NAME THAT TUNE!
AN INTRODUCTION TO MUSICAL INFORMATION RETRIEVAL

Jean Tague-Sutcliffe, Stephen Downie
School of Library and Information Science

Shane Dunne
Department of Computer Science

University of Western Ontario

In the beginning, computers, as their name implies, had numerical
processing capability. The development of word processing and
database systems gave them verbal processing capability and of
graphics cards and software spatial processing capability. Now,
with the widespread availability of sound cards and MIDI files, we
may claim, as well, that computers have musical processing
capability.

So, is it time to roll over Beethoven? Well, perhaps not yet.
Though recent developments have given composers and performers some
excellent musical tools, the power of the computer to access this
new kind of language is still in its infancy. This paper looks at
the potential of the computer for musical information retrieval,
for getting information, not from text or database records, but
from songs, symphonies, scnatas, sound tracks, and all the other
musical forms. It also previews some of the work the authors are
planning to carry out in this new IR area.

How to Give Computers Musical Intelligence

Giving a 386 or 486-based microcomputer musical capability is not
particularly complicated or difficult. It involves only two or
three steps:

1. Install a sound card, e.g. Sound Blaster Pro. A sound card
contains a synthesizer capable of producing 4 or more voices
of music or instruments simultaneocusly. For example, Sound
Blaster Pro produces 22 voices of FM music. In addition, most
sound cards contain a MIDI interface, with IN and OUT ports,
to allow for transmission of musical information.

2. Attach speakers or a headphone set to the sound card.
3. If desired, attach a keyboard and a microphone for sound
input, a MIDI sound module for improved output, and other MIDI

instruments such as electronic pianos.

Because large amounts of MIDI-encoded and digitized music are
available in CD-ROM format, it is highly recommended that a CD-ROM

NJ
o)
£

drive form part of the configuration. An example of a musical
microcomputing system is shown in Figure 1.

MIDI stands for Musical Instrument Digital Interface. It provides
the means to encode musical performances for storage on digital
media. For example, when a MIDI-equipped instrument such as a
keyboard is played, it transmits data through its MIDI OUT port
representing which keys are pressed, how hard they are pressed,
which keys are released, etc. Connecting the instrument’s MIDI OUT
to the MIDI IN of the sound card makes it possible for the computer
to record this information, using a type of program called a
sequencer. When the sequencer subsequently reconstructs the
recorded MIDI data stream via its MIDI OUT, and this is connected
to the MIDI IN of the instrument, the original performance is
reproduced.

This kind of sequencing/playback scheme admits many variations. For
example, the MIDI data can be routed to a different instrument,
yielding a playback of the same notes with different tonal
characteristics. Most sound cards provide an internal synthesizer,
obviating the need for an external MIDI device. Sequencers
typically permit several "tracks" to be recorded separately and
later played back simultaneously, by routing the MIDI data for
different tracks either to different instruments or to a single
"multi-timbral"™ instrument which can produce different-sounding
notes simultaneously. The resulting system is analogous to a multi-
track tape recorder.

The basic MIDI data format represents time only implicitly. A MIDI
instrument is like a computer terminal; it sends codes through its
MIDI OUT each time keys are pressed or released, and it plays notes
immediately upon receipt of the corresponding ccdes via MIDI IN.
The MIDI data stream 1is thus not a true sequence (in the
mathematical sense) but rather a time series. Sequencer programs
use a modified data representation which is a true sequence of
event codes, each of which is tagged with a time value. There are
now standard file formats for storing such event sequences on
digital media, in the form of data files which have come to be
called "MIDI files."

The MIDI file format is thus a standard format for sharing musical
data files among different programs. Commercial music software
packages offer advanced facilities such as interactive editing,
extraction of parts from scores, and the ability to typeset highly
readable music notation for use by human performers. An example of
a MIDI edit screen in the software system Seguencer Plus is shown
in Figure 2. MIDI files are supported by Windows with Multimedia
Extensions (Versions 1 and 3.1) and also some DOS musical and
multimedia packages. MIDI is not the only format for storing
musical data: however, it is the most economical in terms of disk
space. Hendall (1992), who provides an excellent introduction to
MIDI, says that 200k of MIDI files will store about half an hour of

i~y
(-
i

music. .

