Theories Holding Promise for Supporting the Constructivist Behaviors of Inquiry

Jami L. Jones
East Carolina University, USA

Barbara Raley Flohr
Green Hope High School
Cary, NC, USA

Mimi Stanley Martin
Marion Elementary School
Shelby, NC, USA

The problem under investigation is how to nurture the exploratory and constructive behaviors of inquiry. To this end, the research, concepts, and theories of Sugata Mitra, Jacob Getzels, and Mihaly Csikszentmihalyi hold promise for developing opportunities for these pursuits. Additionally, research about the negative effects of reward informs school librarians who practice this creativity killer. This article identifies concepts important to constructivist learning to which school library practitioners and educators can refer when promoting learning opportunities for students through the inquiry process. A framework for inquiry utilizing these concepts is presented.

The Identification of the Constructivist Behaviors of Inquiry

In an article about constructivist learning in the library, Cooperstein and Koceval-Weidinger (2004) describe active learning as prescribed by Dewey, Piaget, Vygotsky, Kolb, and Maria Montessori. This learning is more appropriately called constructivist or discovery learning that moves from experiences to learning—not the other way around. Cooperstein and Koceval-Weidinger (2004) write that “Constructivist learning is inductive. Constructivist learning dictates that the concept follow the action rather than precede it. The activity leads to the concepts; the concepts do not lead to the activity” (p. 141). Inquiry when thoughtfully conducted—not the teacher driven “locate information—cut and clip—report” model of library projects so often evident—is an activity that leads to significant student involvement, conceptual understanding, and action. Two examples follow below.

In 2011, Angela Zhang, then a senior at Monta Vista High School in Cupertino, California, won the prestigious Siemens Competition in Math, Science and Technology (2011) for her research to design a cancer detection system that delivered personalized treatment to a tumor. Zhang’s after school inquiry began by reading doctoral-level peer-reviewed articles to learn all she could about cancer; highlighting words and concepts she did not understand. At first, almost every word...
was highlighted in yellow, but as her expertise grew, less highlighting was necessary as she understood these articles more quickly and completely. The readings were synthesized—some with contradictory findings, to select the questions that ultimately defined her research in the laboratory. As Zhang discovered, the activity of inquiry and question posing led to new understandings of cancer treatment.

A second example of inquiry leading to new understandings occurred at Georgetown University, Washington, DC, in 2008, when Professor Phillip A. Karber showed students pictures of the geological consequences of a devastating earthquake in China’s Sichuan province. Chinese news accounts reported that hundreds of radiation technicians had swarmed to the area. Karber asked students: “What do you think this means?” Students spent hours of their own time combing through a variety of documents to answer this question. Although criticized by more traditional folks for relying on Internet-based resources such as Google Earth, blogs, military journals, and a fictionalized television docudrama about the Chinese military, these students were convinced that a vast network of tunnels had been built to protect that country’s missiles from nuclear attack. In 2009, Chinese military officials admitted the existence of a 3000-mile network of tunnels for that very purpose (Wan, 2011).

If school librarians are to promote inquiry, it seems that behavioral qualities such as openness, collaboration, intrinsic motivation, problem-posing, and perseverance be nurtured and mentored as well—and discussed by school librarians as essential behaviors in the process. These behaviors are vital to the exploratory stage of inquiry identified by Kuhlthau (2004) in her 1980s research with high school students. Through this research Kuhlthau identified six stages of inquiry (tasks, initiation, selection, exploration, formulation, collection, and presentation) that she grouped into two large categories—exploration and collection. It is the exploratory stages of inquiry that are most likely to be rushed thus resulting in a lack of focus leading to “reporting on disconnected facts” (Maniotes & Kuhlthau, 2014, p. 10) but too often it is the collection and presentation tasks that receive the bulk of the attention and efforts.

