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INTRODUCTION
The recognition and importance of microvertebrate fossils 

in paleobiological and paleoecological studies is increasing 
exponentially. Microvertebrate fossils can aid in recon-
structing regional biotas (Hunt and Lucas 1993; Jamniczky 
et al. 2003; Wilson 2008; Avrahami et al. 2018), defining 
regional biostratigraphy (Lehman and Chatterjee 2005; 
Kilmury et al. 2023; Sarr et al. 2024), food web recon-
structions (McKenna 2010; Vasile and Csiki-Sava 2010; 
McGuire 2023), taphonomic and sedimentological stud-
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Abstract: The contribution of microvertebrate fossils towards various paleobiological and geochemical stud-
ies are becoming increasingly more numerous and significant. As such, several methods have been developed 
for the extraction and collection of microfossils from bulk sediment. In the field, screenwashing relies on a 
sieve in a fluvial setting to passively wet sieve the fossiliferous sediment. Sampling in the field can be much 
easier as it alleviates the need to transport a large quantity of bulk sediment back to the home institution. 
However, the primary concerns of sampling bulk matrix in the field are access to a fluvial amenity and avail-
ability of sediment that can be successfully wet sieved. We encountered both issues at a locality where: 1) 
there was no access to any sort of fluvial feature, and 2) even with a man-made water containing feature, the 
clay-rich sediment at this locality created an impermeable layer in each screen box that clogged the screen, 
and prevented wet sieving. To overcome these challenges, we designed and implemented a two-part apparat-
us onsite in the field that relied on a solar-powered water transfer pump to cycle water throughout a system 
to provide fluvial agitation; whereby preventing the buildup of an impermeable clay layer, and allowing the 
processing and collection of microvertebrate material from this locality in the field. While there are numerous 
protocols and methodologies for the processing of microvertebrate material, the methodology we document 
in this study highlights another technique that can be utilized, and will hopefully prove useful to others en-
countering similar difficulties.

ies (Vasile and Csiki-Sava 2011; Tütken 2014; Rogers et 
al. 2016), as well as geochemical analyses (Wilson 2008; 
Rogers et al. 2010; Cullen and Cousens 2023). While 
manually collecting microvertebrate fossils directly from 
a microsite in the field still occurs, bulk sampling is more 
standard or commonplace.
In North America, many institutions – such as the Royal 

Tyrrell Museum of Palaeontology, the North Dakota 
Heritage Center & State Museum, or Macalester College – 
have devoted a significant portion of their labs and research 
programs specifically to the preparation and study of 
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transporting bulk matrix was our only option.
However, before the onset of the 2024 field season, we 

decided to renew attempts to circumvent the previous 
season’s issues of bulk sampling/on-site screenwashing. A 
solution and mechanism were reached by taking inspiration 
from the regional agricultural community. Many agricul-
tural ranches in this region of the American West rely not 
only on wind-powered water pumps (via windmills), but 
also solar-powered water pumps. In the case of solar, power 
derived from the panels ultimately powers a pump that 
transfers water from a source to a stock tank for livestock. 
The transfer pump inadvertently creates agitation via the 
flow of water, and thus directly inspired the screenwashing 
apparatus we constructed and employed in the field.

MATERIAL & METHODS

Electrical considerations
First and foremost, please note that the apparatus con-

structed herein was designed in, materials ordered within, 
and used within the United States. Wattage and voltage for 
pieces of equipment and their technical specification may 
vary by country. All of the instructions below therefore 
follow US design and wiring, and we encourage those out-
side of the US wishing to implement this apparatus to first 
consult a certified electrician.

Screenwashing apparatus
This apparatus consisted of two sections: 1) the tilt bed, 

and 2) the pool stand (Figs. 2, 3). Throughout the descrip-
tion of our apparatus, we provide the specific names and 
models of equipment used. Alternative components can 
certainly be used, but we sought to provide the design and 
construction herein using our specified equipment.
Electrical components: The electrical components of 

the apparatus consisted of an ECO-WORTHY 200 Watts 
12 Volt/24 Volt Solar Panel Kit (Fig. 4), a 12-volt deep 
cycle marine battery, and a FlowPac™ 12-volt 330 gallon-
per-hour self-priming water transfer pump. Energy from 
the solar panels charge the battery, and the battery runs 
the transfer pump. The transfer pump would be turned on 
before leaving camp in the morning and switched off at the 
end of the day (for approximately 8 hours per day, six days 
a week throughout the months of June through August). 
All the electrical components were secured to the solar 
power controller using forked terminals. The transfer pump 
came with +/- crocodile clamps standard, but these were 
removed and replaced with +/- forked terminals (Fig. 5). 
To keep all of the electrical components weather secured, 
the battery, solar power controller, and transfer pump were 
kept in plastic totes in which holes were drilled for cords, 
hoses, and air flow (see the respective totes in Figs. 2, 3).

