An Evaluation of Genetic Algorithm Solutions
in Optimization and Machine Learning

Christina Carrick and Kevin MacLeod
Department of Mathematics and Computing Science
Saint Mary’s University, Halifax, Nova Scotia, Canada, B3H 3C3
E-mail: GEN3001@huskyl.stmarys.ca

Abstract

A genetic algorithm (GA) is a search algorithm in which a solution is evolved through natural selection. A
new ser (population) of solutions is created from a random partial exchange of information berween the
best solutions of the previous generation. This results in increasingly better solutions in successive
generations. Traditional search methods have either been calculus-based, enumerative, or random. Each
of these methods has limitations which GAs are able to overcome. GAs require neither a continuous search
space (as do calculus-based methods) nor a lengthy amount of time and processing (as do enumerative and
random searches). This contributes to the robustness of GAs and makes them more applicable to a wider
range of problems than the traditional methods. The Travelling Salesman Problem and "maze-learning”
have been widely studied. A number of heuristic paradigms have had varying degrees of success in solving
these problems. In rhis paper we implement GA solutions to each and compare their performance to thar
reported for other techniques.

1. Introduction

Genetic algorithms are a search method first introduced by Holland at the University of Michigan in
the 1960s [1]. Based on the principles of biological evolution, reproduction and survival of the
firrest, GAs were used mainly for biological simulation at that time. By the 1970s Holland and his
colleagues were exploring GAs as a problem-solving tool. In the past decade, GAs have been used to
solve a variery of problems involving large solution spaces.

2. Traditional Search Methods

Traditional search methods fall into one of three categories: random, enumerative and calculus-based.
Each of these methods has its own benefits and drawbacks [1]. A random search simply involves
picking random points in the solution space. The primary benefit to this type of search is that it can
be used on any type of problem. Unfortunately, it could take a very long time to get even a good
solution, and there is no guarantee of getting one.

An enumerative search consists of listing all of the possible solutions and taking the best one. This
method is guaranteed to find the best possible solution to a problem. As with the random search,

however, finding that solution could take a length of time which makes its use impractical for any

non-trivial problem. Heuristics can sometimes be used to limit the number of solutions examined,
but this eliminates the guarantee of the best possible solution.

The calculus-based search method includes paradigms such as the Greedy algorithm and hill-climbing
(2]. The common feature in these searches is the process of continually choosing the next step which
gives the greatest immediate benefit, cach time getting an increasingly better solution. There is,
therefore, the guarantee of an optimal solution to the problem at hand using this method. The

a

>

22

A

drawback is that there is no back-tracking mechanism and so it is possible to land on a local
maximum instead of the best solution, depending on the starting point of the algorithm. This makes
the Greedy algorithm an excellent choice for problems which conrtain only one maximum in the
solution space, but the more maxima there are, the more efficiency degrades. It should also be noted
that if the calculus method is being used to maximize a function, that function must be continuous
and differentiable. Since many problems have a scattered, non-continuous solution space, the
calculus method can not always be used.

3. Search by Genetic Algorithms

GAs are a robust search method that gives good performance over a wide variety of problem types
(1]. Using structured randomness, probabilistic transition rules, and simultaneous search at a number
of points in the solution space, GAs do not experience the restrictions of the calculus-based search
methods. While GAs do not guarantee the optimum solution, the probability of finding at least one
of the berter solutions is greater than with the Greedy algorithm since more than once search point is
used.

GAs use a coding of the parameter set rather than the parameters themselves. The coded parameters
form a string (chromosome), where each string represents a solution to the problem. An objective
payoff function is used to measure how well a particular solution solves the problem (fitness). Better
solutions are subsequently evolved within a population of chromosomes over a number of
generations.

3.1. How GAs Work

Evolution rakes place through three main operators: reproduction, crossover and mutation. During
reproduction, strings are chosen from the population to mate in the next generation. The number of
children (copies) awarded to each string is proportional to that string’s fitness relative to the fitness of
the entire population. In this manner, strings which are better solutions have higher fitness and
receive more children in the next generation.

The crossover operator is an information exchange between two randomly chosen strings resulting
from reproduction. Simple crossover consists of randomly choosing a position P within the length of
the strings and exchanging information as shown in Figure 1. All elements to the left of P in string
A get copied to string A’ of the new population, and all elements to the left of P in string B get
copied to string B’ of the new population. Then all elements to the right of P in string A get copied
into the corresponding elements of string B” of the new population. All elements to the right of P in
string B get copied to the remaining elements of string A’ in the population.

After the new population has been built through crossover, the mutation operator randomly alters
string element values (alleles) according to a chosen probability. This probability is generally set
fairly low; perhaps 1/1000 to 1/100 of the allele values will be changed. Mutation is a minor
operator in that it is not meant to directly find good solutions. Rather, mutation serves to expand
the search space slightly and prevents a solution from being permanently lost or out of reach.

