Pyrrole as an Important Scaffold of Anticancer Drugs: Recent Advances
DOI:
https://doi.org/10.18433/jpps32417Abstract
With the significant increase of patients suffering from different types of cancer, it is evident that prompt measures in the development of novel and effective agents need to be taken. Pyrrole moiety has been found in various active compounds with anti-inflammatory, antiseptic, antibacterial, lipid-lowering and anticancer properties. Recent advances in the exploration of highly active and selective cytotoxic structures containing pyrrole motifs have shown promising data for future investigations. Accordingly, this review presents an overview of recent developments in the pyrrole derivatives as anticancer agents, with a main focus towards the key moieties required for the anti-tumor activities. Pyrrole molecules comprising prominent targeting capacities against microtubule polymerization, tyrosine kinases, cytochrome p450 family 1, histone deacetylase and bcl-2 proteins were reported. In addition, several mechanisms of action, such as apoptosis, cell cycle arrest, inhibiting kinases, angiogenesis, disruption of cell migration, modulation of nuclear receptor responsiveness and others were analyzed. Furthermore, in most of the discussed cases we provided synthesis schemes of the mentioned molecules. Overall, the utilization of pyrrole scaffold for the design and synthesis of novel anticancer drugs could be a promising approach for future investigations.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Pharmacy & Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open access journal with free of charge non-commercial download. At the time of submission, authors will be asked to transfer the copyright to the accepted article to the Journal of Pharmacy and Pharmaceutical Sciences. The author may purchase the copyright for $500 upon which he/she will have the exclusive copyright to the article. Nevertheless, acceptance of a manuscript for publication in the Journal is with the authors' approval of the terms and conditions of the Creative Commons copyright license Creative Common license (Attribution-ShareAlike) License for non-commercial uses.
CLOCKSS system has permission to collect, preserve, and serve this Archival Unit.