Research on the Scientific Evolution of the Flavonoid Agathisflavone

Authors

  • Vanessa Cristina Meira de Amorim Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.
  • Markley Silva Oliveira Júnior Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.
  • Eduardo Muniz Santana Bastos Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.
  • Victor Diogenes Amaral da Silva Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.
  • Silvia Lima Costa Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.

DOI:

https://doi.org/10.18433/jpps30103

Abstract

Purpose: Flavonoids are a group of secondary metabolites of the polyphenols class present in several plant species. Among them, the biflavonoid agathisflavone is of interest since it bears several biological effects that include: antiviral, antitumoral, antiprotozoal and neurogenic actions. In this sense, this study aims to use the important tool of scientific prospecting to assess the level of research development concerning the flavonoid agathisflavone. Methods: The experimental design was carried out through strategic reach with keywords on the PubMed (National Center for Biotechnology Information - NCBI) and Science Direct platforms. The articles were compiled and exported to Microsoft Office Excel 2007, where they were analyzed, stored and distributed in charts organized as to different countries, year of publication of scientific articles and journals RESULTS: The prospective research resulted in the identification of 81 scientific productions, published in several journals, submitted by different countries, in several areas of medical domain and in different years of publication over the last 50 years (1965 - 2018). It was also possible to investigate the advances in the study of agathisflavone for the development of new therapeutics. Conclusion: Although agathisflavone has been known in the literature since at least 1969, only 23 of the eligible articles found evaluated its possible therapeutic effects. The demonstrated biological activities of agathisflavone range from antiprotozoal to neurogenesis and neuroprotection, however, the molecule needs to be better studied at the in vivo and human level.

Downloads

Download data is not yet available.

Author Biography

Silvia Lima Costa, Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia.

Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, 

References

Falcone Ferreyra, M. L., Rius, S. P. and Casati, P. (2012) ‘Flavonoids: biosynthesis, biological functions, and biotechnological applications’, Frontiers in Plant Science, 3(September), pp. 1–15. doi: 10.3389/fpls.2012.00222.

Ávalos, A. and Elena, G. (2009) ‘Metabolismo secundario de plantas’, Reduca Biología Serie Fisiología Vegetal, 2(3), pp. 119–145. Available at: http://revistareduca.es/index.php/biologia/article/viewFile/798/814.

Coelho, P. L. C. et al. (2016) ‘Flavonoids from the Brazilian plant Croton betulaster inhibit the growth of human glioblastoma cells and induce apoptosis’, Revista Brasileira de Farmacognosia. Sociedade Brasileira de Farmacognosia, 26(1), pp. 34–43. doi: 10.1016/j.bjp.2015.05.013.

Xiao, C.-J. et al. (2014) ‘Schistosomicidal and Antioxidant Flavonoids from Astragalus englerianus’, Planta Medica, 80(18), pp. 1727–1731. doi: 10.1055/s-0034-1383219.

Hossain, M. K. et al. (2014) ‘Antiviral activity of 3,4’-dihydroxyflavone on influenza a virus’, Journal of Microbiology, 52(6), pp. 521–526. doi: 10.1007/s12275-014-4212-z.

Hariri, B. M. et al. (2017) ‘Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor’, Journal of Biological Chemistry, 292(20), pp. 8484–8497. doi: 10.1074/jbc.M116.771949.

Thapa, A. et al. (2011) ‘Biflavonoids Are Superior to Monoflavonoids in Inhibiting Amyloid-β Toxicity and Fibrillogenesis via Accumulation of Nontoxic Oligomer-like Structures’, Biochemistry, 50(13), pp. 2445–2455. doi: 10.1021/bi101731d.

Sasaki, H. et al. (2015) ‘Inhibitory activities of biflavonoids against amyloid-β peptide 42 cytotoxicity in PC-12 cells’, Bioorganic & Medicinal Chemistry Letters. Elsevier Ltd, 25(14), pp. 2831–2833. doi: 10.1016/j.bmcl.2015.04.106.

Osorio, E., Londoño, J. and Bastida, J. (2013) ‘Low-Density Lipoprotein (LDL)-Antioxidant Biflavonoids from Garcinia madruno’, Molecules, 18(5), pp. 6092–6100. doi: 10.3390/molecules18056092.

Bahia, M. V. et al. (2005) ‘Biflavonoids and other phenolics from Caesalpinia pyramidalis (Fabaceae)’, Journal of the Brazilian Chemical Society, 16(6b), pp. 1402–1405. doi: 10.1590/S0103-50532005000800017.

