Raman Spectroscopy for Quantitative Analysis in the Pharmaceutical Industry

Authors

  • José Izo Santana da Silva de Jesus Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
  • Raimar Löbenberg Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, Alberta, Canada
  • Nádia Araci Bou-Chacra Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil

DOI:

https://doi.org/10.18433/jpps30649

Abstract

Raman spectroscopy is a very promising technique increasingly used in the pharmaceutical industry. Due to its development and improved instrumental versatility achieved over recent decades and through the application of chemometric methods, this technique has become highly precise and sensitive for the quantification of drug substances. Thus, it has become fundamental in identifying critical variables and their clinical relevance in the development of new drugs. In process monitoring, it has been used to highlight in-line real-time analysis, and it has been used more commonly since 2004 when the Food and Drug Administration (FDA) launched Process Analytical Technology (PAT), integrated with the concepts of Pharmaceutical Current Good Manufacturing Practices (CGMPs) for the 21st Century. The present review presents advances in the application of this tool in the development of pharmaceutical products and processes in the last six years.

Downloads

Download data is not yet available.

References

Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev 2015;89:3–20.

Raman C V, Krishnan KS. The Optical Analogue of the Compton Effect. Nature 1928;121:377–8. 10.1038/121711a0.

Zhu X, Xu T, Lin Q, Duan Y. Technical development of raman spectroscopy: From instrumental to advanced combined technologies. Appl Spectrosc Rev 2014;49:64–82. 10.1080/05704928.2013.798801.

Depciuch J, Kaznowska E, Zawlik I, Wojnarowska R, Cholewa M, Heraud P, Cebulski J. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Applied Spectrosc 2016;70:251–63. 10.1177/0003702815620127.

Bumbrah GS, Sharma RM. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 2016;6:209-215. 10.1016/j.ejfs.2015.06.001.

Netchacovitch L, Thiry J, De Bleye C, Chavez PF, Krier F, Sacré PY, Evrard B, Hubert P, Ziemons E. Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates. J Pharm Biomed Anal 2015;113:21–33. 10.1016/j.jpba.2015.01.051.

Moreira LP, Silveira L, da Silva AG, Fernandes AB, Pacheco MTT, Rocco DDFM. Raman spectroscopy applied to identify metabolites in urine of physically active subjects. J Photochem Photobiol B 2017;176:92-99. 10.1016/j.jphotobiol.2017.09.019.

Wang H, Boraey MA, Williams L, Lechuga-Ballesteros D, Vehring R. Low-frequency shift dispersive Raman spectroscopy for the analysis of respirable dosage forms. Int J Pharm 2014;469:197-205. 10.1016/j.ijpharm.2014.04.058.

Lakhwani GR, Sherikar OD, Mehta PJ. Nondestructive and rapid concurrent estimation of paracetamol and nimesulide in their combined dosage form using Raman spectroscopic technique. Indian J Pharm Sci 2013;75:211–6.

Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, Faulds K, Forbes SJ, Campbell CJ. Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2017;2. 10.1038/s41536-017-0014-3.

Casian T, Reznek A, Vonica-Gligor AL, Van Renterghem J, De Beer T, Tomuță I. Development, validation and comparison of near infrared and Raman spectroscopic methods for fast characterization of tablets with amlodipine and valsartan. Talanta 2017;167:333-343. 10.1016/j.talanta.2017.01.092.

Dzsaber S, Negyedi M, Bernáth B, Gyüre B, Fehér T, Kramberger C, Pichler T, Simon F. A Fourier transform Raman spectrometer with visible laser excitation. J. Raman Spectrosc 2015;46:327-332. 10.1002/jrs.4641.

Griffen JA, Owen AW, Matousek P. Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose. Analyst 2015;140:107-12. 10.1039/c4an01798f.

Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R. Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. Eur J Pharm Biopharm 2018;132:112-126. 10.1016/j.ejpb.2018.09.013.

Paiva EM, da Silva VH, Poppi RJ, Pereira CF, Rohwedder JJR. Comparison of macro and micro Raman measurement for reliable quantitative analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 2018;157:107-115. 10.1016/j.jpba.2018.05.010.