This focus on exploration represents a paradigm shift from the traditional teacher driven “locate information—cut and clip—report” model of library projects that Loertscher, Koechlin, and Zwann (2005) refer to as “bird units” (p. x). Similarly, Gordon (1999) characterizes this “no-learning inquiry” that “has masqueraded as research for so long that the terms [research and inquiry] are used interchangeably” (para. 3). The school research process that Renzulli and DeWet (2010) describe as “looking up information” (p. 47) is viewed as an assessment practice by Gordon whereby classroom teachers accompany students to the school library to gather information, take notes, and write a summary; “Creativity and inquiry were not perceived as part of the process” (Gordon, 1999, para. 3). Although a thorough discussion of creativity and presentation of its literature is too complex to be included in this article, the four concepts we present are integral to the creative process.

The authors of this article present research, concepts, and theories of Sugata Mitra, Jacob Getzels, Mihaly Csikszentmihalyi, and Theresa Amabile and Mark Lepper with their colleagues—scholars not affiliated with the profession of librarianship, and in some cases not associated with education—that support and inform the exploratory aspects of inquiry to move students from teacher-driven research papers to the constructivist implementation of inquiry. Innovative ideas from outside a field are powerful triggers for change leading to creative developments such as enhancements to the inquiry process so that “people may add new ways of thinking to their repertoire. Sometimes, they move away from old ways of thinking: changing assumptions or introducing new ideas. In all cases, however, development involves integrating the new with the old in some ways” (Weisberg & Hanson, 2013, p. 72). Similarly, the research,
concepts, and theories presented in this article will likely bring positive change to an activity (inquiry) essential to constructivist learning.

Concept One: “Children will learn to do what they want to do” (Mitra, 2010)

In 1999, Sugata Mitra, then the chief scientist at NIIT Limited, an Indian multinational company providing learning management and training systems to corporations, conducted a series of experiments based on the constructivist notion of Minimally Invasive Education (MIE) to test the hypothesis that “If given appropriate access and connectivity, groups of children can learn to operate and use computers and the Internet with none or minimal intervention from adults” (Mitra, 2003, p.369). Dubbed the “Hole in the Wall” experiments, Mitra and his team placed personal computers having Internet access throughout India to observe children’s reactions to these computers. The first computer was placed in a wall in Kalkaji, a slum near New Delhi, India in January 1999. About the neighborhood, Mitra and Rana (2001) write:

The slum contains a large number of children of all ages (0-18), and most do not go to school. The children who do go to school attend government schools of very poor quality, which are described as low resources, low teacher or student motivation, poor curriculum, and general lack of interest. None are particularly familiar with the English language. (p. 224)

Although not a controlled experiment, the Kalkaji research comprised a set of qualitative observations that rendered important information about how children learn in a MIE environment. For instance, these children ages 5-16 who had never used a computer and did not speak English formed impromptu classes to teach one another, and within a month “were able to discover and use features such as new folder creation, cutting and pasting, shortcuts, moving/resizing windows and using MS Word to create short messages even without a keyboard” (Mitra & Rena, 2001, p. 230).

In another “Hole in the Wall” experiment, Mitra explored the following research question: “Could Tamil-speaking children in a remote Indian village learn basic molecular biology in English on their own?” (Mitra & Dangwal, 2010 p. 673). Tamil-speaking 10 to 14 year old children worked together to learn molecular biology in English—a language these children did not know, and later received the assistance of a mediator who was unfamiliar with this subject but asked questions and listened as the children reported on their learning. The learning outcomes of these children were compared to two groups. The first group consisted of similarly aged children in a nearby state school described by Mitra as below average to average performing. The second group consisted of children attending a high-performing private school in New Delhi who were fluent in English and had been taught by certified teachers (Mitra & Dangwal, 2010).

Mitra found that the Tamil-speaking village children whose only access to computers and Internet-based resources was at the Hole in the Wall learning stations achieved test scores comparable with those at the local state school. However, with the support of a mediator who did not teach the subject but gave encouragement and asked them to explain what they had learned, the village children scored equal to their peers in the privileged private urban school (Mitra & Dangwal, 2010, p. 672).