Ajileye, O. O. et al. (2015) ‘Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract’, Journal of King Saud University - Science. King Saud University, 27(3), pp. 244–252. doi: 10.1016/j.jksus.2014.12.004.

Lin, Y.-M. et al. (1997) ‘In Vitro Anti-HIV Activity of Biflavonoids Isolated from Rhus succedanea and Garcinia multiflora’, Journal of Natural Products, 60(9), pp. 884–888. doi: 10.1021/np9700275.

de Sousa, L. R. F. et al. (2015) ‘Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana’, Experimental Parasitology. Elsevier Inc., 156, pp. 42–48. doi: 10.1016/j.exppara.2015.05.016.

de Sousa, L. R. F. et al. (2015) ‘Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies’, Bioorganic & Medicinal Chemistry. Elsevier Ltd, 23(3), pp. 466–470. doi: 10.1016/j.bmc.2014.12.015.

Konan, N. A. et al. (2012) ‘Cytotoxicity of cashew flavonoids towards malignant cell lines’, Experimental and Toxicologic Pathology. Elsevier GmbH., 64(5), pp. 435–440. doi: 10.1016/j.etp.2010.10.010.

Taiwo, B. J. et al. (2017) ‘Identification of compounds with cytotoxic activity from the leaf of the Nigerian medicinal plant, Anacardium occidentale L. (Anacardiaceae)’, Bioorganic & Medicinal Chemistry. Elsevier Ltd, 25(8), pp. 2327–2335. doi: 10.1016/j.bmc.2017.02.040.

Paulsen, B. S. et al. (2011) ‘Agathisflavone Enhances Retinoic Acid-Induced Neurogenesis and Its Receptors α and β in Pluripotent Stem Cells’, Stem Cells and Development, 20(10), pp. 1711–1721. doi: 10.1089/scd.2010.0446.

dos Santos Souza, C. et al. (2018) ‘Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity’, NeuroToxicology. Elsevier B.V., 65, pp. 85–97. doi: 10.1016/j.neuro.2018.02.001.

Pelter, A. et al. (1969) ‘The isolation and characterization of two members of a new series of naturally occurring biflavones’, Experientia, 25(4), pp. 351–352. doi: 10.1007/BF01899909.

Chexal, K. K., Handa, B. K. and Rahman, W. (1970) ‘Thin-layer chromatography of biflavonyls on silica gel’, Journal of Chromatography A, 48, pp. 484–492. doi: 10.1016/S0021-9673(01)85582-5.

Yuh-Meei, L. and Fa-Ching, C. (1974) ‘Agathisflavone from the drues of Rhus succedanea’, Phytochemistry, 13(3), pp. 657–658. doi: 10.1016/S0031-9422(00)91375-X.

Ilyas, N. et al. (1978) ‘Biflavones from the leaves of Araucaria excelsa’, Phytochemistry, 17(5), pp. 987–990. doi: 10.1016/S0031-9422(00)88662-8.

Wannan, B. S. et al. (1985) ‘Biflavonyls and the affinities of Blepharocarya’, Biochemical Systematics and Ecology, 13(2), pp. 105–108. doi: 10.1016/0305-1978(85)90066-3.

Wannan, B. S. and Quinn, C. J. (1988) ‘Biflavonoids in the julianiaceae’, Phytochemistry, 27(10), pp. 3161–3162. doi: 10.1016/0031-9422(88)80019-0.

Anand, K. K. et al. (1992) ‘Structure and hepatoprotective activity of a biflavonoid from Canarium manii.’, Planta medica, 58(6), pp. 493–495. doi: 10.1055/s-2006-961533.

Mendes, C. C. et al. (2000) ‘Constituents of Caesalpinia pyramidalis’, Fitoterapia, 71(2), pp. 205–207. doi: 10.1016/S0367-326X(99)00145-8.

Pegnyemb, D. E. et al. (2005) ‘Antimicrobial biflavonoids from the aerial parts of Ouratea sulcata’, Phytochemistry, 66(16), pp. 1922–1926. doi: 10.1016/j.phytochem.2005.06.017.

Svenningsen, A. B. et al. (2006) ‘Biflavones from Rhus species with affinity for the GABAA/benzodiazepine receptor’, Journal of Ethnopharmacology, 103(2), pp. 276–280. doi: 10.1016/j.jep.2005.08.012.

