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Abstract: Despite the sub-language nature of taxonomic descriptions of animals and plants, 
researchers have warned about the existence of large variations among different description 
collections in terms of information content and its representation. These variations impose a 
serious threat to the development of automatic tools to structure large volumes of text-based 
descriptions. This paper presents a general approach to mark up different collections of 
taxonomic descriptions with XML, using two large-scale floras as examples. The markup 
system, MARTT, is based on machine learning methods and enhanced by machine learned 
domain rules and conventions. Experiments show that our simple and efficient machine 
learning algorithms outperform significantly general purpose algorithms and that rules 
learned from one flora can be used when marking up a second flora and help to improve the 
markup performance, especially for elements that have sparse training examples.       

Résumé : Malgré la nature de sous-langage des descriptions taxinomiques des 
animaux et des plantes, les chercheurs reconnaissent l’existence de vastes variations 
parmi différentes collections de descriptions, en termes de contenu informationnel et 
de leur représentation. Ces variations présentent une menace sérieuse pour le 
développement d’outils automatiques pour la structuration de larges volumes de 
descriptions textuelles. Cet article présente une approche générale pour le balisage de 
différentes collections de descriptions taxinomiques avec XML, en utilisant comme 
échantillons deux flores d’envergure. Le système de balisage MARTT est basé sur les 
méthodes d’apprentissage automatique et est amélioré par les règles et les conventions 
de l’apprentissage automatique. Les expériences démontrent que notre simple et 
efficace algorithme d’apprentissage automatique a surclassé de manière significative 
les algorithmes par objet et que les règles d’apprentissage d’une flore peuvent être 
utilisées lors du balisage d’une deuxième flore et aider ainsi à améliorer la 
performance du balisage, notamment pour les éléments qui ont des exemples 
d’apprentissage peu courants.         

1. INTRODUCTION 

Taxonomic information organization and access is a major component of biodiversity 
informatics research. Despite the recent development of taxonomy databases, only “a 
trivially small amount of descriptive data exists in a structured form that is amenable 
to manipulation by software”(Blum, 2000). One of the major informatics challenges 
surrounding taxonomic character data is to develop ways of "mining" or parsing 
structured data from the existing text-based descriptions. XML (eXtensible Markup 
Language) is a well-accepted standard for structuring and exchanging textual data. 
Taxonomic descriptions marked up in XML format can be used to improve the 
performance of information retrieval systems, to facilitate federation and integration 
of multiple description collections, and to aid the generation of interactive keys for 
specimen identifications. Because a huge amount of text-based descriptive data has 
been developed over the past two hundred and fifty years, a manual approach to 
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markup is not feasible. An automatic markup system can structure the legacy textual 
descriptions, convert textual descriptions freshly written by taxonomists to XML 
format on the fly, and at the same time help to ensure the parallelism of characters 
presented in the descriptions.  
 
Previous efforts in structuring taxonomic descriptions used syntactic parsing method 
and focused on structuralize single description collection at a time. Taylor (1995) and 
Abascal and Sánchez (1999) constructed grammars and lexicons to parse the Flora of 
New South Wales and Flora of North America (FNA, http://www.fna.org) 
respectively, to extract a set of triples of specimen part, attribute and values from each 
description. Jean-Marc Vanel’s Worldwide Botanical Knowledge Base 
(http://wwbota.free.fr/) also took the approach of parsing, but aimed to mark up 
descriptions with XML. None of these works reports their scientific evaluation of 
system performance. 
 
The published works have all used parsing techniques that require an extensive 
lexicon. The parsing approach takes advantage of the sublanguage nature of formal 
floras. Fig 1 shows the taxonomic treatment of Chamaecyparis lawsoniana in FNA 
with different sections marked. Lehrberger (1982) summarized the characteristics a 
sublanguage possesses, including: limited subject matter; lexical, semantic, and 
syntactic restrictions; deviant rules of grammar; high frequency of certain 
constructions; text structure; and use of special symbols.  However, research has 
found a great amount of variations among descriptions of the same taxonomic objects 
in different floras. To assess the feasibility for automatic processing of botanical 
legacy data, Lydon et al. (2003) manually compared and contrasted the descriptions of 
five common species in six English floras. The finding shows that only 9% of 
information is presented in all six sources in exact format while 55% of information 
comes from only one source. They also find 1% of information is in conflict among 
different floras. The remaining 35% of information is represented in different format 
in different sources, for example, using different terms for the same concepts etc. The 
authors suggest that automatic processor should take caution and expect to work with 
different data sets with large variations. 
 
