Progress on Active Analgesic Components and Mechanisms of Commonly Used Traditional Chinese Medicines: A Comprehensive Review

Authors

  • Ruizhou Wang Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.
  • Lu Han Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.
  • Qixia Gao College of Pharmacy, Minzu University of China, Beijing, P. R. China.
  • Dan Chen General Hospital of Ningxia Medical University, Yinchuan, P. R. China.
  • Yun Wang Institute of Chinese Materia Medica, China academy of Chinese medical sciences, Beijing, P. R. China.
  • Xia Zhang Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.
  • Xin Yu Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.
  • Yueming Zhang Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.
  • Zhiyong Li College of Pharmacy, Minzu University of China, Beijing, P. R. China.
  • Changcai Bai Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan, P. R. China.

DOI:

https://doi.org/10.18433/jpps30212

Abstract

Many clinical diseases are accompanied by the symptoms of pain, and the degree of pain is closely related to the patients’ suffering. Therefore, effectively relieving pain has become one of the vital concerns of clinical treatment and analgesic drug research. Non-opioid drugs are mainly used for the clinical treatment of mild to moderate pain, whereas opioid drugs are mainly used for treating moderate to severe pain. However, opioid drugs easily elicit adverse reactions, such as gastrointestinal discomfort, addiction, dependence, and so on. Traditional Chinese medicine and its active ingredients have unique advantages in the treatment of pain for quite a long time, and many analgesic drugs directly or indirectly were isolatiedfrom Chinese medicine or natural products, such as Liu Suan Yan Hu Suo Yi Su Pian and aspirin. With the development and modernization of research on herbal medicine more and more studies have been conducted on the active ingredients and mechanisms of traditional Chinese medicine analgesics. However, no review has been done on analgesic active components and their mechanisms. In this paper, 81 active components with clear chemical structure and definite analgesic effects in vivo and in vitro of traditional Chinese medicine and mechanisms of action reported in recent literatures are reviewed and summarized to provide reference for clinical analgesia and analgesics research.

Downloads

Download data is not yet available.

References

Cohen; Milton; Quintner; John; Rysewyk, V.; Simon. Reconsidering the international association for the study of pain definition of pain. Pain Reports 2018, latest articles (2): 1.

Forouzanfar, F.; Hosseinzadeh, H. Medicinal herbs in the treatment of neuropathic pain: a review. Iranian Journal of Basic Medical Sciences 2018, 21, 347-358.

Lutz, B.M.; Nia, S.; Xiong, M.; Tao, Y.X.; Bekker, A. Mtor, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Molecular Pain 2015, 11, 32.

Park, H.J.; Moon, D.E. Pharmacologic management of chronic pain. Korean Journal of Pain 2010, 23, 99-108.

Garland, E.L. Treating chronic pain: The need for non-opioid options. Expert Review of Clinical Pharmacology 2014, 7, 1-6.

Salsitz, E.A. Chronic pain, chronic opioid addiction: A complex nexus. Journal of Medical Toxicology 2016, 12, 1-4.

Higgins, C.; Smith, B.H.; Matthews, K. Incidence of iatrogenic opioid dependence or abuse in patients with pain who were exposed to opioid analgesic therapy: a systematic review and meta-analysis. Br J Anaesth 2018, 120, 1335-1344.

Wang Y. Advances in pharmacy and pharmacology of analgesic Chinese medicine. Chin J of Clinical Rational Drug Use 2015, 171-172.

Lin, A.X.; Chan, G.; Hu, Y.; Ouyang, D.; Ung, C.; Shi, L.; Hu, H. Internationalization of traditional chinese medicine: current international market, internationalization challenges and prospective suggestions. Chinese Medicine 2018, 13, 9.

Du, G.H.; Yuan, T.Y.; Du, L.D.; Zhang, Y.X. The potential of traditional chinese medicine in the treatment and modulation of pain. Advances in Pharmacology 2016, 75, 325.

Jr, W.A.V.; Vicentini; Dagger, F.T.M.C.; Baracat; Dagger, M.M.; Geor, S.R. Flavonoids as anti-inflammatory and analgesic drugs: mechanisms of action and perspectives in the development of pharmaceutical forms. 2012; 297-330.

Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.; Serafini, M.R.; Araújo, A.A.; Antoniolli, A.R.; Cavalcanti, S.C.; Santos, M.R. Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift Für Naturforschung C 2012, 67, 15-21.

de Santana, M.F.; Guimarães, A.G.; Chaves, D.O.; Silva, J.C.; Bonjardim, L.R.; De, L.J.W.; Ferro, J.N.; Barreto, E.O.; dos Santos, F.E.; Soares, M.B. The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: evidence for the involvement of opioid system and cytokines. Pharmaceutical Biology 2015, 53, 1583-1590.

Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S.E. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 2013, 154, 2169.

Galeotti, N.; Mannelli, L.D.C.; Mazzanti, G.; Bartolini, A.; Ghelardini, C. Menthol: A natural analgesic compound. Neuroscience Letters 2002, 322, 145-148.

Kwak, J. Capsaicin blocks the hyperpolarization-activated inward currents via TRPV1 in the rat dorsal root ganglion neurons. Experimental Neurobiology 2012, 21, 75-82.

Sun, J.; Yu, S. Research progress of quercetin. Chin Med J Res Prac 2011, 85-88.

Mittal, N.; Joshi, R.; Hota, D.; Chakrabarti, A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytotherapy Research Ptr 2009, 23, 507-512.

Muhammad, N.; Shrestha, R.L.; Adhikari, A.; Wadood, A.; Khan, H.; Khan, A.Z.; Maione, F.; Mascolo, N.; De, F.V. First evidence of the analgesic activity of govaniadine, an alkaloid isolated from Corydalis govaniana wall. Natural Product Research 2015, 29, 430-437.

Long, Z.; Zhang, Y.; Guo, Z.; Wang, L.; Xue, X.; Zhang, X.; Wang, S.; Wang, Z.; Civelli, O.; Liang, X. Amide alkaloids from Scopolia tangutica. Planta Medica 2014, 80, 1124-1130.

Yu, H.Y.; Mu, D.; Chen, J.; Yin, W. Suppressive effects of intrathecal paeoniflorin on bee venom-induced pain-related behaviors and spinal neuronal activation. Pharmacology 2011, 88, 159-166.

Loscalzo, L.M.; Wasowski, C.; Paladini, A.C.; Marder, M. Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines. European Journal of Pharmacology 2008, 580, 306-313.

Loscalzo, L.M.; Yow, T.T.; Wasowski, C.; Chebib, M.; Marder, M. Hesperidin induces antinociceptive effect in mice and its aglycone, hesperetin, binds to μ-opioid receptor and inhibits GIRK1/2 currents. Pharmacology Biochemistry & Behavior 2011, 99, 333-341.

Huang, Q.; Mao, X.F.; Wu, H.Y.; Li, T.F.; Sun, M.L.; Liu, H.; Wang, Y.X. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. Journal of Neuroinflammation 2016, 13, 214.

Rigo, F.K.; Rossato, M.F.; Trevisan, G.; De Prá, S.D.; Ineu, R.P.; Duarte, M.B.; Cj, D.C.J.; Ferreira, J.; Gomez, M.V. PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system. Scandinavian Journal of Pain 2017, 17, 203.

Yin, L.L.; Zhu, X.Z. The involvement of central cholinergic system in (+)-matrine-induced antinociception in mice. Pharmacology Biochemistry & Behavior 2005, 80, 419-425.

Zuo, Z.X.; Wang, Y.J.; Li, L.; Wang, Y.; Mei, S.H.; Feng, Z.H.; Wang, M.; Li, X.Y. Huperzine A alleviates mechanical allodynia but not spontaneous pain via muscarinic acetylcholine receptors in mice. Neural Plasticity,2015,(2015-12-1) 2015, 2015, 1-11.

Murayama, M.; Ito, T.; Konno, C.; Hikino, H. Mechanism of analgesic action of mesaconitine. Relationship between analgesic effect and central monoamines or opiate receptors. European Journal of Pharmacology 1984, 101, 29-36.

Ameri, A.; Seitz, U. Effects of mesaconitine on [3H]noradrenaline uptake and neuronal excitability in rat hippocampus. Experimental Brain Research.experimentelle Hirnforschung.expérimentation Cérébrale 1998, 121, 451-456.

Ono, M.; Satoh, T. Pharmacological studies on lappaconitine: Possible interaction with endogenous noradrenergic and serotonergic pathways to induce antinociception. Japanese Journal of Pharmacology 1992, 58, 251-257.

Leeab, K.K.; Yuzurihara, M.; Kase, Y.; Kobayashi, H. Antinociceptive effect of paeoniflorin via spinal α-adrenoceptor activation in diabetic mice. European Journal of Pain 2011, 15, 1035-1039.