microfossils, and have developed exceptional onsite facilities 
for processing bulk matrix samples (Fig. 1). For institutions 
that cannot process bulk sediment at their respective facili-
ties, screenwashing in the field is a tried-and-true process, 
and one that has changed little with time (see Hibbard’s 
[1949] photo-documentation of the process that’s large-
ly indistinguishable from that used today). The optimal 
screenwashing setup in the field is one in which screen boxes 
can be placed in a body of water (lake, pond, river, canal, 
etc.) where they can be passively wet sieved. If agitation is 
needed, fluvial energy in such natural settings can provide 
the necessary action. On occasion, other substances such 
as kerosene or hydrogen peroxide have been used to aid in 
action for degradation besides water alone (see Ward [1981] 
and Wilborn [2009] application of kerosene and hydrogen 
peroxide on bulk samples). However, perhaps the most cre-
ative screenwashing setup that we know of entailed placing 
a sediment-loaded screen box adjacent to a roofline, which 
would be passively flushed with water every time it rained 
(B. Bossenecker pers. comm. 2024; wastewater from a gut-
ter’s downspout should conceptually work as well). 
In the case of field localities lacking such fluvial amen-

ities, screenwashing in a kiddie pool or stock tank can still 
achieve the desired results. However, in the case of sedi-
ment with a high clay content, agitation is often needed as 
the mesh screen can become blocked by an impermeable 
layer. Stirring, shaking, or manually agitating the con-
tents can work, but that can take precious time away from 
other fieldwork, and manual agitation of the sediment 
slurry could inadvertently damage microfossils within. 
Alternatively, if on-site wet sieving is not possible, many in-
stitutions transport bulk matrix samples back to their home 
institutions for processing; unfortunately, that was not an 
optimal option at our location. Bulk sediment bags were 
carried out in frame packs at our location, each weighing 
~23−34 kg; compared to the mere tens of grams of micro-
fossils typically recovered from each (for examples of bulk 
sediment to fossil weight yields, see Haiar [2022]).
Beginning in 2023, the Phillip and Patricia Frost Museum of 