Given the large variations in the data source, the drawbacks of syntactic parsing 
approach become significant: (1) the dependence on the coverage of the lexicon and 
hand-crafted rules; (2) more importantly, the limited portability. Due to the large 
variations of data sets, the parser tailored for one collection will very likely have a 
significantly reduced performance on a different collection.  
 
In this paper, we report our progress in developing a general approach to automatic 
markup of taxonomic descriptions with XML. This research differs from others in that 
it aims to create an evolvable system that is capable of marking up not just a specific 
flora, but all floras and faunas in English. In previous work (Cui et al, 2002), we 
created a procedure based on Support Vector Machine algorithm and marked up at 
paragraph level FNA taxonomic treatments with around 95% accuracy. In this study, 
deep markup of description paragraphs is the focus. In this paper, we present our 
findings in testing our markup framework and evaluating our markup system, 
MARTT (MARkuper for Taxonomic Treatments), with plant description data.  
 
The paper is organized as follows. We will describe the MARTT framework in 
section 2. We devote section 3 to learning system design. In section 4, we describe a 
set of three markup algorithms for marking up to sentence/clause level. In section 5, 
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we report experiments of marking up two large plant description collections to main 
structure level. Finally, in Section 6, we will conclude and describe our future plans. 
 
2. Chamaecyparis lawsoniana (A. Murray bis) Parlatore, Ann. Mus. 
Imp. Fis. Firenze. n.s. 1: 181. [preprint p. 29]. 1864.  

taxon 

Port-Orford-cedar, ginger-pine  common 
names 

Cupressus lawsoniana A. Murray bis, Edinburgh New Philos. J., ser. 
2, 1: 299, plate 10. 1855  

naming 
history 

Trees to 50 m; trunk to 3 m diam. Bark reddish brown, l0--20(--25) 
cm thick, divided into broad, rounded ridges. Branchlet sprays 
predominantly pinnate. Leaves of branchlets mostly 2--3 mm, apex 
acute to acuminate, facial leaves frequently separated by paired bases 
of lateral leaves; glands usually present, linear. Pollen cones 2--4 mm, 
dark brown; pollen sacs red. Seed cones maturing and opening first 
year, 8--12 mm broad, glaucous, purplish to reddish brown, not 
notably resinous; scales 5--9. Seeds 2--4 per scale, 2--5 mm, wing 
equal to or broader than body. 2n = 22.  

description 

Forests of the Coast Ranges with isolated inland populations at higher 
elevations in the Siskiyou Mountains and on Mt. Shasta Forests of the 
Coast Ranges with isolated inland populations at higher elevations in 
the Siskiyou Mountains and on Mt. Shasta; 0--1500 m; Calif., Oreg. 

distribution 

A. J. Rehder (1949) listed, with bibliographic citations, 66 published 
varieties and forms best considered as cultivars. 

discussion 

Fig 1 Taxonomic Description of Chamaecyparis lawsoniana in FNA 

2. MARTT FRAMEWORK 

MARTT is based on inductive machine learning methods. An inductive learning 
algorithm learns the characteristics of data sets by analyzing a training set, which in 
this case contains plant descriptions marked up by a human expert. Thus the 
adaptability and portability of the markup system are improved. Due to the 
sublanguage nature of descriptions, we have good reasons to hope for good 
performance of learning algorithms. But for marked-up plant descriptions to be truly 
useful for different information applications, we would like to boost the performance 
even further. Noticing “the limited subject matter” aspect of floras, we observe the 
explicitness of domain knowledge conveyed in plant descriptions: by just analyzing 
the information content of descriptions, one can easily learn that, for example, “herbs 
do not have trunks”, “conifers do not have flowers”, etc. These rules are true for any 
flora. Our assumption is that rules like these can help improve the performance of an 
inductive learning system in marking up taxonomic descriptions. Basing on this 
observation, we propose a two-phase learning framework to mark up taxonomic 
descriptions: 
 

Phase 1: Use inductive learning methods to mark up taxonomic 
descriptions in some large-scale floras, for example FNA.  Learn 
domain-wise rules from marked-up descriptions and save the rules in a 
rule bank. 
Phase 2: Use the inductive learning component, enhanced with access to 
the rule bank, to markup new descriptions, for example, Flora of China. 
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Newly marked-up descriptions may be fed back to phase 1 to help evolve 
the domain rules.  