Wu T, Chen K, Zhao H, Zhang W, Li Y, Wei H. Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy. Opt Express 2018;26:22001-22010. 10.1364/OE.26.022001.

Zhang Y, McGeorge G. Quantitative Analysis of Pharmaceutical Bilayer Tablets Using Transmission Raman Spectroscopy. J Pharm Innov 2015;10:269–280. 10.1007/s12247-015-9223-8.

Bi Y, Yang C, Chen Y, Yan S, Yang G, Wu Y, Zhang G, Wang P. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci Appl 2018;7. 10.1038/s41377-018-0082-1.

Villegas Borrero NF, Clemente da Silva Filho JM, Ermakov VA, Marques FC. Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low laser power on N719 dye and Rhodamine-B. MRS Advances 2019;4:723-731. 10.1557/adv.2019.157.

Höhl M, Roth B, Morgner U, Meinhardt-Wollweber M. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy. Rev Sci Instrum 2017;88. 10.1002/9781118971147.ch20.

Chruszcz-Lipska K, Jaworska A, Szczurek E, Baranska M. (-)-R-mevalonolactone studied by ROA and SERS spectroscopy. Chirality, 2014;26:453-61. 10.1002/chir.22288.

Saleh TA, Al-Shalalfeh MM, Al-Saadi AA. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment. Sci Rep 2016;6. 10.1038/srep32185.

Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018;118:4946-4980. 10.1021/acs.chemrev.7b00668.

Ellis DI, Eccles R, Xu Y, Griffen J, Muhamadali H, Matousek P, Goodall I, Goodacre R. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Sci Rep 2017;7. 10.1038/s41598-017-12263-0.

Sonntag MD, Pozzi EA, Jiang N, Hersam MC, Duyne RP Van. Recent Advances in Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2014;5:3125–30. 10.1021/jz5015746.

Su W, Kumar N, Krayev A, Chaigneau M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat Commun 2018;9. 10.1038/s41467-018-05307-0.

Kornecki M, Strube J. Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling. Bioengineering 2018;5. 10.3390/bioengineering5010025.

Hopke PK. The evolution of chemometrics. Anal Chim Acta 2003;500:365-377. 10.1016/S0003-2670(03)00944-9.

Kuriyama A, Ozaki Y. Assessment of Active Pharmaceutical Ingredient Particle Size in Tablets by Raman Chemical Imaging Validated using Polystyrene Microsphere Size Standards. AAPS PharmSciTech 2014;15:375–87. 10.1208/s12249-013-0064-9.

Petty RE, Laxer RM, Lindsley CB, Wedderburn LR. Textbook of pediatric rheumatology. 7th ed. Philadelphia: Saunders, 2016.

Grimnes S, Martinsen ØG. Bioimpedance and Bioelectricity Basics. 3rd ed. Cambridge, Massachusetts: Academic Press, 2015.

Nosyk B, Montaner JSG, Colley G, Lima VD, Chan K, Heath K, Yip B, Samji H, Gilbert M, Barrios R, Gustafson R, Hogg RS; STOP HIV/AIDS Study Group. The cascade of HIV care in British Columbia, Canada, 1996-2011: A population-based retrospective cohort study. Lancet Infect Dis 2014;14:40–9. 10.1016/S1473-3099(13)70254-8.

Long FH. Multivariate Analysis for Metabolomics and Proteomics Data. In: Haleem J I, Timothy D V, editor. Proteomic and Metabolomic Approaches to Biomarker Discovery. Cambridge, Massachusetts: Academic Press, 2013, p. 299–311. 10.1016/B978-0-12-394446-7.00019-4.

Netchacovitch L, Thiry J, De Bleye C, Dumont E, Cailletaud J, Sacré PY, Evrard B, Hubert P, Ziemons E. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process. Talanta 2017;171:45–52. 10.1016/j.talanta.2017.04.060.

Açikgöz G, Hamamci B, Yildiz A. Determination of ethanol in blood samples using partial least square regression applied to surface enhanced raman spectroscopy. Toxicol Res 2018;34:127-132. 10.5487/TR.2018.34.2.127.