Science began paleontological fieldwork in the Judith River/
Oldman and Dinosaur Park Formations near the town of 
Havre, Montana USA. While macrovertebrate fossils were 
the primary focus of the expeditions, microvertebrate fossils 
were also collected. With several microvertebrate localities 
identified, attempts were made to bulk sample and wet sieve 
in camp. Unfortunately, there were no readily accessible water 
features at or near camp, so we attempted to bulk wash in a 
kiddie pool. However, a high bentonitic clay content in the 
sediment inhibited successful retrieval of microfossils simply 
from soaking and screening in the kiddie pool. Approaches to 
alleviate the clay problem – such as adding baking soda – into 
the sediment mixture proved unsuccessful, thus it seemed that 
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Figure 1. Examples of novel institutional-based bulk matrix processing setups. A, the soaking tank station at the Royal 
Tyrrell Museum of Palaeontology (RTMP). While the water can be drained from each large tank, the screenboxes float at the 
surface and are processed essentially following the same techniques and procedures implemented as if in the field. Photo of 
technician C. Capobianco with the RTMP’s screenwashing station provided by T. Cullen. B, the motorized bike wheel setup 
in the lab of R. Rogers at Macalester College. This motorized construct entails the rotation of each wheel which raises and 
lowers each of the sediment-laden sieves within a bucket of water – analogous to the raising/lowering of a tea bag. Photo 
courtesy of R. Rogers and Macalester College. C, (i-iii) Soaking tanks at the North Dakota Heritage Center & State Museum 
that use a pneumatic line for aqueous agitation. Note that water in the top tank can drain to the lower tank, and from there 
wastewater is piped from each tank station to a drain. Photos courtesy of C. Boyd and the North Dakota Geological Survey.
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Figure 2. The solar-based screenwashing apparatus designed and implemented within this study. The apparatus in ‘anterior’ 
oblique view with all of the components and parts identified in the lower image. The main two sections – the tilt bed and 
pool stand in larger bolded font, and the other parts in smaller, non-bold font. As pictured fully operational and running on 
location in camp.
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Figure 3. The solar-based screenwashing apparatus designed and implemented within this study. The apparatus in ‘poster-
ior’ oblique view with all of the components and parts identified in the lower image. The main two sections – the tilt bed and 
pool stand in larger bolded font, and the other parts in smaller, non-bold font. As pictured fully operational and running on 
location in camp.
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pivoting frame designed to hold two ECO-WORTHY 200 
Watts 12 Volt/24 Volt solar panels (Figs. 2, 3). The stand 
and the tilting frame were constructed out of 2x4” dimen-
sional lumber coated in waterproofing polyurethane. A hole 
was drilled through the front of the stand and the bottom 
of the tilting frame on both sides, and a bolt was inserted 
into the hole. This bolt allows the base of the tilting frame 
to pivot. It is important for optimal solar collection and 
efficiency that panels be oriented perpendicularly 90° to 
the latitude where they are being used. Using a goniometer, 
the tilting frame was oriented to the appropriate angle (Fig. 
6), and from there, a hole was drilled through the tilting 
frame and stand. In this construction, we chose the angles 

of 40°, 45°, and 50° which correspond approximately with 
latitudes from northern Utah, USA to southern Alberta, 
Canada. For optimal output, panels in the northern hemi-
sphere should be facing South (and North in the southern 
hemisphere). For those wishing to make a more encompass-
ing track for the orientation of the tilting frame, a single 
hole can be drilled in the tilt bed, and by placing a pencil 
or marker and moving the tilting frame from the minimum 
and maximum degrees, the path will be traced along the 
stand. Using a router, this path can be cut out providing a 
continuous arced degree track.
Pool stand: The pool stand consisted of a 90° I-shaped 

standing bracket that fit over a 109 cm diameter kiddie 
pool (Figs. 2, 3). Like the tilt bed, the pool stand was con-

Figure 4. Example of a 
water transfer pump with 
the various components 
labeled. Note that the par-
ticular pump in this image 
is made by Costway, not 
ECO-WORTHY. However, 
the overall size, specifica-
tions, and most importantly, 
the component pieces are 
essentially identical.

Figure 5. The simple process of removing the standard +/- crocodile clamps from the transfer pump,and replacing them with 
+/- forked terminals. A, the transfer pump with the standard crocodile clamps. B, removal of crocodile clamps. C, the replace-
ment forked terminals.
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structed out of 2x4” dimensional lumber coated in water-
proofing polyurethane. From the transfer pump, an ap-
proximately 3 m garden hose attached to the pump outlet 
ran to the pool stand. Since the outflow of the outlet hose 
is also dependent on height (the higher up the flow has to 
be forced, the weaker the resulting outflow), the pool stand 
was positioned 55.5 cm above the ground. The end of the 
outlet garden hose ran through a corresponding diameter 
hole in the cross beam of the pool stand and was attached 
to an Ace Hardware™ 4-way garden hose manifold that was 
secured in place to the cross beam with zip ties. Attached 
to each connection of the hose manifold were additional 
garden hoses (cut to approximately 48 cm each), and each 
of these subsequent hoses – dubbed screen hoses – went to 
one of the screen boxes. From the inlet of the water transfer 
pump, the hose with the puddle vac attachment was simply 
placed in the pool to allow for intake suction. Thus, the 
water in the kiddie pool was sucked through the transfer 
pump to the hose manifold, and from there, moving water 
passed through each screen box, back into the pool to 
complete the cycle.
Screen boxes: Screen box sizes and construction can vary 

to any desired specifications, but ours were 30.48 cm long 
x 18.4 cm tall with a 17/14 mesh screen, and four boxes 
were operational in the kiddie pool at all times.
Regarding the volume of sediment placed in each screen 