 
In the following sections, we will show that very good markup performance can be 
achieved using our simple and efficient learning algorithms for Phase 1. We will also 
show some promising results of using learnt rules from FNA to improve markup 
performance on Flora of China (FOC, http://flora.huh.harvard.edu/china/), especially 
for elements with sparse training data.     

3. SYSTEM DESIGN  

A top-down iterative strategy is taken to mark up the descriptions, that is, higher level 
elements are marked up before any lower level elements in each higher element are 
marked up. The learning system consists of a hierarchy of nodes, each of which 
corresponds to an XML element. The hierarchy corresponds to the structure of 
targeted XML markup. Every internal node is a learning unit, in charge of marking up 
its corresponding element, while leaf nodes only receive their text segments produced 
by their parents and do not perform learning or mark up. All nodes also evaluate the 
markup performance of their parent node by comparing the marked up segments with 
the answer keys. Fig 2 illustrates the hierarchical structure. 
 
The learning hierarchy is initialized from training examples. While the structure is 
initialized, nodes are created and their portions of training examples are extracted and 
saved in the nodes. Starting from the root, if a node for an element does not exist in 
the hierarchy, the node is added as a child node to its parent node. At the same time, 
the content of the element is added to the new node’s training pool. In the end, the 
hierarchy is initialized with all possible elements in the training data represented as 
nodes in the hierarchy, where each node contains the chunks of training instances 
relevant to its task. Nested elements in the training instances are flattened out so that 
training instances for each internal node are flat 1-level deep XML fragments. 
 
For example, the root node “description” is in charge of marking up the input text 
with child tags such as “plant-habit-and-life-style”, “stems”, “leaves” etc. When the 
root node is done with markup, each marked-up segment is dispatched to its 
corresponding second level nodes, where the element will be marked up one level 
deeper if necessary. Each node decides on the approach it should take, text 
segmentation (to identify large chunks of text, for example, all text that is about 
flower) or information extraction (to extract small pieces of text, for example, shape 
of a leaf), by examining its training examples. The content of marked-up elements is 
dispatched in this manner until they reach the leaf node. Marked up examples are then 
read off the hierarchy.  
 
The hierarchical structure corresponds naturally to the tree structure of XML 
documents. Using training examples to initialize the structure makes the learning 
systems very adaptable to different requirements on the depth of markup: if one needs 
to train the system to mark up to sentence level, just feed the system with training 
examples with sentence level markup. It is also easy to focus on the markup of a 
specific element, as any sub-tree itself is a hierarchy and every node is addressable by 
using its XPath. 
 



 5

The system is implemented in an object-oriented programming language, JAVA to 
maximize the flexibility for plugging in new learning algorithms and new applications 
of the hierarchy. The hierarchical structure is separated from the methods that access 
the tree to give the flexibility of updating access methods without having to modify 
the tree in any ways and new learning algorithms can be plugged in with ease.  
 
 

 
Fig 2 Learning Hierarchy  

Nodes with heavy border are composite elements that contain other elements. Nodes 
with light border are leaf elements that do not contain other elements. All composite 
elements are associated with certain learning functions and are capable of marking up 
a text segment using their child elements. Segments that belong to their child elements 
are dispatched to them respectively. At evaluation phase, answer keys are read into 
each node, composite or leaf. Evaluation can then be conducted within each node 
 

4. LEARNING ALGORITHMS  

SegTagger1: Noticing in descriptions, sentences often start with a noun phrase, which 
is the name of a plant structure. Based on this observation, we create a simple markup 
algorithm, SegTagger1, which uses the leading words of sentences to decide the class 
labels for the sentences. First, training examples are used to score all words that 
appear in training examples.  Each word is scored based on the likelihood it suggests 
different classes (an XML element is a class), the class score of a word is the ratio of 
the occurrence of the word in the class and the total occurrence of the word. 
 