Mitra’s explanation for these successes in self-instructed learning without planned instructional intervention is based on MIE, a construct he presented in 1982 at the Sixth Western Computing Conference in San Diego, California. According to Mitra, MIE is especially important for children living in places that do not have adequate schooling or in areas where some teachers will not move because it is too rural, too poor, or lacking in amenities. Equalizing education is the
“most efficient and effective means of improving the quality of human life on the planet” (Mitra & Dangwal, 2010, p. 674). The heart of MIE is exploratory, or activist, learning that is “more appropriately called constructivist or discovery learning” (Cooperstein & Kocevar-Weidinger, 2004 p. 141) that moves from experience [activity] to learning and not the other way around.

Mitra’s “The child-driven education” presentation delivered at TED in July 2010 [TED at ted.com is a global set of conferences organized under the moniker of “Ideas worth spreading”], describes his other efforts in India, Italy, South Africa, and England to engage children in forming self-organizing (added -) groups to learn content on their own with minimal intervention from adults. For this body of work, Mitra received the 2013 TED Prize (worth one million dollars) to help build a school in the cloud, a creative online space where children from all over the world can gather to pose and answer big questions, share knowledge, and benefit from the help and guidance of online educators.

Concept Two: “The way a problem is posed is the way the dilemma will be resolved” (Getzels, 1975)

Jacob Getzels is recognized for his classification of approximately a dozen problems types, but his focus was mostly on three: presented problems; discovered problems; and created problems (1975). In the first type—the presented problem situation, the existing problem has a known solution. In education, the majority of problems students are asked to solve are the presented type that have one right answer such as “what is the area of a rectangle when \(a=3, b=4\)” (p. 168). In the second type—the discovered problem, the problem also exists but it is the individual who asks the question—another person, or a teacher does not present it. An example is “Roentgen who sees a fogged photographic plate as others had before him and asks, “Why is the plate fogged?” —a self-initiated problem that led not only to the X-ray but to a revolution in atomic science” (p. 169). In the third type of problem, the created problem situation represents problem finding as both the problem as well as the solution to be discovered—the recognition that a problem can be solved and is worth solving “is in fact a discovery in its own right” (Polanyi, 1958). Getzels (1985) writes that the quality of the problem formulated is the “forerunner of the quality of the solution that will be attained” (p. 56).

Getzels, professor emeritus at the University of Chicago, conducted with his colleague Mihalyi Csikszentmihalyi a 20-year longitudinal study beginning in 1963 of student artists at the School of the Art Institute of Chicago, ending in 1981 when they were in mid-life. Although the purpose of this research was to shed light on creative production, Getzels and Csikszentmihalyi discovered that artists work differently according to their type of artistry. For instance, “when advertising or industrial artists go to their studios in the morning, someone gives them a problem to work on (Getzels, 1985, p. 56). The problem is presented to them. However, fine artists “have to find or create the problem to work on. They work on discovered problems” (p. 57). It is the quality of the problem that determines the artist’s creativity.

Nardone and Lee (2011) piloted a semester long observational study of students engaged in problem-posing assignments. This study required the restructuring of courses by “combining five problem posing activities (self-reflection, modeling, metaphor, grappling, synthesis),” moving away from knowledge direction to facilitation of a learner-centered environment fostering inquiry. A consequence of this restructuring was “observed shifts in the students’ thinking and problem-posing capabilities” (p. 20) resulting in “hard work, critical reflection, a deep understanding of the purpose of the questions, and practice” and heightened understanding (p. 15).