box, as previously noted, large volumes quickly resulted 
in thick impermeable clay layers. Using a recycled food 
container as a scoop, we would manually add approximate-
ly 680 grams of bulk sediment to each screen box. This 
volume placed into the cycling water prevented the buildup 
of an impermeable clay layer. Assuming normal weather 
and running conditions, each loaded screen box could be 
washed within a ~24−48 hour period.
Periodically, depending on the viscosity of the sedi-

ment-laden water, settled sediment was removed from the 
bottom of the kiddie pool, and the water in the entire sys-
tem was changed every three−four weeks. Sediment-laden 
slurry was manually scooped from the bottom of the pool 
every one−two weeks. When adding smaller volumes of 
water (approximately once a week), we ran it through the 
puddle vac attachment to simultaneously flush the hoses 
and pump system with clean water.

DISCUSSION

Considerations
It is important to note a few factors in the design and im-

plementation of such solar-powered screen washing appar-
atuses: 1) The longer the hose from the outlet of the transfer 
pump, the weaker the resulting water pressure, 2) Likewise, 

even though hose manifolds can accommodate many 
additional hoses (up to five in the model we used), the more 
output hoses, the weaker the flow to each hose-screen box. 
In our configuration, four output hoses performed optimally 
(Fig. 3) In case stronger water pressure is required, a larger 
volume transfer pump can be substituted. However, a larger 
pump will require larger wattage solar panels.
A nearly identical design could be built in locations with 

readily accessible electrical capabilities using a sump pump 
in lieu of the solar panel-transfer pump configuration. 
Additionally, the “Clay Processing Machine” developed by 
Ward (1981) could be employed and powered in the field 
using this solar panel/transfer pump configuration. In this 
configuration, a container holds sediment-laden sieves that 
are positioned above the floor, and a fixed garden sprinkler 
continually wets the sediment while an oscillating sprinkler 
provides the agitation. Microfossils remain in the screen 
boxes, while heavy sediment settles to the bottom of the 
container, and an overflow drain along a top edge allows 
the excess water to flow out. A solar-powered water transfer 
pump could hypothetically provide the needed energy, but 
because of the psi needed to activate the sprinklers, such a 
device should be tested prior to field implementation.

Figure 6. Construction of the tilt bed showing how a 
goniometer was used to determine the preset angles of the 
pivoting frame. Blue circle highlighting the location of the 
goniometer, with a zoomed-in view.
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‘Refugium’
In the case of a heavy sediment-viscous slurry, one could 

opt to design a ‘refugium’ of sorts that would allow sus-
pended sediment to collect in the main pool, while less 
sediment-laden water would be transferred to a secondary 
pool where this cleaner water would be pumped and cycled 
back through the whole system via the puddle vac attach-
ment. Such a ‘refugium’ could work, but in a simple test 
using our configuration, we found that water was sucked 
through the puddle vac attachment far faster than water 
could be siphoned from the main pool to a refugium (in 
this test a 19-liter bucket). Again, such a ‘refugium’ could 
possibly work, but it would likely require a secondary pool 
at least equal to, if not larger than, the main pool holding 
the screen boxes.

CONCLUSIONS
The solar panel-transfer pump configuration outlined 

above performed optimally throughout the 2024 field 
season, and in lieu of readily accessible fluvial features, 
still performed well in passive-based bulk sediment screen-
washing. While the entire apparatus constructed herein 
costs approximately $400 USD, admittedly, the acqui-
sition, construction, transportation, and storage of this 
apparatus may be beyond the desired means and abilities 
of other field crews. However, compared with other costs 
incurred during fieldwork (e.g., food, fuel, supplies, etc.), 
the ability to passively process the samples on site, largely 
unmonitored, with this setup would make this investment 
worthwhile – especially considering the extra labor-hours 
that would be consumed with manual processing and the 
extra transportation-related expenses for off-site process-
ing. As we experienced, presumably other paleontological 
expeditions have encountered similar sampling challenges. 
As such, the apparatus described herein represents but 
another means by which microvertebrate fossil material can 
be sampled en masse. Additionally, while this screenwash-
ing setup was constructed and implemented on location 
in the field, it could equally be used at facilities that might 
not have the space requirements for washing tanks, and/or 
possibly be ‘mobile’ and demonstrated at different locations 
for educational outreach.
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