[
N
wo]

String A: 214111401 314 2
String B: 113 1 41213 4
i
i
String A 21411141213 4
String B™: 11311 1131 4 2
i
i
i
Figure 1

4. Training GAs to Run a Maze

15

3 4 5 14 13 12

1 2 6 9 - 10 11
7 8

Figure 2

The maze-running problem was easily solved using the simple genetic algorithm as described above.
Given a maze such as the one in Figure 2, the problem was to have the GA learn the correct
sequence of moves necessary to get from point A to point B without running into any walls or

backtracking along the path.
4.1. Coding the Problem

The parameters to the problem were the four directions up, down, left, and right. These were coded
into the genetic algorithm as the numbers 1, 2, 3, and 4, respectively. The chromosomes were then
n-clement strings of numbers 1 through 4, n being the number of moves necessary to get from point
A to point B. Each chromosome was then a sequence of moves representing a possible solution to
the problem.

Figure 3

i~
™Nd
9

Each chromosome was rewarded for how far it travelled along the path without hitting a wall or
backtracking. Fitness was calculated according to the following funcrion:

Fitness = (distance)? * DISTANCE_VALUE

where DISTANCE_VALUE was a parameter usually set to a value of about 5. The distance was
squared in order to give substantially more value to those chromosomes which travelled the farthest.

4.2, Results
Table 1
Maze | Population | Maximum Maximum Generation
Size Size Generations Position In During Which
Allowed Maze Maximum
(on average) Positions
Achieved |
=1 " : 6
9 10 30 7 15 "
13 16 40 9 24
15 16 50 9 21

GAs were used to attempt to solve mazes of size 5, 9, 13, and 15. The population sizes used were 8,
10, 16, and 16, respectively. The chromosomes were allowed to evolve for 10, 30, 40, and 50
generations respectively. A number of trials were run for each parameter set since GAs use
randomness and probability to find solutions. Table 1 shows the maximum position in the maze (on
average) the GAs were able to achieve given these parameters, along with how many generations were
used to obtain those maximum positions.

4.3. Comparison of GA search to traditional methods

Traditional methods have varying degrees of success in solving the maze problem. Using a random
search, each try at a solution would have a 1/(4") chance of being the optimum solution, where n is
the number of moves necessary to get from point A to point B. Enumerative search requires that 4°
solutions be listed. Even for a small maze requiring only 10 moves to get through, these two
methods are searching, one by one, 1,048,576 points in the solution space. The random search
might find the solution before the 1,048,576th try, but it might also take longer since each try is
independent and may be duplicated. The Greedy algorithm would solve the problem by looking in
all four directions (up, down, left, and right) and choosing the direction which would advance it
farthest along the maze. This method would find the optimum solution in 4n steps.

Yo R
it B
“ le

The GAs were able to find the correct sequence of moves necessary to get to position 9 in the maze
in 21 generations. This is an improvement over the random search (a 1/262144 chance of picking
the correct sequence), enumerative search (262144 solutions to examine), and calculus-based search
(36 solutions to examine). The GA did not solve for 10 positions in a maze in 50 generations,
however. The calculus-based method is guaranteed to find the correct 10-move sequence in 40 steps.
The maze is a problem for which calculus-based search is well-suited, out-performing the simple GA
(ie without advanced operators) for mazes larger than 9 steps.

5. The Travelling Salesman Problem

The Travelling Salesman Problem has been widely studied and a variety of methods have been used
to attempt to solve it, though none guarantee the optimum solution [3]. Given a number of cities n,
the goal is to find a route (ordering) which visits each city and then returns to the city of origin such
that the distance covered is minimized. Genetic algorithms have been the latest attempt at solving

this problem.
5.1. Coding the Problem

Each chromosome was a string of n elements, where n was the number of cities to be visited. Each
clement could take on values 1 through n and each number represented a city with its own map
coordinates. Each number between 1 and n occurred once and only once in cach string, so that each
string represented a complete trip including all n cities. The order in which the city numbers
appeared in each string was the order in which the cities were visited for that solution, returning back
to the city in the first string element to complete the circuit.

The fitness of each string was calculated according to the following function:
Fitness = Cmax - (0.1 * (distance travelled)?)

As with the maze problem, the distance was squared in order to spread out the fitness values as the
chromosomes became more and more fit. The value Cmax was used to turn the minimum distance
problem into a maximization problem to be solved by the GA. Cmax varied according to the
number of cities in the problem, since the fitness should be positive and the distance travelled grows
with the number of cities.

5.2. PMX Operator

The Travelling Salesman Problem is GA-Hard. This means that the problem can cause two highly
fit strings to cross over and produce two strings with lower fitness [1]. Consider the following
example:

Map: 2* 3*

string A: 1234

string B: 4321 1* 4*

Figure 4

278

Figure 4 shows four cities and two solution strings. Both strings are optimum paths for the given
cities. If these cities cross over at position 2, however, we get the two strings depicted in Figure 5,
both of which are very poor solutions and are specifically inferior to A and B.

string A’: 1 2 21
string B': 3 4 4 3
Figure 5

The reason for this breakdown is that, unlike the maze problem where it could be said that a
particular value at a fixed position was good or not good, the Travelling Salesman Problem is
concerned with relative positioning within a string. For example, whether a 4 is good in position 1 is
dependent upon the values of the other string elements. The Travelling Salesman Problem is purely
an ordering problem, and so required an advanced crossover operator which would exchange
positional information instead of content information. This was achieved through the use of the

Partially Mapped Crossover (PMX) operator [4].