Until now, MIDI files have been used principally for performance
and composing music. Now, however, as more and more music becomes
available in MIDI files, they present, to information scientists,
opportunities for improving musical information retrieval, the
provision of information concerning musical works.

Information Needs in the Field of Music

What kinds of questions have traditionally been asked about music?
Do MIDI files have a potential for improving our ability to answer
these questions? Can they provide resources which musicians and
musical scholars have not, in the past, requested because their
procurement seemed impossible?

Some gqueries in the field of music are text-based and parallel
those in other fields:

1. List all compositions or all compositions of a certain form by
a specified composer.

2. List all recordings of a specified composition or composer.

3. List all recordings of a specified performer.

4. Identify a song title given the first line of lyrics, or vice
versa.

A good review of the role the computer has played in improving
retrieval from textual catalogs of musical scores and discographies
will be found in Duggan (1992). She points out, for example, that
OCLC now contains catalog records for 606,000 scores and 719,000
sound recordings, and the Music Library CD-ROM published by Silver
Platter contains more than 408,000 records for sound recordings.
However, the ability to store the music itself, in MIDI files,
provides us with the capability of answering queries beyond those
served by a MARC-format-based catalog:

5. Given a composer, identify by the first few bars each of his
or her compositions, or compositions of a certain type.

6. Given a melody, for example the tune of a song or the theme of
a symphony, identify the composition from which it comes.

The first of these two types of queries has traditionally been
answered by means of a printed incipit index, a listing of the
beginning bars of the scores of the works in a particular
collection. An example of a printed incipit index is shown in
Figure 3.

206

The second type of query has traditicnally been answered by
thematic indexes to musical comp051tlons An example of such an
index (Barlow and Morgenstern, 1949) is shown in Figure 4. The
book contains a few bars of one or more themes from 10,000 musical
compositions, arranged by composer. A ’Notation Index' in the
back of the book, permits an inquirer to look up a sequence of six
to eight notes, transposed to the key of C, in an alphabetlcal
listing of transposed ‘themes’ to identify the composition in which
it occurs.

A variation on satlsfylng querles about musical themes is the
'Humline’, described in a recent issue of the Library Association
Record (v.94, 1992, 155). The Birmingham (U K.) Library Service
provides a telephone-based information service for people who want
to identify pieces of music. Ingquirers hum tunes into an answering
machine and a librarian undertakes a manual search to locate it.
No actual index is involved.

Incipit and thematic indexes can be automated by developing
appropriate data structures for accessing musical compositions in
MIDI form by their first few bars or themes, just as books and
journal articles are accessed by keywords. Users can then input
the first section or theme they wish to identify and a search
algorithm locates it using this data structure. However, musical
information retrieval has the potential for answering more
extensive queries, involving the rfull-text’ of musical
compositions. Such queries include:

e In which compositions can we find the following note sequence
anywhere in the composition?

. Which composers have used the following harmonic progression?

. Which composers have used the following combination of
instruments in the orchestration of a passage?

The Design of Music Databases

We will define a true music database as one which contains, in
addition to the bibliographic information one might find in an
online catalog for musical scores or recordings, pointers to MIDI
(or similar format) files recording performances of each
composition, and the MIDI files themselves. Queries to this
database can be described, most generally, as consisting of
patterns of either text strings or musical fragments, or both. The
musical fragments represent sequences of notes, some of which may
overlap in time (polyphony). Information about note duration and
loudness may also be a part of the fragment.

Retrieval from the textual attributes of the database (composer,
title, identification number, key, performers, dates, etc.) would

v
<
~d

be similar to that from existing bibliographic databases and could
involve the usual well-known methods of boolean or weighted keyword
searching of these attributes. Retrieval from the MIDI files,
however, presents new challenges.

There are four approaches to the design of a music database where
queries will be in the form of musical fragments: linear scanning
of the MIDI files, construction of an inverted index to all musical
fragments in the MIDI files, construction of a hash table for
musical fragments in the MIDI files, and construction of a bit
vector to represent the musical fragments in each MIDI file. These
approaches differ in the complexity of the retrieval algorithms.