We shortchange students when problems are mostly presented because “prior to the emergence of a problem, there is no structure and no task; there is nothing to solve” (Getzels, 1985,
Learning occurs during the process of problem articulation and the solving of the problem. However, high stakes testing and efforts to measure teacher accountability leave little room for untested subjects such as art and music (Hursh, 2008), and inquiry runs counter to assessments requiring one correct answer. It is easier and faster to present problem situations rather than allowing students “to browse broadly on the general topic and to dip into a few sources to explore in preparation for forming a focused question to pursue” (Maniotes & Kuhlthau, 2014, p. 10).

The challenge for school librarians is to influence classroom teachers to assign problem finding inquiry projects based on generative topics that are “accessible and interesting to students, excite the teacher’s intellectual passions, and are easily connected to other topics both within and outside the particular domain” (Wiske, 1998, p. 64). Generative topics provide opportunities to model problem finding and associate ideas throughout the curriculum that exemplify the qualities of exploration, innovation, joy and questioning—the qualities of schools of curious delight (Starko, 2010).

One key goal of a problem-friendly classroom is to encourage student questions. It is, after all, impossible for students to investigate, challenge, or dream without raising questions. Although it is important that students feel comfortable expressing confusion or lack of understanding about content being taught, it is also essential that they feel free to ask questions that go beyond the immediate issues. The essence of this type of question is not, “I do not understand what you have explained,” but “I wonder beyond what I know.” (Starko, 2010, p. 237)

Concept Three: “Learning is worth doing for its own sake” (Csikszentmihalyi, 2004)

The concept of flow was identified through research conducted over forty years by Mihalyi Csikszentmihalyi, professor of Psychology and Management at Claremont Graduate School in Claremont, California. Flow is the mental state in which an individual is completely focused on an activity; fully involved, absorbed, and enjoying the process being performed without regard for anything else (1990).

The genesis of Csikszentmihalyi’s research was his curiosity to understand the feeling of total abandonment and concentration (1988) when an individual is completely absorbed in an activity. His team of students at Lake Forest, IL, College and later the University of Chicago interviewed over 200 people—athletes, chess masters, rock climbers, dancers, high school basketball players, and music composers—to understand their subjective experience, or feelings, when they were engrossed in an activity (Csikszentmihalyi, 1976). Some of the interviewees described the experience as “flow”, which prompted the researcher to adopt this term to describe deep absorption in which subjects would forego food, sleep, and other comforts to engage in an activity—time seemed to take on a new dimension.

Flow research continued throughout the 1980’s and 1990’s in Milan, Italy, as Csikszentmihalyi and his colleagues (Csikszentmihalyi & Csikszentmihalyi, 1988; Inghilleri, 1999, Massimini & Carli, 1988; Massimini & Delle Fave, 2000) employed the Experience Sampling Method (ESM). Developed by Csikszentmihalyi and Larson (1987) to randomly sample everyday experiences, empirical data was obtained on variables such as frequency, daily life, psychological states, and thoughts.

Variants of the ESM have been utilized with other populations. For instance, the ESM has been used with high school students to investigate the following three research questions: (1) How do high school students spend their time in school? (2) What is the association between student engagement and the experience of challenge, skill, control, and relevance? and (3) How do
classroom factors, such as instructional method and school subject matter, influence student engagement? (Shernoff et al., 2003).

Shernoff et al. (2003) measured student engagement utilizing three items on the ESF that assessed concentration, interest, and enjoyment in an activity. These measurements showed that participants experienced higher levels of engagement when the perceived difficulty of the task was high and in balance with their skills, the instruction was relevant, and they felt autonomy in the learning environment. The student participants were also more engaged in group work, as opposed to individual work, or listening to lectures, watching videos, or taking exams (Shernoff, et al., 2003)

Results indicated that a dependent relationship between challenges and the skills required to meet those challenges is critical. These results reinforced the flow theory studies conducted on adults and supported the use of flow principles in educational settings. The flow experience can best occur when one’s skills are neither overmatched nor underused in order to meet a challenge (Csikszentmihalyi, 1997). In a school setting, Csikszentmihalyi (1997) indicates that this balance can be tenuous, resulting in feelings of apathy (i.e., low challenges, high skills), anxiety (i.e., high challenges, low skills), or relaxation (i.e., low challenges, high skills). In these cases, an instructor may feel led to change the level of the challenge of the activity, and also induce the student to reenter flow by providing skill-enhancing opportunities to encourage re-engagement (Shernoff, et al., 2003).

