytotoxicity in glutathione-depleted isolated murine hepatocytes co-cultured with peritoneal macrophages. Toxicol Mech Methods [Internet]. 2018 Nov 29;1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30489186
Kawase A, Araki Y, Ueda Y, Nakazaki S, Iwaki M. Impact of a high-cholesterol diet on expression levels of Niemann–Pick C1-like 1 and intestinal transporters in rats and mice. Eur J Drug Metab Pharmacokinet [Internet]. 2016 Aug 26;41(4):457–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25716431
Suda J, Zhu L, Karvar S. Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes. Am J Physiol Cell Physiol [Internet]. 2011 Mar;300(3):C416-24. Available from: http://www.physiology.org/doi/10.1152/ajpcell.00467.2010
Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet [Internet]. 2002 Jul 17;31(3):320–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12068294
Sekine S, Ito K, Saeki J, Horie T. Interaction of Mrp2 with radixin causes reversible canalicular Mrp2 localization induced by intracellular redox status. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2011 Nov;1812(11):1427–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21839169
Bayot A, Rustin P. Friedreich’s Ataxia, Frataxin, PIP5K1B: Echo of a Distant Fracas. Oxid Med Cell Longev [Internet]. 2013;2013:1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24194977
Loijens JC, Anderson RA. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem [Internet]. 1996 Dec 20;271(51):32937–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8955136
Hasegawa H, Noguchi J, Yamashita M, Okada R, Sugimoto R, Furuya M, et al. Phosphatidylinositol 4-phosphate 5-kinase is indispensable for mouse spermatogenesis. Biol Reprod [Internet]. 2012 May 1;86(5):136, 1–12. Available from: https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod.110.089896
Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, et al. Decreased Radixin Function for ATP-Binding Cassette Transporters in Liver in Adjuvant-Induced Arthritis Rats. J Pharm Sci [Internet]. 2014 Dec;103(12):4058–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022354915303002
Alswied A, Parekh AB. Ca2+ Influx through Store-operated Calcium Channels Replenishes the Functional Phosphatidylinositol 4,5-Bisphosphate Pool Used by Cysteinyl Leukotriene Type I Receptors. J Biol Chem [Internet]. 2015 Dec 4;290(49):29555–66. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M115.678292
Choi S, Hedman AC, Sayedyahossein S, Thapa N, Sacks DB, Anderson RA. Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol [Internet]. 2016 Dec 21;18(12):1324–35. Available from: http://www.nature.com/articles/ncb3441
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Pharmacy & Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open access journal with free of charge non-commercial download. At the time of submission, authors will be asked to transfer the copyright to the accepted article to the Journal of Pharmacy and Pharmaceutical Sciences. The author may purchase the copyright for $500 upon which he/she will have the exclusive copyright to the article. Nevertheless, acceptance of a manuscript for publication in the Journal is with the authors' approval of the terms and conditions of the Creative Commons copyright license Creative Common license (Attribution-ShareAlike) License for non-commercial uses.
CLOCKSS system has permission to collect, preserve, and serve this Archival Unit.