Neither stemming nor the change of cases is done for terms. For the taxonomic 
description domain, morphology of the terms and their cases seem to carry significant 
meanings. For example, “Seed” often occurs in “Seed cones” as a modifier for 
“cones”, while “Seeds” often starts the description for the seeds of the plant.  
 
To mark up a new description, SegTagger1 decides class label sentence by sentence. 
For a sentence, SegTagger1 adds the score for each class for each of l leading words. 
The class scoring highest is the class for the sentence. If all classes are scored zero, 
the sentence is assumed to have the same class label as the previous sentence.  
   
SegTagger2: SegTagger1 does not make use of information that appears in the body 
of the sentences. Nor does it try to deal with the cases where one sentence contains 
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descriptions for multiple plant parts. For example, sometimes stems and buds 
descriptions are mixed with plant habit and life style in one sentence, as in “Shrubs 
1.5 m; stems erect.” SegTagger2 attempts to tackle these issues and it also tries to 
make use of the sequence of the classes as they appear in the training examples. 
SegTagger2 learns class scores for words, punctuation mark scores, and class 
transition matrix. Word class scores are obtained as in SegTagger1. The maximum 
likelihood for an element to end with certain punctuation marks is gathered in a 
similar manner. A transition matrix that describes maximum likelihood that class C1 is 
followed by C2 is also calculated.   
 
When marking up, the algorithm first selects n candidate classes by scoring the l 
leading words of to-be-marked text T or by looking at the transition matrix when all 
class scores for l are zeroes. Each candidate class proposes a segment from T (starting 
from the beginning of T). The candidate classes and their proposed segments are 
evaluated and given a score. The class and segment pair that scored highest wins and 
the segment is marked with the class. The algorithm will start again to mark up the 
remainer of T.  To propose a segment, a candidate class may initially look at more 
than one segment using different delimiters that have been seen in training examples. 
Segment candidates are obtained by using different delimiters to segment T. The 
segment that scored highest for the class is the one the class will propose. This 
algorithm gives a chance to segment at punctuation marks other than the period (.). 
 
SegTagger3: A second way to improve the SegTagger1 is geared toward learning 
semantic class for leading words. SegTagger3 learns significant noun phrases and 
nouns that have clear class indications, for example Seed cones and Roots are 
significant indicators for class cones and roots, respectively. Since there is no good 
part of speech tagger available for this domain text, SegTagger3 uses frequent pattern 
and association rule learning methods (originated from data mining research) to learn 
rules in the format of n-gram => class (confidence, support), where confidence is 
defined as the ratio of the occurrence of the n-gram and the occurrence of the n-gram 
in the class; support is defined as the ratio of the occurrence of the n-gram and the 
number of sentences in the class. Rules whose confidence and support scores are 
higher than user-defined thresholds are deemed as good rules. 
 
To learn the rules, first the leading l words of sentences are used to generate l(l+1)/2 
different size of n-grams. For example, in addition to one 3-gram a b c, leading words 
a b c can generate two 2-grams a b, and b c, and three 1-grams a, b, and c, the latter 
are called sub-grams of a b c. The occurrences of these n-grams in different classes 
are gathered and the confidence and support scores are computed. Note: one 
occurrence of a b c is counted multiple times, one for each of its sub-grams. This is 
necessary because it is unknown if the n-gram or its sub-grams are the frequent noun 
phrases. However, this also may cause problems. Suppose a b c is a noun phrase and 
a b c has to be together in that order to have the semantic meaning. If a b c is a 
significant indicator for a class, this multiple counting method makes all its sub-grams 
good indicators for the class as well, when in fact a, b, c alone may have very 
different meaning. To eliminate this side effect, when calculating the scores, if an n-
gram is deemed a good indicator, then its occurrence is deducted from the occurrence 
of all its sub-grams so that its sub-grams will not become frequent because of the n-
gram. On the other hand, if an n-gram is just a collocation by chance, its occurrence 
will not affect the discovery of any of its sub-grams as a significant indicator. The 
confidence threshold for “good” indicators is set to 0.8 and support threshold is set to 
0.035.   
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SegTagger3 marks up descriptions sentence by sentence as SegTagger1. It decides the 
class label for a sentence by examining the good association rules (those have 
confidence and support scores higher than the thresholds: confidence=0.8, support=0) 
that contain the n-grams generated by its l leading words. The rules are sorted and the 
first rule will be used to decide the class label.  The sorting criteria are size of the n-
gram, containing starting word, support, and confidence, applied in that order.         