Zhou, H.H.; Wu, D.L.; Gao, L.Y.; Fang, Y.; Ge, W.H. L-tetrahydropalmatine alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Neuroreport 2016, 27, 476-480.

Wu, Y.Y.; Jiang, Y.L.; He, X.F.; Zhao, X.Y.; Shao, X.M.; Sun, J.; Shen, Z.; Shou, S.Y.; Wei, J.J.; Ye, J.Y., et al. 5-HT in the dorsal raphe nucleus is involved in the effects of 100-Hz electro-acupuncture on the pain-depression dyad in rats. Exp Ther Med 2017, 14, 107-114.

Carballo-Villalobos, A.I.; González-Trujano, M.E.; López-Muñoz, F.J. Evidence of mechanism of action of anti‐inflammatory/antinociceptive activities of acacetin. European Journal of Pain 2014, 18, 396–405.

Martínez, A.L.; González-Trujano, M.E.; Aguirre-Hernández, E.; Moreno, J.; Soto-Hernández, M.; López-Muñoz, F.J. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 2009, 56, 564-571.

Wang, Z.J.; Heinbockel, T. Essential oils and their constituents targeting the gabaergic system and sodium channels as treatment of neurological diseases. Molecules 2018, 23, 1061.

Zhu, Q.; Sun, Y.; Zhu, J.; Fang, T.; Zhang, W.; Li, J.X. Antinociceptive effects of sinomenine in a rat model of neuropathic pain. Scientific Reports 2014, 4, 7270.

Zhai, K.; Hu, L.; Chen, J.; Fu, C.Y.; Chen, Q. Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Medica 2008, 74, 1229-1234.

Zhou, J.; Yang, G.; Jin, S.; Tao, L.; Yu, J.; Jiang, Y. Oxymatrine-carbenoxolone sodium inclusion compound induces antinociception and increases the expression of GABA(A)alpha1 receptors in mice. European Journal of Pharmacology 2010, 626, 244-249.

Nazıroğlu, M.; Braidy, N. Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Frontiers in Physiology 2017, 8.

Hu, J.; Shi, X.; Mao, X.; Chen, J.; Zhu, L.; Zhao, Q. Antinociceptive activity of Rhoifoline A from the ethanol extract of Zanthoxylum nitidum in mice. Journal of Ethnopharmacology 2013, 150, 828-834.

Chen, Z.; Ma, C.; Xu, S. Analgesic mechanism of hyperin.Acta Pharmaceutica Sinica 1989, 326-330.

Lee, J.Y.; Yoon, S.Y.; Won, J.; Kim, H.B.; Kang, Y.; Oh, S.B. Sinomenine produces peripheral analgesic effects via inhibition of voltage-gated sodium currents. Neuroscience 2017, 358, 28-36.

Wu, S.; Yang, L.; Lv, X. Study on analgesia of oxymatrine and its relation to calcium channels.Chinese Journal of Integrated Traditional and Western 2015, 35, 461-465.

Wang, Y.; Yuan, J.; Yuan, X.; Wang, W.; Pei, X.; Zhao, Q.; Cao, H.; Xu, M.; Liu, Z. Observation of antinociceptive effects of oxymatrine and its effect on delayed rectifier K currents (IK) in PC12 cells. Neurochemical Research 2012, 37, 2143-2149.

Zhao, H.; Luo, F.; Li, H.; Li, Z.; Yi, Y.; Wan, J. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE2 pathway in mice. Plos One 2014, 9, 94586.

Song, B.; Zhang, J.; Chen, Z.; Ma, C.;Xu, S.; Fang, M.; Zhang, Y. Effect of calcium ion on analgesic effect of tetrandrine. Acta Universitatis Medicinalis Anhui 1995, 1-3.

Pan, R.; Tian, Y.; Gao, R.; Li, H.; Zhao, X.; Barrett, J.E.; Hu, H. Central mechanisms of menthol-induced analgesia. Journal of Pharmacology & Experimental Therapeutics 2012, 343, 661-672.

He, Q.L.; Chen, Y.; Jian, Q.; Mo, S.L.; Ming, W.; Zhang, J.J.; Li, M.N.; Zou, X.N.; Zhou, S.F.; Chen, X.W. Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion. Medical Science Monitor International Medical Journal of Experimental & Clinical Research 2012, 18, BR229-BR236.