Linear scanning means that each MIDI file is searched, in turn,
from beginning to end, for the query fragment. To scan a sequence
of MIDI files whose total length could be represented by the number
n (e.g., n pages, n songs of similar length, n bars of music, n
'records’) for a musical fragment would require a search time
proportional to n, or a search complexity of O(n).

Inverted indexes are frequently used as the access mechanism for
keyword searches of bibliographic databases. The index contains,
in sorted order, all the unique strings of up to a specified length
which appear in the database, together with a pointer to a postings
list, the list of locations within the bibliographic files, where
the sought for string may be found. The index is accessed by a
binary "divide and conquer’ search algorithm. Indexing musical
databases means we must, first of all, determine what length of
fragment will be indexed and whether any fragments will be ignored
in the index (like stopwords in a textual database index).

With musical fragments, however, there are other concerns. A
decision must be made as to whether information about note duration
and other aspects represented in the MIDI file such as loudness or
pitch bending will be included. The user may be interested in a
theme or tune regardless of the key. Thus, for identification
purposes, it 1s more wuseful to index sequences of musical
intervals, rather than musical notes. Thus, the beginning of the
nursery rhyme "Twinkle twinkle little star’ might be represented as
the note sequence CCGGAAGFFEEDDC or the sequence GGDDEEDCCBBAAG;
these could both be represented by the interval sequence 07020
(=2)0(~2)0(=1)0(=-2)0(=2), where the entry in the sequence indicates
the number of semitones between one note and the next.

Polyphonic music presents special challenges. For example, if the
music contains chords, rather than simply melodies, there are many
more possible matches for a query fragment, since the match may
begin in one ’‘voice’ and then move to a lower or higher voice.

As 1in textual searching, inverted files would save time in
searching musical databases. If the size of the musical database
can be represented by the number n, as above, the search complexity

is 0(log n). However, the improved search speed is obtained at a
cost; if there are a total of m distinct fragments in the index, it
will take a total time of order O(mlogm) to build. If MIDI files
are constantly being added to the database, it will be necessary,
periodically, to rebuild the index; thus, the building time is a
major concern.

Hashing is an approach in which the search time to find a fragment
in the MIDI files is independent of the total size of the files,
i.e., the complexity is 0(1). A possible hash function is one
which maps each of the set of possible musical interval sequences
of a fixed length k into a finite subset of integers {0,1, ... q}.
For example, suppose there are c possible musical intervals and
that s=i,i, ... i, represents the length-k interval sequence. The
function

H(s) = L i,

for j=1 to k, will always be an integer between 0 and g=c*-1. The
hash table is an array, held in memory. The hth element in the
table is a ‘postings list’ or a pointer to a postings list of the
files which contain musical fragments whose hash function value
H(s)=h.

If the query fragment contains more than k intervals, it is divided
into sequences of length-k fragments. Postings lists are obtained
for each length-k fragment and the final set of locations of the
fragment is obtained by taking the intersection of these lists.

A problem with hashing is false drops. Not all of the musical
selections in the postings list will actually contain the query
fragment. Thus, a scan of these selections will be necessary to
determine which ones are actual hits. However, if the hashing
process is a reasonably good one, the set of MIDI files in the hit
list will be much smaller than the total set of MIDI files in the
database.

The MIDI format provides for 128 different pitch values, one
semitone apart. There are therefore 255 possible intervals, from
-127 to 127. For the purposes of indexing and hashing, it may be
desirable to partition this set into a smaller number of classes.
For example, we could reduce the number of interval classes to 23
(=11 to +11) by taking the original interval and computing the
signed remainder after dividing by 12. Musically, this identifies
notes having the same name (e.g. C-sharp) in different octaves.

The advantage of interval classification is that it speeds up
search of the index; the disadvantage is that it creates more false
drops to eliminate in the final processing. Also, as with
truncation in text searching, it may improve recall.