5. EXPERIMENTS  

In these experiments, the task is to mark up main structures of a plant: plant-habit-
and-life-style, roots, stems, buds, leaves, flowers, pollen, fruits, seeds, cones, spore-
related-structures, gametophytes, timelines, chromosomes, and compound. Class 
compound is used to label the cases where more than one main structure is described 
in one clause, for example “twigs and foliar buds silky-pubescent.”  
 
In the first set of experiments, we compare three SegTaggers with a Naïve 
Bayesian(NB) based learning method and a Support Vector Machines (SVM) 
classifier and show SegTaggers outperform the two general purpose learning 
algorithms, with SegTagger3 being the best. We use SegTagger3 to mark up the entire 
set of FNA descriptions. These experiments show the feasibility of machine learning 
approach to mark up multiple collections. This activity corresponds to Phase 1 of the 
MARTT framework. 
 
In the second set of experiments, we first show the markup performance on the entire 
FNA set is satisfactory. We use the marked up set as the training examples to train 
SegTagger3 and test it on the original 490 training examples. The results show that 
higher performance is achieved compared to 10-fold validation on original training 
examples. Finally and most importantly, we show that semantic information learned 
from marked-up FNA collections can be used to improve the markup performance of 
FOC descriptions. This activity corresponds to Phase 2 of the MARTT framework. 
 
Data: We extracted 2,374 descriptions from published volumes (v2, 3, 4, 22, and 23) 
of FNA. We also have 13,478 descriptions from FOC provided to us from other 
sources. We prepared 490 training examples for each collection. Table 1 shows the 
breakdown of the number of training instances for each element for FOC and FNA.  
 

Table 1 Number of Training Instances of Each Class 
 plant stems leaves cones seeds flowers fruits timeline chrom. roots buds spore pollen gameto comp
FOC 320 374 446 18 149 447 303 348 70 44 23 0 0 0 13 
FNA 253 387 458 33 173 320 302 2 270 55 51 90 2 13 1 
 
Performance Measures: Performance evaluation in terms of correctness of markup 
is quite involved, because it often occurs that some parts of an element are marked up 
correctly, or that elements are not placed in the exact right place in a branch. The 
learning hierarchy allows us to do evaluation at any level or any node, which helps to 
work round the problem. MARTT calculates the precision and recall at each 
node/element. Precision is defined as the percentage of the segments that are marked 
as the element by machine are marked as such by human. Recall is defined as the 
percentage of the segments that are marked as the element by human are marked as 
such by machine.  
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The First Set of Experiments--Feasibility of Machine Learning Approach: We 
compared our algorithm with Naïve Bayesian (NB) algorithm and Support Vector 
Machine (SVM) algorithm. These are two widely used text classification algorithms. 
We build a NB-based markup system by replacing SegTagger3’s additive class 
scoring method with NB formula: 

,)|()(, ∑
∈

====
segmentt

segmentc cclassttermPcclassPscore  

For SVMs, we used Bow Toolkit by McCallum(1996) to test its performance on 
classifying description sentences. We run 10-fold validation using different 
algorithms on FOC and FNA training examples. The results are shown in Table 2. 
Paired T-tests for the differences of the performance between SegTaggers and NB and 
SVM show our algorithm significantly out-performed NB and SVM algorithms with 
the significance levels ranging from 0 to 0.067. In terms of computational cost, it 
takes SVMs 24 hours to finish the ten-fold validation over 490 examples, it takes 
SegTagger2 15 minutes, and SegTagger1 and SegTagger3 finish the validation in 3 
minutes, all run on Windows XP Pentium M 1.3GHz, 512 MB DDR machine.  
 
