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Statistical tests are used in information retrieval to test various brypotheses such as
which indexing method is better orwhich retrieval system is better. Sometimes when
using these statistical tests there is not enough evidence to reject the null hypotbess,
Then either we have correctly discovered a true null hypothesis or madea type  ervor
(probability denoted by b) and falsely accepted a null hypotbesis. The power of a
statistical test, denoted by 1-B is the probability of rejecting a false null bypotbesis as
weshould. Themain difficultyis that this procedure allows us to control the signifi-
cance level directly but the power may be not be very large and the power is not often
calculated by standard statistical packages. One of the reasons this is difficult is that
if wehave acomposite hypothesis there is actually a power curve which depends on the
actual value of the population parameter being estimated. One of the parameters
whichis very important for makingjudgementsand recommendationsfor design is the
effect size. Thisisadimensionless parameter based on the difference of means divided
by the variance (at least for a test based on the difference on two means). The
calculation of effect sizefor different experimental designs is reviewed and applied to
information retrieval tests. The other question the researcher needsto answer is “How
bigofadifference makesareallife significant difference?”. In information retrieval
the responsevariable is often vecall or precision so we must answer the question in terms
of how large a difference in precision or recall between two searches is useful or

practicallysignificant.

Introduction

Although there has been a lot of work done on particular evaluation
measures and there have been many retrieval tests performed over the
years, it has been difficult to find statistical hypotheses and their corre-
sponding tests which can be applied in information retrieval experi-
ments. Hypotheses are used in information retrieval to test such things
as which indexing method is better or which retrieval system is better.

Early on, the SMART system used the t-test, sign test and Wilcoxon rank
test (Williamson, Williamson and Lesk 1971; Salton and McGill 1983) to
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compare measures such as average precision and normalized recall scores
between two retrieval tests. Tague-Sutcliffe (1992) advocated the use of
analysis of variance (ANOVA) techniques, but also mentioned the Mann-
Whitney test when the assumptions of ANOVA are not met. In all of
these tests the researchers are assuming a comparison of two or more
sets of retrievals (queries run against a database) with some characteristic
of the retrievals being different, either indexing, searching, retrieval sys-
tem used, etc. The evaluation measure in most cases was some form of
precision, recall or other measures derived from the basic retrieved, not
retrieved, relevant, not relevant numbers. Even when a different evalua-
tion measure is being used, such as Saracevic’s crossproduct odds ratio, it
turns out that the test statistic has a t-distribution (Saracevic et al. 1988;
Saracevic and Kantor 1988a; Saracevic and Kantor 1988b).

The purpose of this paper is to show the importance of the power of a
statistical test. Also the relationship of various concepts connected with
power such as sensitivity analysis and effect size will be explored in the
context of testing the effectiveness of information retrieval systems.

Statistical Hypothesis Testing

To appreciate the concepts involved in power analysis, it is necessary to
have a clear understanding of traditional hypothesis testing. This can be
found in many basic statistics textbooks (such as Loether and McTavish
1980) but is reviewed here. It is assumed that one of two hypotheses, the
null or the alternative, must hold. The hypotheses are stated like the
following example:

H_: The two sets of retrievals give the same results.

H,: The two retrieval tests are not equal (give different
results).

Alevel of significance is chosen, often 0.01 or 0.05. This is the probabil-
ity that the null hypothesis H, is rejected when in fact it is true which is
called a Type I error. One minus this probability is called the con-
fidence; this is the probability that a null hypothesis is not rejected when
it should not. If one fails to reject the null hypothesis and says the two
retrieval tests are the same when in fact there is a difference, then one
has committed a Type Il error, whose probability is denoted by b. The
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power of a statistical test, denoted by 1-b, is the probability of rejecting a
false null hypothesis as we should. This can be summarized by a table.

(Table 1)

Table 1 :
Decision Made
“Truth” H, H,
H, Pr(CorrectNull) =1 -« Pr(False positive) =a
= confidence = Pr(Type | error)
H, Pr(False Negative)=p Pr(Comect Positive)=1-B
=Pr(Type Il error) = Power

The best experimental designs will try to minimize the probability be:x
Type I and Type Il errors. In most designs however, the emphasis is ¢ =
choosing the a level and very little consideration is given to the probab: -
ity of a Type II error or the power of the test except indirectly by cc=-
trolling the sample size.

Variables Affecting Power

For the two sample t test, under the assumptions of independer:
normal errors with equal variances, there are five factors affectirng
power. They are a, sample size, ratio of sample sizes for the twc
groups, difference of means, and error variance (in the population:.
If equal group sizes are chosen then power is a maximum for this
variable and we are left with four variables. Sample size and a carn
be controlled by the researcher. The larger the sample size, the greate-
the power and the larger a, the greater the power. Of course in-
creasing a then increases the probability of a Type I error, so the
two types of error are inversely related, all other things being equal.
This leaves the two population parameters which are generally not
known. They may be estimated from the sample in a post-hoc
analysis but this does not help researchers to design a good experi-
ment a priori. For more complex designs, such as ANOVA, the
same results hold except the means and variances of the different
groups are needed. Generally more advanced designs have controls
on the variance and so tend to be more powerful. Since mean and
variance depend on the scale of the measure being used, it is very
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useful to introduce a scale invariant measure for power analysis called
the effect size. The effect size parameter depends on the particular
test being used, but for a two sample t-test it is calculated by dividing
the difference of the population means by the common standard
deviation (one of the assumptions is equal variance). Thus if equal
group sizes are chosen, the variables are reduced to o, sample size
and effect size. Effect size is thus related to the actual difference in
the populations of two groups that is being measured by sampling.
Unfortunately, the effect size is very difficult to know or even esti-
mate in most cases.