Wu, H.X.; Wang, Y.M.; Xu, H.; Wei, M.; He, Q.L.; Li, M.N.; Sun, L.B.; Cao, M.H. Osthole, a coumadin analog from Cnidium monnieri (L.) cusson, ameliorates nucleus pulposus-induced radicular inflammatory pain by inhibiting the activation of extracellular signal-regulated kinase in rats. Pharmacology 2017, 100, 74-82.

Kantamneni, S. Cross-talk and regulation between glutamate and GABAB receptors. Frontiers in Cellular Neuroscience 2015, 9, 135.

Zhang, J.Y.; Gong, N.; Huang, J.L.; Guo, L.C.; Wang, Y.X. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain® 2013, 154, 2452.

Lara, C.O.; Murath, P.; Muñoz, B.; Marileo, A.M.; Martín, L.S.; San Martín, V.P.; Burgos, C.F.; Mariqueo, T.A.; Aguayo, L.G.; Fuentealba, J. Functional modulation of glycine receptors by the alkaloid gelsemine. British Journal of Pharmacology 2016, 173, 2263-2277.

Sun, G.P.; Wang, H.; Xu, S.P.; Shen, Y.X.; Wu, Q.; Chen, Z.D.; Wei, W. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production. European Journal of Pharmacology 2008, 584, 246-252.

Wang, D. The effects and mechanisms of peaonol and ZBD-2 in chronic inflammatory pain induced by complete Freund's adjuvant in mice. The Second Military medical university 2016.

Wang, H.; Li, Y.; Dun, L.; Xu, Y.; Jin, S.; Du, J.; Ma, L.; Li, J.; Zhou, R.; He, X. Antinociceptive effects of oxymatrine from Sophora flavescens, through regulation of NR2B-containing NMDA receptor-ERK/CREB signaling in a mice model of neuropathic pain. Phytomedicine International Journal of Phytotherapy & Phytopharmacology 2013, 20, 1039-1045.

Zhang, X.J.; Chen, H.L.; Li, Z.; Zhang, H.Q.; Xu, H.X.; Sung, J.J.; Bian, Z.X. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A1 receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway. Pharmacology Biochemistry & Behavior 2009, 94, 88-97.

Jin-Seong, L.; Sung-Gon, K.; Hyeun-Kyeung, K.; Sun-Yong, B.; Cheol-Min, K. Acute effects of capsaicin on proopioimelanocortin mRNA levels in the arcuate nucleus of Sprague-Dawley rats. Psychiatry Investigation 2012, 9, 187-190.

Montrucchio, D.P.; Córdova, M.M.; Santos, A.R.S. Plant derived aporphinic alkaloid S-(+)-dicentrine induces antinociceptive effect in both acute and chronic inflammatory pain models: evidence for a role of TRPA1 channels. Plos One 2013, 8, 88-91.

Wang, S.; Zhang, D.; Hu, J.; Jia, Q.; Xu, W.; Su, D.; Song, H.; Xu, Z.; Cui, J.; Zhou, M. A clinical and mechanistic study of topical borneol‐induced analgesia. EMBO Molecular Medicine,9,6(2017-04-10) 2017, 9, 802-815.

Takaishi, M.; Fujita, F.; Uchida, K.; Yamamoto, S.; Sawada, M.; Hatai, C.; Shimizu, M.; Tominaga, M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Molecular Pain 2012, 8, 86.

Pinhoribeiro, F.A.; Hohmann, M.S.; Borghi, S.M.; Zarpelon, A.C.; Guazelli, C.F.; Manchope, M.F.; Casagrande, R.; Jr, V.W. Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress, cytokines and NF-κB. Chemico-Biological Interactions 2015, 228, 88-99.

Lee, J.Y.; Shin, T.J.; Choi, J.M.; Seo, K.S.; Kim, H.J.; Yoon, T.G.; Lee, Y.S.; Han, H.; Chung, H.J.; Oh, Y. Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br J Anaesth 2013, 111, 667-672.

Wang, M.L.; Yu, G.; Yi, S.P.; Zhang, F.Y.; Wang, Z.T.; Huang, B.; Su, R.B.; Jia, Y.X.; Gong, Z.H. Antinociceptive effects of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis, and possible involvement of the adenosine system. Scientific Reports 2015, 5, 16107.