Based on his research, Csikszentmihalyi developed a framework of flow which included the following elements: complete involvement in an activity, a sense of ecstasy, great inner clarity, perception that the activity is achievable, a feeling of serenity, an unawareness of time, and intrinsic motivation (Csikszentmihalyi, 1990). The research subjects described optimal experiences (activities) as challenging and goal-oriented. These experiences (activities) were bounded by rules, required complete attention and adequate skills, and were supported by clear feedback (Csikszentmihalyi, 2000).

Because the state of flow is intrinsically rewarding to students, they will seek to replicate the experience (Nakamura & Csikszentmihalyi, 2002). As students work to master new challenges through engagement in these activities, they develop higher skill levels [consider the achievements of Zhang and the students at Georgetown University]. As these skills are mastered, progressively more complex challenges can be identified to create an ideal match for their skills, bringing together the dispositions of concentration, interest, and enjoyment (Shernoff, et al., 2003). Based on flow theory, these are critical variables in the development of cooperative or inquiry-based learning, and must be experienced simultaneously in order for flow to occur (Csikszentmihalyi, 1997).

Concept Four: Promising a reward for an activity is “tantamount to declaring that the activity is not worth doing for its own sake” (A.S. Neill, 1959)

For this final concept, the authors present research about a common practice in education, and especially in school libraries when prizes or points are given for reading and other activities that should be pleasurable, regarding the negative effect of rewards on creativity, enjoyment, and motivation. Research by Lepper, Greene, and Nisbett (1973) and Amabile (1989, 1996) and colleagues identify rewards as demotivating especially when expected, which causes many students to be less involved, and their efforts and work to be inferior.

Amabile (1989, 1996) identifies reward (as well as evaluation, surveillance, competition, and lack of choice) as a creativity killer. Even though reward is widely used in classrooms, and it may not be possible to eliminate it entirely, it is important for educators to consider how
evaluation and reward are operationalized in schools and find ways to minimize their negative effect on students’ efforts (Starko, 2010). Three important studies about the effects of rewards on motivation and engagement are presented.

The Magic Marker Study. Pioneers in the research on the effects of rewards were Lepper, Greene, and Nisbett, who in 1973 investigated the effect of expected rewards on young children’s motivation and artistic performance. These researchers found that, for preschoolers who initially displayed a high level of intrinsic interest in drawing with magic markers, working for an expected ‘Good Player Award’ significantly decreased their interest in and enjoyment of the task. When compared with a group that received an unexpected reward and a control group that received no reward, the children who had made drawings in order to receive the Good Player Award spent significantly less time using the markers during subsequent free play periods than did their non-rewarded peers (Lepper, Greene, & Nisbett, 1973). The researchers found that the effect of the award lasted for about a week. Furthermore, the quality of the drawings produced under the expected award group was found to be significantly lower than drawings of the unexpected reward group or the control group that received no reward.

The Polaroid Camera Study. Amabile, Hennessy, and Grossman (1986) hypothesized that “Contracting to do an activity in order to receive a reward will have negative effects on creativity, but receiving no reward or only a noncontracted-for reward will have no such negative effects” (p. 14). In one study children were placed in either the reward group or no-reward group. Children in the reward group signed a contract and promised to later tell a story in order to use the camera. Children in the no-reward group were allowed to use the camera. Only after using the camera were they presented with the story-telling instructions. Their stories were recorded, and elementary school teachers familiar with the children’s writing later rated the stories relative to one another on creativity. The statistically significant results indicated that the stories produced by children in the no-reward group were judged to be more creative than stories produced by children in the reward group (Hennessey, 2003). These researchers concluded that the reward affected the children’s motivation so that it was more important than completing the activity with optimal effort.