In general, despite the complexity of SegTagger2, it failed to improve much the 
markup performance, compared to the simple-minded SegTagger1. stems and buds 
are the elements that are frequently embedded in plant habit and life style element. 
The improvement to them is very little or even negative which suggests that using the 
frequency of ending punctuation marks for elements may not be helpful. Comparing 
three SegTaggers across all the elements suggests that leading words are the most 
reliable cues for mark up task, and content words are helpful in some situations but 
they are more likely to be sources of confusion. SegTagger3 improves the way of 
selecting and scoring leading words and achieves the best performance overall.  
 
The most difficult elements to mark up seem to be the compound element. As any 
main structure of a plant can be in a compound element, none of the word-based 
learning algorithms does well in identifying this element, because they fail to capture 
patterns such as “element1 and element2”. cones and buds are difficult elements for 
FOC and all algorithms have poor performance on them. This is most likely due to the 
training data for both elements are sparse, and buds are sometimes embedded in other 
elements. Sparseness of training data for some elements is a common problem for 
mark up task, because of the uneven distribution of the elements in a collection. In the 
next section, we will discuss a way that helps to deal with this situation. 
 
More importantly, the results show that SegTaggers work relatively equally well on 
both FNA and FOC descriptions, demonstrating a good portability of the machine 
learning approach.  
 

Table 2 Performance Comparisons among Different Learning Algorithms  
SegTagger1 SegTagger2 SegTagger3 NB SVMs 

FOC FNA FOC FNA FOC FNA FOC FNA FOC FNA 
  
  
  P R P R P R P R P R P R P R P R P R P R 
plant 99.3 91.5 100 97.6 99.7 97.9 100 99.6 98.1 100 97.7 100 95.2 82.6 98.0 85.8 97.2 97.2 100 82.1 
stems 93.4 84.5 91.1 85.3 92.3 85.5 93.7 89.4 95.5 90.7 95.3 90.7 89.4 65.0 89.8 69.1 70.4 84.8 90.5 83.8 
leaves 96.7 96.9 96.3 98.8 97.0 95.7 97.5 99.0 99.1 98.0 99.6 98.8 75.6 68.5 73.9 63.7 87.3 73.0 92.9 70.5 
flowers 89.2 96.7 97.0 98.5 93.6 100 96.7 98.5 93.5 95.6 99.4 99.1 69.5 65.2 83.2 77.7 87.6 69.1 88.1 82.5 
fruits 96.1 91.4 97.9 95.8 95.9 85.4 99.0 97.7 97.4 97.5 100 99.4 89.7 59.1 87.8 79.3 73.5 54.6 97.4 62.3 
chrom. 100 98.6 99.6 100 100 98.6 99.6 100 100 98.6 99.6 99.6 96.3 47.5 99.4 71.6 54.3 100 0 0 
seeds 97.7 88.4 100 92.8 98.6 90.7 100 94.0 99.2 99.2 100 97.1 91.3 59.3 91.5 68.0 90.5 59.4 100 72.7 
buds 80.0 58.0 95.0 86.0 80.0 53.0 94.2 75.0 60.0 36.0 100 88.7 50.0 19.5 95.0 52.4 50.0 33.3 100 42.9 
time 100 99.7 0 0 97.0 95.7 0 0 100 99.7 100 100 98.7 71.5 100 100 98.9 97.7 0 0 
cones 63.3 71.7 93.0 98.0 70.0 66.7 93.0 93.0 81.7 81.7 100 100 58.3 60.0 63.2 52.7 42.9 42.9 100 62.5 
roots 100 78.0 100 95.7 100 79.7 100 82.7 100 94.2 100 97.3 97.5 53.2 100 41.9 83.3 100 100 85.7 
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spore.     87.3 83.8     80.3 72.2     97.7 95.5     75.0 46.0     100 87.5 
pollen     0 0     0 0     100 100     100 100     0 0 
gameto.     85.7 85.7     85.7 85.7     71.4 47.6     50.0 34.5     100 66.7 
comp. 0 0 0 0 0 0 0 0 57.1 36.2 0 0 0 0 0 0 100 50 0 0 

 
The Second Set of Experiments-Using FNA to Boost FOC Performance: Since 
SegTagger3 achieve better performance on FNA than FOC overall, we then mark up 
the 2,374 descriptions from FNA and use the whole set to help to improve the mark 
up performance for FOC. But first, we would like to show the quality of mark up on 
the entire set is good by using these descriptions as training data and test SegTagger3 
on the original 490 training examples. The result (Table 3) shows a improved 
performance on almost all elements, compared to original ten-fold validation. This 
suggests the markup performance over the 2,374 descriptions is satisfactory. 
 