Faber NM, Song XH, Hopke PK. Sample-specific standard error of prediction for partial least squares regression. Trends Analyt Chem 2003;22:330-334. 10.1016/S0165-9936(03)00503-X.

Hossain MN, Igne B, Anderson CA, Drennen JK. Influence of moisture variation on the performance of Raman spectroscopy in quantitative pharmaceutical analyses. J Pharm Biomed Anal 2019;164:528-535. 10.1016/j.jpba.2018.10.022.

Lavine BK. Special Issue: Chemometrics. Appl Spectrosc 2018;72:339. 10.1177/0003702818761619.

Brouckaert D, Uyttersprot JS, Broeckx W, De Beer T. Development and validation of an at-line fast and non-destructive Raman spectroscopic method for the quantification of multiple components in liquid detergent compositions. Anal Chim Acta 2016;941:26–34. 10.1016/j.aca.2016.08.050.

Wold S, Sjöström M, Eriksson L. PLS-regression: A basic tool of chemometrics. Chemometr Intell Lab Syst 2001;58:109-130. 10.1016/S0169-7439(01)00155-1.

Wold H. Estimation of principal components and related models by iterative least squares. Multivariate Analysis 1966:1391–420.

Farkas A, Vajna B, Sóti PL, Nagy ZK, Pataki H, Van Der Gucht F, Marosi G. Comparison of multivariate linear regression methods in micro-Raman spectrometric quantitative characterization. J Raman Spectrosc 2015;46:566–76. 10.1002/jrs.4672.

Fransson M, Johansson J, Sparén A, Svensson O. Comparison of multivariate methods for quantitative determination with transmission Raman spectroscopy in pharmaceutical formulations. J Chemom 2010;24:674–80. 10.1002/cem.1330.

Singh VD, Daharwal SJ. Development and validation of multivariate calibration methods for simultaneous estimation of Paracetamol, Enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form. Spectrochim Acta A Mol Biomol Spectrosc 2017;171:369–75. 10.1016/j.saa.2016.08.028.

Müller J, Knop K, Wirges M, Kleinebudde P. Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. J Pharm Biomed Anal 2010;53:884-94. 10.1016/j.jpba.2010.06.016.

Barimani S, Kleinebudde P. Monitoring of tablet coating processes with colored coatings. Talanta 2018;178:686–97. 10.1016/j.ejpb.2017.05.011.

Saerens L, Segher N, Vervaet C, Remon JP, De Beer T. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion. Anal Chim Acta 2014;806:180–7. 10.1016/j.aca.2013.11.020.

Sparén A, Hartman M, Fransson M, Johansson J, Svensson O. Matrix effects in quantitative assessment of pharmaceutical tablets using transmission raman and near-infrared (NIR) Spectroscopy. Appl Spectrosc 2015;69:580–9. 10.1366/14-07645.

US Food and Drug Administration (USFDA). Analytical Procedures and Methods Validation for Drugs and Biologics. Silver Spring, MD: FDA, 2015. Available at: https://www.fda.gov/media/87801/download. Accessed April 27, 2019.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Validation of Analytical Procedures: Text and Methodology Q2(R1). 2005. Available at: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed April 27, 2019.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Pharmaceutical Development Q8(R2). 2009. Available at: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf. Accessed May 20, 2019.

Kushner J, Langdon BA, Hiller JI, Carlson GT. Examining the impact of excipient material property variation on drug product quality attributes: A quality-by-design study for a roller compacted, immediate release tablet. J Pharm Sci 2011;100:2222-39. 10.1002/jps.22455.

Kushner J, Langdon BA, Hicks I, Song D, Li F, Kathiria L, Kane A, Ranade G, Agarwal K. A quality-by-design study for an immediate-release tablet platform: Examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. J Pharm Sci 2014;103:527-38. 10.1002/jps.23810.

Otaki T, Tanabe Y, Kojima T, Miura M, Ikeda Y, Koide T, Fukami T. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy. Int J Pharm 2018;542:56-65. 10.1016/j.ijpharm.2018.03.008.