One explanation for these negative effects of reward is the notion of socially learned scripts (Lepper & Greene, 1978). According to this theory, subjects react negatively to a task—and see it as work—when their behavior is controlled (or appears to be controlled) by socially imposed factors, because they have learned that work is usually something that someone must be induced through pay to do. On the other hand, subjects might react positively to the same task and view it as play when they perceive that there are no constraints such as rewards, grades, or pay. Amabile et al. (1986) theorized that a task becomes extrinsically motivating when children (or adults) see it as a means to an end, and work rather than play. Rewards can turn an enjoyable task into work.

Immunizing Children against the Negative Effects of Reward. Hennessy, Amabile, and Martinage (1989) sought ways to protect—or immunize—children from the negative effects of reward. In this seminal study to counteract rewards, children were organized into two groups. The first group of children watched a video in which two attractive children talked about their intrinsic interest and enjoyment of a task that they completed not for the grade but because they liked to learn. Children in the control group viewed a video on food preferences that had nothing to do with intrinsic motivation. The students were given an opportunity to internalize the intrinsic/motivational message of their respective videos. Afterwards the two groups of children (the immunized children and the control group) were given two tasks to carry out—the first being a rewarded task. The second task was not rewarded. In this experiment the children who watched
the immunization video exhibited a higher level of creativity even in the reward condition, while the control group’s creativity decreased under reward. In addition, the immunized group reported more intrinsic motivation in their response to the task (Weisberg, 2006).

Conclusion

In 2007, the American Association of School Librarians (AASL), a division of the American Library Association, unveiled the Standards for the 21st Century Learner to foster high expectations for today’s learners through skills, dispositions, responsibilities, and self-assessment strategies. The AASL Standards provide the foundation for inquiry that “serve as guideposts for school library media specialists (SLMSs) and other educators in their teaching because these skills and dispositions are most effectively taught as an integral part of the content learning” (AASL, 2009, p. 5). The behaviors identified by AASL are critical to creativity—intrinsic motivation, curiosity, question formation and posing, knowledge acquisition, flexibility, and perseverance. However, these behaviors require nurturing and support, especially when students are unaccustomed to learning independently in what has become a teacher driven and assessment focused educational system.

Given the present focus on inquiry, but the probability that many students lack the behaviors to engage in constructivist learning as identified by AASL in its 2007 standards, where do we go from here? Based on the concepts presented in this article, the authors suggest the following steps requiring that the school library professionals understand more deeply the inquiry process, creativity, and cognition so that they may influence learning.

First, develop models that recognize and focus on the creative process and its behaviors inherent in inquiry. Even though the purpose of this article is not to discuss the complexities of creativity it should be noted that purposeful and thoughtful inquiry is a creative process. All great creative accomplishments begin with a question and roughly follow the steps of the inquiry process. The behaviors of creators align with those put forth by AASL—intrinsic motivation, curiosity, question formation and posing, knowledge acquisition, flexibility, and perseverance. Perhaps we should view inquiry from its behavioral perspective rather than continue with what seems to be the greater focus on identifying and locating materials and information in the library, which is a much simpler cognitive process than nurturing students to ask questions and engage with the literature and ideas of disparate fields to develop new ideas. Weisberg and Hanson (2013) suggest the following additions to education that could help students conduct inquiry at a higher level by helping them to understand the process:

• Explicitly introduce students to case studies and biographies about creative people to understand how questions are posed and ideas formulated and integrated into one’s thoughts.
• Provide settings where students can develop expertise on issues of particular interest to them, and have them practice using their knowledge for both conventional and creative ends.
• Encourage reflection (metacognition) on when and how students use knowledge to do creative work as opposed to conforming to current standards.
• Emphasize the importance of motivation—finding what students enjoy doing and working hard at those pursuits (p. 81).