The final database access design to be presented here is the bit
vector approach. Instead of an index or hash table, a bit vector
or array of binary values (a signature) is constructed for each
MIDI file. This vector indicates, for every possible length-k
interval class sequence, whether or not that sequence occurs in the
file. To process a query, one would construct a bit vector for the
query fragment itself and intersect this with each of the per-file
bit vectors. Thus, search time would be proportional to the size
of the number n of MIDI files in the database and complexity would
be O{(n). Bit vector operations are extremely fast and the bit
vectors themselves are space-efficient. However, for large
collections of MIDI files, the space required for the bit vectors
might still be considerable. The space requirement for bit vectors
is proportional to the number Ck-1 of length-k interval classes;
the number of bits required per file will be exactly the same as
the number of entries in a hash table constructed according to the
scheme described earlier.

Research Agenda

There are a number of gquestions yet to be answered about musical
information retrieval, given the music database framework described
in the last section. The authors are in the initial stages of a
research project, funded in part by NSERC, to examine some of these
questions. Specifically, we will be investigating the following:

U] User Needs Assessment: What kinds of user needs among
composers, musical performers, musicologists, and lay people,
can be answered from musical databases?

L Access Method Assessment: Under what conditions of memory and
database size and musical fragment distribution are each of
the four access methods described above optimal? What is the
effect of the values of k (the length of the interval or
interval-class sequences which may be directly searched) and
c (the number of classes into which intervals are classified)
on index size, search time, and numbers of false drops?

° What length of musical fragment and what parameters--pitch or
interval sequence, note duration, or other MIDI recorded
features--must be included in a query description in order to
identify the relevant musical fragments desired by different
classes of users of a music database? How can nonrelevant
retrievals be reduced?

] What kind of output, what parts of the retrieved musical
composition and in what form, what other attributes, do users
of a music database need?

We hope, at a future meeting of the Canadian Association for
Information Science, to bring you some answers to these questions.

210

References

*

H. Barlow and S. Morgenstern, A Dictionary of Musical Themes, Benn,
1949.

M.K. Duggan, "Electronic information and applications in musicology
and music theory," Library Trends 40(4), 1992, 756-80.

J.S. Edson, Organ--Preludes; an Index to Compositions on Hymn
Tunes, Chorales, Plainsong Melodies, Gregorian Tunes and Carols,
Scarecrow Press, 1970.

R. Kendall, "MIDI goes mainstream," PC Magazine 11(6), 1992, 183-
218.

"There’s a kind of a hum--all over the world", Library Association
Record 94, 1992, 155.

Speakers

10O O

MIDI Equipped Instrument

LLILLILILLILL

Microcomputer
CD-Rom

Dirive Audio Source

Sound MIDI
Card Connector

W
WY
(AP]

Edit

Song BLUES Mem 68366
Tk 1 Piano neM 111 7:8 THRU:OFF
44 BAR 7 OCTAVE S EDIT CURRENT PITCH

Edit Menu
Add Copy Delete Goto-Bar Insert Length Pitch Replace Start Track
Units Zap MIDI NOTE OPTIONS

Organ - Preludes

Brich uns, Herr, das Brot
{(Micheelsen)

Metzger, H. A.

Brichtly Beams QOur Father's

679

Micheelsen, H.F. (3)

Mcrcy (Bliss)

Thompson, V.D.
Variant:

Lower Lights
Wilson, R.C.

Bring a_Torch (French)

Rogers, S.E.
Variant:
Un Flambeau

Bingham, S.
Bristol (Ravenscroft)
*Camercn, G.
Dyson,--G.
Groves, R.

Hunt, W.
Lang, C.S.

Brocklesbury (Barnard)
Powell, R.J.

Broedre og soestre,

vi skilles

4.

i3 }\I S MR Y 1

ol L W R s § '

IR AY 4
§—~L—.‘LI- ot

Williams, D.H.

Palmer, C.C.

West, J.E.
Westrup, J. A.
Willan, H.

1 O S U B

L A | LY | W S U S (U 0 S 4
P e e S P P
e 1 2 B) o I s

(Simonson)

Frandsen, H. B.

QIR

Wuertz, J.