Aksu B, De Beer T, Folestad S, Ketolainen J, Lindén H, Lopes JA, de Matas M, Oostra W, Rantanen J, Weimer M. Strategic funding priorities in the pharmaceutical sciences allied to Quality by Design (QbD) and Process Analytical Technology (PAT). Eur J Pharm Sci 2012;47:402-5. 10.1016/j.ejps.2012.06.009.

Li MY, Ebel B, Paris C, Chauchard F, Guedon E, Marc A. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Biotechnol Prog 2018;34:486-493. 10.1002/btpr.2604.

Santos RM, Kessler JM, Salou P, Menezes JC, Peinado A. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool. Biotechnol Prog 2018;34:659-670. 10.1002/btpr.2635.

Bostijn N, Dhondt W, Vervaet C, De Beer T. PAT-based batch statistical process control of a manufacturing process for a pharmaceutical ointment. Eur J Pharm Sci 2019;136. 10.1016/j.aca.2018.02.007.

Webster TA, Hadley BC, Hilliard W, Jaques C, Mason C. Development of generic raman models for a GS-KOTM CHO platform process. Biotechnol Prog 2018;34:730-737. 10.1002/btpr.2633.

US Food and Drug Administration (USFDA). Pharmaceutical CGMPs for the 21st Century - A risk-based approach. Silver Spring, MD: FDA; 2004. Available at: https://www.fda.gov/media/77391/download. Accessed Juny 10, 2019.

Wang X, Esquerre C, Downey G, Henihan L, O’Callaghan D, O’Donnell C. Assessment of infant formula quality and composition using Vis-NIR, MIR and Raman process analytical technologies. Talanta 2018;183:320–8. 10.1016/j.talanta.2018.02.080.

Protasova I, Heissler S, Jung N, Braese S. Monitoring Reactions on Solid Phases with Raman Spectroscopy. Chemistry 2017;23:8703–11. 10.1002/chem.201700907.

Dharani S, Rahman Z, Barakh Ali SF, Afrooz H, Khan MA. Quantitative estimation of phenytoin sodium disproportionation in the formulations using vibration spectroscopies and multivariate methodologies. Int J Pharm 2018;539:65-74. 10.1016/j.ijpharm.2018.01.005.

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J. Understanding Pharmaceutical Quality by Design. AAPS J 2014;16:771-83. 10.1208/s12248-014-9598-3.

Du Y, Zhang H, Xue J, Tang W, Fang H, Zhang Q, Li Y, Hong Z. Vibrational spectroscopic study of polymorphism and polymorphic transformation of the anti-viral drug lamivudine. Spectrochim Acta A Mol Biomol Spectrosc 2015;137:1158-63. 10.1016/j.saa.2014.08.128.

Izutsu K, Koide T, Takata N, Ikeda Y, Ono M, Inoue M, Fukami T, Yonemochi E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem Pharm Bull 2016;64:1421-1430. 10.1248/cpb.c16-00233.

Rahman Z, Mohammad A, Akhtar S, Siddiqui A, Korang-Yeboah M, Khan MA. Chemometric Model Development and Comparison of Raman and 13C Solid-State Nuclear Magnetic Resonance-Chemometric Methods for Quantification of Crystalline/Amorphous Warfarin Sodium Fraction in the Formulations. J Pharm Sci 2015;104:2550-8. 10.1002/jps.24524.

Farias MA dos S, Soares FLF, Carneiro RL. Crystalline phase transition of ezetimibe in final product, after packing, promoted by the humidity of excipients: Monitoring and quantification by Raman spectroscopy. J Pharm Biomed Anal 2016;121:209-214. 10.1016/j.jpba.2016.01.008.

Soares FLF, Carneiro RL. In-line monitoring of cocrystallization process and quantification of carbamazepine-nicotinamide cocrystal using Raman spectroscopy and chemometric tools. Spectrochim Acta A Mol Biomol Spectrosc 2017;180:1–8. 10.1016/j.saa.2017.02.045.

Gamble JF, Hoffmann M, Hughes H, Hutchins P, Tobyn M. Monitoring process induced attrition of drug substance particles within formulated blends. Int J Pharm 2014;470:77–87. 10.1016/j.ijpharm.2014.04.028.