Bermúdez, J. et al. (2012) ‘(6R,9S)-6"-(4"-hydroxybenzoyl)-roseoside, a new megastigmane derivative from Ouratea polyantha and its effect on hepatic glucose-6-phosphatase.’, Natural product communications, 7(8), pp. 973–6. doi: 10.1002/nbm.3066.Non-invasive.

Bayiha Ba Njock, G. et al. (2012) ‘NASCA-HMBC, a New NMR Methodology for the Resolution of Severely Overlapping Signals: Application to the Study of Agathisflavone’, Phytochemical Analysis, 23(2), pp. 126–130. doi: 10.1002/pca.1333.

Feuereisen, M. M. et al. (2014) ‘Characterization of Phenolic Compounds in Brazilian Pepper (Schinus terebinthifolius Raddi) Exocarp’, Journal of Agricultural and Food Chemistry, 62(26), pp. 6219–6226. doi: 10.1021/jf500977d.

Ndongo, J. T. et al. (2015) ‘Cytotoxic flavonoids and other constituents from the stem bark of Ochna schweinfurthiana’, Natural Product Research, 29(17), pp. 1684–1687. doi: 10.1080/14786419.2014.991321.

Covington, C. L. et al. (2016) ‘Atropoisomerism in Biflavones: The absolute configuration of (-)-agathisflavone via chiroptical spectroscopy’, Journal of Natural Products, 79(10), pp. 2530–2537. doi: 10.1021/acs.jnatprod.6b00395.

Lin, Y.-M., Chen, F.-C. and Lee, K.-H. (1989) ‘Hinokiflavone, a Cytotoxic Principle from Rhus succedanea and the Cytotoxicity of the Related Biflavonoids 1’, Planta Medica, 55(02), pp. 166–168. doi: 10.1055/s-2006-961914.

Grynberg, N. F. et al. (2002) ‘DNA topoisomerase inhibitors: biflavonoids from Ouratea species.’, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 35(7), pp. 819–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12131922.

Marzouk, M. M. (2016) ‘Flavonoid constituents and cytotoxic activity of Erucaria hispanica (L.) Druce growing wild in Egypt’, Arabian Journal of Chemistry. King Saud University, 9, pp. S411–S415. doi: 10.1016/j.arabjc.2011.05.010.

Lin, Y.-M. et al. (1999) ‘Antiviral Activities of Biflavonoids’, Planta Medica, 65(2), pp. 120–125. doi: 10.1055/s-1999-13971.

Zembower, D. E. et al. (1998) ‘Robustaflavone, a potential non-nucleoside anti-hepatitis B agent’, Antiviral Research, 39(2), pp. 81–88. doi: 10.1016/S0166-3542(98)00033-3

Lin, Y.-M. et al. (2001) ‘Biflavonoids as novel antituberculosis agents’, Bioorganic & Medicinal Chemistry Letters, 11(16), pp. 2101–2104. doi: 10.1016/S0960-894X(01)00382-1.

Ngo Mbing, J. et al. (2006) ‘Two biflavonoids from Ouratea nigroviolacea’, Phytochemistry, 67(24), pp. 2666–2670. doi: 10.1016/j.phytochem.2006.07.027.

da Silva, J. H. S. et al. (2018) ‘Anti- Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves’, Natural Product Research, 32(11), pp. 1365–1368. doi: 10.1080/14786419.2017.1344657.

Shrestha, S. et al. (2012) ‘Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABAA-benzodiazepine receptors’, Journal of Ethnopharmacology. Elsevier, 142(1), pp. 213–220. doi: 10.1016/j.jep.2012.04.047.

Pedersen, M. E. et al. (2008) ‘The effect of extracts of Searsia species on epileptiform activity in slices of the mouse cerebral cortex’, Journal of Ethnopharmacology, 119(3), pp. 538–541. doi: 10.1016/j.jep.2008.08.009.

Campana, P. R. V et al. (2015) ‘Anti-TNF-α Activity of Brazilian Medicinal Plants and Compounds from Ouratea semiserrata’, Phytotherapy Research, 29(10), pp. 1509–1515. doi: 10.1002/ptr.5401.

Downloads

Published

2018-10-21

How to Cite

de Amorim, V. C. M., Júnior, M. S. O., Bastos, E. M. S., da Silva, V. D. A., & Costa, S. L. (2018). Research on the Scientific Evolution of the Flavonoid Agathisflavone. Journal of Pharmacy & Pharmaceutical Sciences, 21(1), 376–385. https://doi.org/10.18433/jpps30103

Issue

Section

Systematic Review and Meta-Analysis