The PMX operator takes two strings and randomly chooses two crossover points. The positional
information between these two points in the strings is exchanged. Using the previous example and
choosing crossover points of 1 and 2 the information exchange takes place as follows (see Figure 6):

string A: 1 2 3 4 -> suingA: 4 2 3 1 > suingA™ 4321 - ->
sting B: 4 3 2 1 -> suingB: 1 3 2 4 > suingB 1 2 3 4

Figure 6
1. In string B position 1 has value 4. So in string A move the 4 to position 1. The 1 from

position 1 in string A takes the position vacated by the 4. In string A position 1 has value 1.
So in string B move the 1 to position 1. The 4 from position 1 in string B takes the
position vacated by the 1. This process has just swapped the 1 and 4 wrzhin string A and the
4 and 1 within string B to get strings A’ and B’

2. In string A position 2 has value 2, and in string B position 2 has value 3. So in string A’
swap the 2 and the 3, and in string B’ swap the 3 and the 2. The result is the two strings A’
and B" and the crossover routine gives two highly fit strings.

It should be noted that if crossover points of 2 and 3 had been chosen in the example, the two
resulting strings would have had lower fitness values than the parent strings. The PMX operator is
still valuable, however, because:

a) the breakdown in crossover occurs less frequently as than in the simple crossover
routine,

b) the breakdown is not as severe, with fitness falling only slightly,

c) it is more likely that the GA will recover from the minor breakdown in the PMX

crossover than in the simple crossover.

229

5.3. Results

Table 2
Cittes Population Maximum Maximum Generations Fitness of
Size Generations Fitness Achieved Optimum
Allowed Achieved (on | (on average) Solution
average)
4 4 10 10.9129 1 10.9129
4 6 10 10.9129 1 109129
4 8 10 10.9129 i 10.9129
l 8 8 30 66.6519 15 69.4666 |
8 12 30 67.7017 22 69.4666
l 8 16 30 66.8991 8 69.4666 1
14 14 50 177.9270 18 206.6335
14 20 50 174.9348 25 : 206.6335
50 170.3479 206.6335

The Travelling Salesman Problem was examined for problem sizes of 4, 8, and 14 cities whose map
layout was chosen randomly. Various population sizes were chosen for each of these, starting with
the population size equal to the number of cities in the problem. The program was allowed to run
for 10, 30, and 50 generations for the 4, 8, and 14-city problems, respectively. As can be seen in
Table 2, such large numbers of generations were not necessary to get near-optimal solutions. (As
with the maze problem, these results are averages over a number of trials.)

5.4. Comparison of GA search to traditional methods

As with the maze problem, the time and space requirements for using a random or enumerative
search with the Travelling Salesman Problem grow very rapidly with the size of the problem. If n is
the number of cities to be visited and m is the number of visits we are willing to allow in the
solution, each try in a random search has a 1/(n™) chance of being the optimum solution and there
are n™ solutions to be listed for the enumerative method. The best possible circumstances are when
m = n, and then there are still n* solutions to be examined. The Greedy Algorithm has been the
most natural choice to attempr to solve the problem. If from each city its nearest neighbor is chosen
as the next city to visit, a better-than-average path will result. This method, however, can result in a
very expensive closure of the circuit and can ignore many short distances [3].

The random search is not guaranteed to ever find near-optimal solutions, let alone within S0 tries.

The enumerative method will find the optimum solution, which is better than the GA solutions, but
only after quite a lengthy search. For the 8-city problem, 40320 solutions must be examined to gain

250

an improvement of 2.54% over the GA solution which took only 22 generations to evolve. As for
the calculus-based search method, it’s 8-city solution may be less fit than that of the GA solution,
depending on which city is chosen as the starting point of the algorithm. The GA consistently found
near-optimal solutions.

6. Conclusions

The GA was not as good at solving the maze problem as the calculus-based method, but it out-
performed all three methods in solving the Travelling Salesman Problem for 4, 8, and 14 cities.
(This statement assumes that the increase in solution fitness over GA solutions is not worth the
search time necessary for an enumerative search.) GAs were useful in getting good solutions in both
types of problems, showing the robustness of the algorithm. It should also be noted here that the
maze problem was examined using only the three basic operators common to all GAs. An advanced
operator or improved objective function might well improve GA performance in the maze problem.

References

(1] Goldberg, David G, "Genetic Alogithms in Search, Optimization, and Machine Learning".
Addison-Wesley, 1989.

(2] Noyes, James L, "Artificial Intelligence With Common Lisp”. D. C. Health and Company,
pp 157-199, 1992.

(3] Gould, Ronald, "Graph Theory”. Benjamin/Cummings Publishing Company, Inc, pp 147-
148, 1988.

[4] Goldberg, David E, Lingle, Robert, "Alleles, Loci and the Travelling Salesman Problem”.
Proceedings of an International Conference on Genetic Algorithms and Their Applications,

pp 154-159, 1985.

231