Zhang, M.; Liu, Y.; Zhang, L.; Yue, D.; Qi, D.; Liu, G.; Liu, S. Levo-tetrahydropalmatine attenuates bone cancer pain by inhibiting microglial cells activation. Mediators of Inflammation 2015, 2015, 752512.

Andoh, T.; Kobayashi, N.; Uta, D.; Kuraishi, Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors. Phytomedicine International Journal of Phytotherapy & Phytopharmacology 2017, 25, 1.

Liang, S.; Xu, C.; Li, G.; Gao, Y. P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional chinese medicine. Neurochemistry International 2010, 57, 705-712.

Li, J.; Ren, W.; Huang, X.J.; Zou, D.J.; Hu, X. Bullatine A, a diterpenoid alkaloid of the genus Aconitum, could attenuate ATP-induced BV-2 microglia death/apoptosis via P2X receptor pathways. Brain Research Bulletin 2013, 97, 81-85.

Santos, P.L.; Brito, R.G.; Jpscf, M.; Jss, Q.; Quintansjúnior, L.J. Fos protein as a marker of neuronal activity: a useful tool in the study of the mechanism of action of natural products with analgesic activity. Molecular Neurobiology 2017, 2017, 1-20.

Wu, Y.; Li, Y.; Luo, Y.; Wang, T.; Wang, H.; Chen, S.; Qu, W.; Huang, Z. Gelsemine alleviates both neuropathic pain and sleep disturbance in partial sciatic nerve ligation mice. Acta Pharmacologica Sinica 2015, 36, 1308-1317.

Tang, Q.L.; Lai, M.L.; Zhong, Y.F.; Wang, A.M.; Su, J.K.; Zhang, M.Q. Antinociceptive effect of berberine on visceral hypersensitivity in rats. World Journal of Gastroenterology 2013, 19, 4582-4589.

Azevedo, M.I.; Pereira, A.F.; Nogueira, R.B.; Rolim, F.E.; Brito, G.A.; Wong, D.V.; Limajúnior, R.C.; De, A.R.R.; Vale, M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Molecular Pain 2013, 9, 53.

Liu, Y.; Li, J.; Yan, W.; Hao, L.; Zhao, E. Study on the ultrasonic-assisted extraction and antioxidant activities oflycopene from cherry tomatoes. Storage and Process 2017, 73-77.

Kuhad, A.; Sharma, S.; Chopra, K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. European Journal of Pain 2008, 12, 624–632.

Dai, X; Luo, F.; Zhang, Z.; Li, H.; Zhang, L.; Wan, J. Studies on analgesic effect and mechanism of tetrandrine on lipopolysaccharide-induced hyperalgsia in mice. Lishizhen Medicine and Materia Medica Research2010, 21, 1049-1050.

Xiong, B.J.; Xu, Y.; Jin, G.L.; Liu, M.; Yang, J.; Yu, C.X. Analgesic effects and pharmacologic mechanisms of the gelsemium alkaloid koumine on a rat model of postoperative pain. Sci Rep 2017, 7, 14269.

Zhou, J.; Wang, L.; Wang, J.; Wang, C.; Yang, Z.; Wang, C.; Zhu, Y.; Zhang, J. Paeoniflorin and albiflorin attenuate neuropathic pain via mapk pathway in chronic constriction injury rats. Evidence-Based Complementray and Alternative Medicine, 2016, 2016, 1-11.

Silva, R.O.; Salvadori, M.S.; Sousa, F.B.M.; Santos, M.S.; Carvalho, N.S.; Sousa, D.P.; Gomes, B.S.; Oliveira, F.A.; Barbosa, A.L.R.; Freitas, R.M. Evaluation of the anti‐inflammatory and antinociceptive effects of myrtenol, a plant‐derived monoterpene alcohol, in mice. Flavour & Fragrance Journal 2014, 29, 184-192.

Tosun, A.; Akkol, E.K.; Yeşilada, E. Anti-inflammatory and antinociceptive activity of coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences 2009, 64, 56-62.

Mehrotra, A.; Shanbhag, R.; Chamallamudi, M.R.; Singh, V.P.; Mudgal, J. Ameliorative effect of caffeic acid against inflammatory pain in rodents. European Journal of Pharmacology 2011, 666, 80.