From the entire marked up set of FNA descriptions, we used the SegTagger3’s 
algorithm to learn significant class indicators. We wrap these association rules into an 
independent component, called rule bank, and provide an interface for querying about 
the rules. To see if learned class indicators are useful, we revise SegTagger3’s markup 
algorithm as follows: if a good association rule can not be found from training 
examples, the algorithm will query the rule bank to see if the rule bank has a good 
rule (confidence=0.9, support=0.01) to use. If so, the rule will be used to decide the 
class label.  Comparing the performance of SegTagger3 and revised SegTagger3, we 
can see the rule bank is helpful to classes that have few training examples, in this 
case, cones and buds.  Revised SegTagger3 achieves the best performance on these 
two elements over all algorithms tested.  

6. CONCLUSION 

In this paper, we used two sets of experiments to show the feasibility of the MARTT 
framework to mark up plant descriptions. We show that our learning algorithms work 
well on both FNA and FOC without any modification to the system, that our learning 
algorithms are simple and efficient, and that semantics of the word and phrases 
learned from one flora can be used to improve mark up performance for another flora. 
So far we have just made use of the semantics of the words, which may be sufficient 
at main structure or even sentence level of mark up. Other features that may help 
should also be explored further. Some of the features are 1) the sequence in which 
elements often appear in descriptions, for example, if description about leaves never 
appears before stems, the learning systems should be able to tell “leaf scar” is a 
description about  stems not  leaves.  2) the relationships among plant structures, for 
example, cones and flowers should never appear in the same description. 3) the 
frequent patterns, for example, patterns like “structure1 and strucure2”, or 
“structure1, structure2, and structure3”  would be very good indicators for compound 
element. Frequent patterns will play a more important role in deeper levels of mark 
up.    
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Table 3: Train on Marked up FNA and Test on Original FNA Training Examples, Using  

SegTagger3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Compare Performance of SegTagger3 with the Revised SegTagger3 on FOC 
SegTagger3 Revised 

SegTagger3 
  
  

P R P R 
plant habit 98.1 100 98.1 100 
Stems 95.5 90.7 94.3 91.5 
leaves 99.1 98 98.7 97.8 
flowers 93.5 95.6 93.3 95.6 
fruits 97.4 97.5 97.4 97.5 
chromosomes100 98.6 100 98.6 
seeds 99.2 99.2 99.2 99.2 
buds 60 36 80 60 
timeline 100 99.7 100 99.7 
cones 81.7 81.7 85 85 
roots 100 94.2 100 94.2 
compound 57.1 36.2 57.1 36.2 

 
 
 
The MARTT framework eliminates the efforts of making hand-crafted rules and the 
compilation of lexicons. The performance is expected to improve as the rule bank evolves 
and grows. In theory, MARTT is generally enough to be used in other similar domains, for 

FNA-10-fold FNA trained 
on entire set

  
    

P R P R 
plant habit 97.7 100 100 100 
stems 95.3 90.7 95.8 92.2 
leaves 99.6 98.8 100 99.3 
flowers 99.4 99.1 100 99.7 
fruits 100 99.4 100 100 
chrom. 99.6 99.6 99.6 100 
seeds 100 97.1 100 97.1 
buds 100 88.7 100 90.2 
time 100 100 100 100 
cones 100 100 100 100 
roots 100 97.3 100 96.4 
spore. 97.7 95.5 98.9 96.7 
pollen 100 100 100 100 
gameto. 71.4 47.6 100 100 
comp. 0 0 100 100 
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example, faunas. In the near future we will use and continue to develop MARTT to mark 
up the floras to deeper levels and to apply the system to other collections.  
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