Walker G, Römann P, Poller B, Löbmann K, Grohganz H, Rooney JS, Huff GS, Smith GPS, Rades T, Gordon KC, Strachan CJ, Fraser-Miller SJ. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder. Mol Pharm 2017;14:4675–84. 10.1021/acs.molpharmaceut.7b00803.

Śmiszek-Lindert WE, Chełmecka E, Lindert O, Dudzińska A, Kaczmarczyk-Sedlak I. Towards a better comprehension of interactions in the crystalline N-acetylbenzylamine and its sulphur analogue N-benzyl-ethanethioamide. IR, Raman, DFT studies and Hirshfeld surfaces analysis. Spectrochim Acta A Mol Biomol Spectrosc 2018;201:328-338. 10.1016/j.saa.2018.05.021.

Edinger M, Knopp MM, Kerdoncuff H, Rantanen J, Rades T, Löbmann K. Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy. Eur J Pharm Sci 2018;117:62-67. 10.1016/j.ejps.2018.02.012.

El-Zahry MR, Lendl B. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2018;193:63-70. 10.1016/j.saa.2017.12.007.

Holm P, Allesø M, Bryder MC, Holm R. Q8(R2). ICH Quality Guidelines. In: Andrew T, David E, Raymond W N, editor. ICH Quality Guidelines: An Implementation Guide. Hoboken: John Wiley & Sons, Inc. 2017, p. 535-577. 10.1002/9781118971147.ch20.

US Food and Drug Administration (USFDA). Guidance for industry: PAT — a framework for innovative pharmaceutical development, manufacturing, and quality assurance. Rockville, MD: FDA; 2004. Available at: https://www.fda.gov/media/71012/download. Accessed Juny 15, 2019.

Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 2017;409:637–49. 10.1007/s00216-016-9824-1.

Peeters E, Tavares da Silva AF, Toiviainen M, Van Renterghem J, Vercruysse J, Juuti M, Lopes JA, De Beer T, Vervaet C, RemonJP. Assessment and prediction of tablet properties using transmission and backscattering Raman spectroscopy and transmission NIR spectroscopy. Asian Journal of Pharmaceutical Sciences 2016;11:547–58. 10.1016/j.ajps.2016.04.004.

Riolo D, Piazza A, Cottini C, Serafini M, Lutero E, Cuoghi E, Gasparini L, Botturi D, Marino IG, Aliatis I, Bersani D, Lottici PP. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages. J Pharm Biomed Anal 2018;149:329–34. 10.1016/j.jpba.2017.11.030.

Allan P, Bellamy LJ, Nordon A, Littlejohn D, Andrews J, Dallin P. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination. Journal of Pharmaceutical and Biomedical Analysis 2013;76:28–35. 10.1016/j.jpba.2012.12.003.

Nagy B, Farkas A, Gyürkés M, Komaromy-Hiller S, Démuth B, Szabó B, Nusser D, Borbás E, Marosi G, Nagy ZK. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int J Pharm 2017;530:21–9. 10.5650/jos.ess13082.

Bostijn N, Hellings M, Van Der Veen M, Vervaet C, De Beer T. In-line UV spectroscopy for the quantification of low-dose active ingredients during the manufacturing of pharmaceutical semi-solid and liquid formulations. Anal Chim Acta 2018;1013:54–62. 10.1016/j.aca.2018.02.007.

Griffen J, Owen AW, Matousek P. Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose. Analyst 2015;140:107–12. 10.1039/c4an01798f.

Mazurek S, Szostak R. Quantification of active ingredients in pharmaceutical suspensions by FT Raman spectroscopy. Vibrational Spectroscopy 2017;93:54-64. 10.1016/j.vibspec.2017.10.003.

Harting J, Kleinebudde P. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Eur J Pharm Biopharm 2018;125:169–81. 10.1016/j.ejpb.2018.01.015.

Korasa K, Vrečer F. A study on the applicability of multiple process analysers in the production of coated pellets. Int J Pharm 2019;560:261-272. 10.1016/j.ijpharm.2019.01.069.

Hisazumi J, Kleinebudde P. In-line monitoring of multi-layered film-coating on pellets using Raman spectroscopy by MCR and PLS analyses. Eur J Pharm Biopharm 2017; 114:194-201. 10.1016/j.ejpb.2017.01.017.