Editorial boardo of State Administration of Traditional Chinese Medicine. Zhonghuabencao. The Press of Science and technology of Shanghai: 2009.

de Lima, F.O.; Nonato, F.R.; Couto, R.D.; Barbosa Filho, J.M.; Nunes, X.P.; Ribeiro, d.S.R.; Soares, M.B.; Villarreal, C.F. Mechanisms involved in the antinociceptive effects of 7-hydroxycoumarin. Journal of Natural Products 2011, 74, 596.

Borghi, S.M.; Mizokami, S.S.; Pinhoribeiro, F.A.; Fattori, V.; Crespigio, J.; Clementenapimoga, J.T.; Napimoga, M.H.; Pitol, D.L.; Issa, J.; Fukada, S.Y. The flavonoid quercetin inhibits titanium dioxide (TIO2)-induced chronic arthritis in mice. Journal of Nutritional Biochemistry 2018, 53, 81-95.

Gong, N.; Fan, H.; Ma, A.N.; Xiao, Q.; Wang, Y.X. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology 2014, 84, 31-45.

Raafat, K.; Wurglics, M.; Schubert-Zsilavecz, M. Prunella vulgaris L. active components and their hypoglycemic and antinociceptive effects in alloxan-induced diabetic mice. Biomedicine & Pharmacotherapy 2016, 84, 1008-1018.

Zhang, F.F.; Morioka, N.; Kitamura, T.; Fujii, S.; Miyauchi, K.; Nakamura, Y.; Hisaoka-Nakashima, K.; Nakata, Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sciences 2016, 155, 116-122.

Venard, C.; Boujedaini, N.; Belon, P.; Mensah-Nyagan, A.G.; Patte-Mensah, C. Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine. Neuroscience 2008, 153, 154-161.

Taghi, M.M.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y. Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. European Journal of Pharmacology 2013, 707, 46-53.

Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacology Biochemistry & Behavior 2014, 120, 43-49.

Ghorbanzadeh, B.; Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A. Involvement of L-arginine/NO/cGMP/K(ATP) channel pathway in the peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacology Biochemistry & Behavior 2014, 126, 116-121.

Sun, W. Brief manual for natural active ingredients.China Medical Science Press: 1998.

Chao, J.; Liao, J.W.; Peng, W.H.; Lee, M.S.; Pao, L.H.; Cheng, H.Y. Antioxidant, analgesic, anti-inflammatory, and hepatoprotective effects of the ethanol extract of Mahonia oiwakensis stem. International Journal of Molecular Sciences 2013, 14, 2928.

Liu, X.; Hu, Z.; Shi, Q.; Zeng, H.; Shen, Y.; Jin, H.; Zhang, W. Anti-inflammatory and anti-nociceptive activities of compounds from Tinospora sagittata (Oliv.) Gagnep. Archives of Pharmacal Research 2010, 33, 981.

Chen, F. Determination of active ingredients in traditional Chinese medicine.People's Medical Publishing House: 2008.

Wang, L. Experimental study on the analgesie effect and mechanism of propofol. Soochow University, 2002.

Deng, Z.; Yu, S.; Ke, F.; Chen, J.; Huang, Yu.; Huang, D. Dicentrine, a natural vascular α1-adrenoceptor antagonist, isolated form Lindera megaphylla. British Journal of Pharmacology 1991, v.104.

Tsai, T.H.; Wang, G.J.; Lin, L.C. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis. Journal of Natural Products 2008, 71, 289-291.

Shamima, A.R.; Fakurazi, S.; Hidayat, M.T.; Hairuszah, I.; Moklas, M.A.; Arulselvan, P. Antinociceptive action of isolated mitragynine from Mitragyna speciosa through activation of opioid receptor system. International Journal of Molecular Sciences 2012, 13, 11427-11442.

Farzin, D.; Kalantari, P.; Zaer, H. Effects of harmane, norharman and harmine on the hot–plate and formalin-induced nociceptions in mice. Journal of Mazandaran University of Medical Sciences 2012.

Jiang, H.; Liu, Y.B.; Li, Y.; Li, L.; Ma, S.G.; Qu, J.; Yu, S.S. Analgesic corynanthe-type alkaloids from Strychnos angustiflora. Tetrahedron 2016, 72, 1276-1284.

Ma, X.; Jiang, S. Diterpenoid alkaloids from Aconitum bulleyanum Diels. China Journal of Chinese Materia Medica 1998, 23, 679-680.

Guo, Z. A preliminary research on the quality control of the processed products of radix aconitum vilmoriniani. Yunnan University of TCM, 2015.