For example suppose there are two systems using different ranking
algorithms on the same database performing searches on twenty dif-
ferent queries. This is a paired t-test as the same query is run on
both systems. Then if the mean difference between the systems as
measured by precision is 0.1 and the variance of this difference is
0.09 (so standard deviation is 0.3) then the test statistic is 1.58 and
the critical value of t at the =0.05 level is 2.09 so the null hypoth-
esis cannot be rejected. What is the power of this test? Trying to
estimate the power of such a test post hoc can be done by using
tables (Cohen 1988, 48). For this case the effect size is 0.1 divided by
0.3 which 1s 0.3333. The tables in Cohen give a power of 0.30. An
alternative way to calculate power is to use one of the several com-
puter programs available. For a lengthy review of software for
power analysis see Thomas and Krebs (1997). The software used in
this paper is called Gpower by Faul and Erdfelder (Gpower 1992)
which is available for free over the Internet. Using Gpower the
more accurate figure for the power is 0.2935. Whichever way the
power is calculated in this case, one can see that given there is such a
difference between the two systems there is only a 0.3 probability
that this test will detect such a difference. The probability of a Type
II error is then 1.0- 0.3 = 0.7. Not a very good experimental design!

The next natural question is “What sample size do I need to get a
reasonable power?”. One way to accomplish this is to choose a
reasonable power level, say 0.80, and to calculate the sample size
that will give you this power keeping the effect size and a level the
same. Using Gpower gives a sample size of 74. A more comprehen-
sive view is graph the power against the effect size for different
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sample sizes as in Figure 1. This is sometime called a sensitivity
analysis because the variables involved are not linearly related and it
helps to see how the three variables interact. For example, if n = 50
the interval from about 0.2 to 0.4 the power changes very rapidly,
L.e. power is very sensitive to changes in the effect size. Another
way to state this is to say that for some effect sizes the power can
change rapidly with increases in the sample size.

Figure 1. Power as a Function of Effect Size
alpha=0.05, Paired t-test.

005 020 035 050 065 080
Effect Size

Examples from the Literature or Post-hoc Analysis

What is a reasonable effect size for information retrieval experiments?
When Cohen (1988, 26) discusses various statistical tests he recom-
mends “small”, “medium” and “large” effect sizes for that test. Al-
though these are somewhat arbitrary, they are based on experience in
social science research. For the independent t-test Cohen suggests
small = 0.2, medium = 0.5 and large = 0.8. For the paired t-test these
values are divided by V2 which gives use small = 0.14 medium = 0.35
and large = 0.57. So the example in the previous section is a medium
effect size according to Cohen.

To calculate some effect sizes from the literature, data from a de-
scription by Williamson, Williamson and Lesk (1971) will be used.
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They compared a stemming search with a thesaurus search on forty-
two queries by using a paired t-test. The output measures used
included log precision, normalized recall and precision at various
recall levels. The mean of the differences and the standard devia-
tions are reported so the effect size can be calculated (Table 2). No-
tice that most values in the “medium” range of effect size according
to Cohen. Of course a different experiment comparing different
search methods may have different effect sizes.

Table 2
Mean of |Standard deviation| Effect
differences of differences size
0.0407 0.0788 0.517
0.0413 0.0771 0.536
0.0526 0.1348 0.39
0.0343 0.0739 0.464
0.0135 0.0434 0.311
0.0199 0.0583 0.341
0.0325 0.0758 0.429
0.0361 0.0805 0.448
0.0458 0.0994 0.461
0.0879 0.1483 0.593
0.0499 0.1569 0.318
0.0401 0.1462 0.274
0.0521 0.1288 0.405
0.053 0.1299 0.408

More complex research designs generally give better power. In par-
ticular, consider the repeated measures design used by Tague-Sutcliffe
(1995) to analyze the TREC-3 results. This design also benefits from
a large sample size of fifty queries and forty-two retrieval runs of
these queries against the same database for a total of 2100 observa-
tions for the ad-hoc queries. Using Gpower section for “other F-
tests” the power of this test to detect Cohen’s medium effect size for
ANOVA is very close to one. Even for small effects the power is
0.94. This means that even small differences between systems or
between queries will be detected by the test. Tague-Sutcliffe (1995)
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in fact showed the results are very significant, but that when a post-
hoc Sheffé test is conducted there are very large groups of systems
with no significant differences. Since the ANOVA test is very pow-
erful this result is very reliable.

Non-Parametric Tests

Although the examples used have been parametric tests which have
the assumptions of normality and equality of variances, it is still
possible to carry out a power analysis when a corresponding non-
parametric test such as the Wilcoxon test or Friedman test are ap-
plied. Generally, if the data does not satisfy the basic assumptions
the non-parametric alternative often gives a more powerful result.
This is beyond the scope of this paper but for those who are inter-
ested see the paper by Singer, Lovie and Lovie (1986).

Conclusion

One of the more difficult decisions when doing a power analysis is
what effect size the research should be designed to detect. For infor-
mation retrieval this comes down to deciding how big a difference in
precision (or other output) measure is necessary in order to make a real
difference in retrieval techniques or systems. In other words, how
much of a difference in precision is important to the end user or
searcher? This is not an easy question to decide as it probably depends
on a number of factors like the purpose of the search, size of output,
etc. It should be pointed out that this is a dilemma in most social
science research: real world significance versus statistical significance.
The advantage of power analysis is that it tells the researcher exactly
what differences the statistical test is likely to detect.
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