Kim B, Woo YA. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments. J Pharm Biomed Anal 2018;154:278–84. 10.1016/j.jpba.2018.03.001.

Barimani S, Kleinebudde P. Evaluation of in–line Raman data for end-point determination of a coating process: Comparison of Science–Based Calibration, PLS-regression and univariate data analysis. Eur J Pharm Biopharm 2017;119:28-35. 10.1016/j.ejpb.2017.05.011.

Barbosa SF, Takatsuka T, Tavares GD, Araújo GLB, Wang H, Vehring R, Löbenberg R, Bou-Chacra NA. Physical–chemical properties of furosemide nanocrystals developed using rotation revolution mixer. Pharm Dev Technol 2016;21:812-822. 10.3109/10837450.2015.1063650.

Chen M-L, John M, Lee SL, Tyner KM. Development Considerations for Nanocrystal Drug Products. AAPS J 2017;19:642-651. 10.1208/s12248-017-0064-x.

Davis BM, Pahlitzsch M, Guo L, Balendra S, Shah P, Ravindran N, Malaguarnera G, Sisa C, Shamsher E, Hamze H, Noor A, Sornsute A, Somavarapu S, Cordeiro MF. Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease. Sci Rep 2018;8. 10.1038/s41598-018-29393-8.

Tyner KM, Zheng N, Choi S, Xu X, Zou P, Jiang W, Guo C, Cruz CN. How Has CDER Prepared for the Nano Revolution? A Review of Risk Assessment, Regulatory Research, and Guidance Activities. AAPS J 2017;19:1071-1083. 10.1208/s12248-017-0084-6.

Doǧan I, Van De Sanden MCM. Direct characterization of nanocrystal size distribution using Raman spectroscopy. J Appl Phys 2013;114. 10.1063/1.4824178.

Doğan İ, van de Sanden MCM. Characterization of Nanocrystal Size Distribution using Raman Spectroscopy with a Multi-particle Phonon Confinement Model. J Vis Exp 2015. 10.3791/53026.

Hong S, Li X. Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. J Nanomater 2013;2013. 10.1155/2013/790323.

Xu X, Li H, Hasan D, Ruoff RS, Wang AX, Fan DL. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 2013;23:4332–8. 10.1002/adfm.201203822.

Lewandowska AE, Eichhorn SJ. Quantification of the degree of mixing of cellulose nanocrystals in thermoplastics using Raman spectroscopy. J Raman Spectrosc 2016;47: 1337-1342. 10.1002/jrs.4966.

Miloudi L, Bonnier F, Bertrand D, Byrne HJ, Perse X, Chourpa I, Munnier E. Quantitative analysis of curcumin-loaded alginate nanocarriers in hydrogels using Raman and attenuated total reflection infrared spectroscopy. Anal Bioanal Chem 2017; 409:4593-4605. 10.1007/s00216-017-0402-y.

Chen J, Liu H, Zhao C, Qin G, Xi G, Li T, Wang X, Chen T. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014;35:4986-95. 10.1016/j.biomaterials.2014.02.032.

Mujica Ascencio S, Choe CS, Meinke MC, Müller RH, Maksimov G V., Wigger-Alberti W, Lademann J, Darvin ME. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm 2016;104:51-8. 10.1016/j.ejpb.2016.04.018.

Kuku G, Saricam M, Akhatova F, Danilushkina A, Fakhrullin R, Culha M. Surface-Enhanced Raman Scattering to Evaluate Nanomaterial Cytotoxicity on Living Cells. Anal Chem 2016;88:9813–20. 10.1021/acs.analchem.6b02917.

Downloads

Published

2020-03-02

How to Cite

Jesus, J. I. S. da S. de, Löbenberg, R., & Bou-Chacra, N. A. (2020). Raman Spectroscopy for Quantitative Analysis in the Pharmaceutical Industry. Journal of Pharmacy &Amp; Pharmaceutical Sciences, 23(1), 24–46. https://doi.org/10.18433/jpps30649

Issue

Section

Review Articles