Bromsgrove (Dyer) -t
IlTl‘l’\’\vjlil\\
A A
Rowley, A. [!
Brorson
See: Kender du den (Berggreen)
Brother James Air (Bain) :’é, e
1 Al » —
Darke, H.E. A
Owens, S.B.
Wright, M. S.
Variant:
Marosa
I |
254

STRAVINSKY 472 SI1541—S1560

: " —
Octet for FI CL, 1st Movement —fmbome——t——e P Ay t_pale .
2 fg., 2 Tipts,, Intro, ST et 23T et S1544

2 Tramb,

= L
By permivion of the {5t Movement W £a N
s lstvlheme = m&ﬁéﬁ Si542
-

Bootey and Hawhey, lne. $— 1

15t Movement —Q-r vy =

.

ey o
jr > N e Sl ¥ g (R U5 i dﬂ

2nd Theme 16k TR e e e e e S154)
o 7. L IR 55] v T g sy v

204 Movement =Sy 2er L!‘hp’ﬁL bak ‘)"&: !

Theme & Yariations rH—-———t—Z——— e

3rd Movement ﬁm@%ﬁ Sis4
5

finale e

Ny 8
e o R e i s

By permissian of the copyright

owner, Boossy and Hawies, lne.
Theme #Sﬂmb—#%m &g.‘;ﬁg@; Si547
ﬁ

T

Petrouchia, Suite Taleay | <2 #__g X H_ xS ! A{;f:éﬁs
gf"ﬁ.“?.{fﬂ. of the 1st Theme ”5? 4 — = = = 5154

copyright owner,

Boasey end Hawhes, lnc o Theme Q . : €~ t‘ = Uéég &’#n‘ HF—&*:E{B

b e em e ‘“‘—“—”—‘SISW

3rd Theme @_._é‘}_;‘gg!jeﬁ—rg_ ErEEs .;,___}‘.;."12'3:3){; 51550

4th Theme %QPE‘EE.,M”% ==

@Eﬁ&—@w
Le Tour de Passe-passe ey e e s r?ﬁ&" 51552

AR '—P—E-}-E HH

E . 2LEL
Danse Russt ;9— e S1551
Ist Theme 5= = I=— : ==
oz.,i"-@’r’:- P S Du——
2nd Theme ?:-‘-f e e e e e] 1Y
—r—r—" ’. z f- 2 L‘y’x" - F xf. oy ——
3ré Theme W—:—T—g}————'— = e §1555
Tableau 2 frapl Pan'st) PR LY
Chez Pelrouchks T At o I e s 8 1556
g1 Pelroucnia e e el ZH S
Ist Theme o T o e} ' :
an Theme, M“ =+ f T ’ "‘ P ;"f] 51557
a =7 S —
N2
Ind Theme, S tx—pmr—rr—rr—1y = S1558

Tableay 3 gy
Chez {e Maure

S g 51559

T
o
=t ‘A_A’

ke

o=
0]
o)

Danse de la Ballerina WWMFM 51560
S o ———]

[}
B
O

NOTATION INDEX

L U
- S (ORURG) oA
DCB@ACEMCEAECBCEGBbCDCBEFFFDGEGBGBGMBB
CGCAGAF:CDGEBCAAACADDBCEEEE&FAFCFADAAA

MOAMBMUUUUdOmdmmammpooAn (afaNaNaYaRARCRCRORO IS LIRR (XY
HE (i mammmDO0000DDVVLDVLDVUVVVVU A A LT AT Iy b b
BBBBBBBBBBBBBBBBBBBBBB.BBBBBBBBBBBBBBBB
MG o o g el o o o) o o o o o e o o o o o o e e i g e oo

D70
R371
P9l
H544

© W ™ o) ©
B © 0 Q © IS
0ogo M < —

1125
W144
S182
S1578
X22t
B37

o
¢
A

D218
5596
D237
Bl312
M806
S694
R137
1256
S1597

5

S1554
M166
B434
S1497
S1349
S654
B1646
D106
R425
51098
H791
5832

O

SN mOQ K Ao § = SRRV JIN
AAABGACCCAGGMGBGEGCCAFMGbGDEEDDEGGBBBA
MR U e R g, SRR U
ML R A mO VAR T OCOORY

o 1o o ol o o e e o o e o o e e G e o K o R RS
S e e e R R R e R P e g g gu e g perge

w
(0 |