Second, recognize and help students to understand that they are the captains of their learning. Mitra alludes to this in his Hole in the Wall studies as does Csikszentmihalyi in his
research on flow—students are very able capable of learning on their own and will pursue endeavors that interest them. The role of school librarians is to influence and collaborate with classroom teachers to develop learning opportunities based on the curriculum that fully develop students’ interests. Jeffrey D. Wilhelm’s (2007) “Es of Inquiry” are helpful.

- Engages with a disciplinary question
- Explores what is already known and thought
- Explains and interprets the established data; articulates connections seen in that data
- Elaborates and invents—makes new connections, fills gaps by providing new data and insights to what is already known
- Extends and applies—extrapolates what has been learned and finds applications for what has been learned
- Evaluates and adapts—reflects on and uses what has been learned in many ways and in new situations, transferring, adapting, and revising understandings as this is done (p. 10).

Third, build in ample time and opportunities for inquiry. The authors of the four concepts presented in this article would likely agree that learning and teaching are two very different activities. Teaching is often considered a top-down pursuit that is sometimes described as covering the curriculum. Learning though is totally in the hands of the student who may or may not decide to learn what is being presented. The inquiry process provides excellent opportunities for school librarians to connect the curriculum with student interests, thus influencing learning. A suitable activity for school librarian practitioners and graduate school students and educators is to collaborate to identify essential questions for each curricular area and devise ways that students can work through Wilhelm’s essential Es of Inquiry.

Fourth, nurture students to become more curious, which is a “powerful catalyst for human discovery and learning” (Arnone and Small, 2013, p. 134). It is improbable that students whose curiosity has been shut down over their many years in school can conduct inquiry at the level of Angela Zhang who was able to remain curious. Even though educational efforts are clearly on testing, it is important that we build curiosity into school experiences. Arnone (1992) writes that Curiosity motivates scholarship. A curious student will want to explore and learn. Curiosity is motivation, which is intrinsic, as opposed to motivation, which comes as a result of external incentives, such as rewards or threats of testing. To instill curiosity in a child is to encourage her/his disposition to learn. (p. 3).

Arnone and Small (2013) suggest that educators employ “innovative ways to stimulate and support our students’ curiosity, encourage them to explore areas of interest, and become engage in learning activities whenever and wherever their curiosity takes them” (p. 134).

The authors of this article provide ample research and ideas for school library practitioners and educators to embark on the transformation of learning opportunities through the constructivist behaviors associated with inquiry. It is for school library practitioners and educators of school library students to identify the specific ways to support the constructivist behaviors of inquiry.

References

Author Notes

Jami L. Jones is an Associate Professor in the library science program at East Carolina University, Greenville, North Carolina. Her major research interests are dispositions and creativity. She is a recent coeditor of The Creative Imperative: School Librarians and Teachers Cultivating Curiosity Together (ABC-CLIO, 2013). She can be contacted at jonesj@ecu.edu.

Barbara Raley Flohr is a Media Coordinator at Green Hope High School in Cary, NC. She graduated with an MLS from East Carolina University in 2015 where she served as the ALA Student Chapter President, and participated in the ALA Student to Staff Program. Her professional interests include outreach to under-served populations and the promotion of diversity. She can be contacted at bflohr@wcpss.net.

Mimi Stanley Martin is a Media Coordinator at Marion Elementary School in Shelby, North Carolina. She graduated from East Carolina University with an MLS in 2014, and received an M. Ed. from Gardner-Webb University in 1988, where she worked in institutional advancement. She is a member of ALA and NCSLMA, and her professional interests include collaborating with faculty in merging traditional and contemporary forms of literacy to empower students to become 21st century learners. She can be contacted at tmartin40@carolina.rr.com