Wang, D.P.; Lou, H.Y.; Huang, L.; Hao, X.J.; Liang, G.Y.; Yang, Z.C.; Pan, W.D. A novel franchetine type norditerpenoid isolated from the roots of Aconitum carmichaeli Debx. with potential analgesic activity and less toxicity. Cheminform 2012, 22, 4444-4446.

Zhao, D.K.; Ai, H.L.; Zi, S.H.; Zhang, L.M.; Yang, S.C.; Guo, H.C.; Shen, Y.; Chen, Y.P.; Chen, J.J. Four new C18-diterpenoid alkaloids with analgesic activity from Aconitum weixiense. Fitoterapia 2013, 91, 280-283.

Guo, Q.; Xia, H.; Shi, G.; Zhang, T.; Shi, J. Aconicarmisulfonine a, a Sulfonated C20-diterpenoid alkaloid from the Lateral roots of Aconitum carmichaelii. Organic Letters 2018, 816-819.

Alexandre-Moreira, M.S.; Jr, V.C.; Al, P.D.M.; Bolzani, V.S.; Barreiro, E.J. Antinociceptive profile of (-)-spectaline: a piperidine alkaloid from Cassia leptophylla. Planta Medica 2003, 69, 795-799.

Jr, V.C.; Alexandremoreira, M.S.; Fraga, C.A.; Barreiro, E.J.; Bolzani, V.S.; de Miranda, A.L. Antinociceptive profile of 2,3,6-trisubstituted piperidine alkaloids: 3-O-acetyl-spectaline and semi-synthetic derivatives of (-)-spectaline. Chemical & Pharmaceutical Bulletin 2008, 56, 407-412.

Li, Q.; Yang, K.X.; Zhao, Y.L.; Qin, X.J.; Yang, X.W.; Liu, L.; Liu, Y.P.; Luo, X.D. Potent anti-inflammatory and analgesic steroidal alkaloids from Veratrum taliense. Journal of Ethnopharmacology 2015, 179, 274-279.

Fazal-ur-Rehman; Khan, M.F.; Khan, I.; Shareef, H.; Marwat, S.K. Analgesic activity of carbazole alkaloid from Murraya paniculata Linn. (Rutaceae). World Applied Sciences Journal 2014.

Rauf, A.; Khan, R.; Raza, M.; Khan, H.; Pervez, S.; De, F.V.; Maione, F.; Mascolo, N. Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect. Fitoterapia 2015, 103, 129-135.

Jeong, J.H.; Moon, S.J.; Jhun, J.Y.; Yang, E.J.; Cho, M.L.; Min, J.K. Eupatilin exerts antinociceptive and chondroprotective properties in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Plos One 2015, 10, e0130882.

Rauf, A.; Khan, R.; Khan, H.; Ullah, B.; Pervez, S. Antipyretic and antinociceptive potential of extract/fractions of Potentilla evestita and its isolated compound, acacetin. Bmc Complementary & Alternative Medicine 2014, 14, 448.

Raafat, K.; Ellakany, A. Acute and subchronic in-vivo effects of Ferula hermonis L. and sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain. Bmc Complementary & Alternative Medicine 2015, 15, 1-14.

Parveen, Z.; Deng, Y.; Saeed, M.K.; Dai, R.; Ahamad, W.; Yu, Y.H. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi-journal of the Pharmaceutical Society of Japan 2007, 127, 1275-1279.

Ali, M.; Khan, S.A.; Rauf, A.; Khan, H.; Shah, M.R.; Ahmad, M.; Mubarak, M.S.; Hadda, T.B. Characterization and antinociceptive activity (in vivo) of kempferol-3, 4′-di-O-α-L-rhamnopyranoside isolated from Dryopteris cycadina. Medicinal Chemistry Research 2015, 24, 3218-3229.

Meotti, F.C.; Luiz, A.P.; Pizzolatti, M.G.; Kassuya, C.A.; Calixto, J.B.; Santos, A.R. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways. Journal of Pharmacology & Experimental Therapeutics 2006, 316, 789-796.

Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines 2017, 4, 52.

Masoumiardakani, Y.; Mandegary, A.; Esmaeilpour, K.; Najafipour, H.; Sharififar, F.; Pakravanan, M.; Ghazvini, H. Chemical composition, anticonvulsant activity, and toxicity of essential oil and methanolic extract of elettaria cardamomum. Planta Medica 2016, 82, 1482-1486.

La Rocca, V.; Fonsêca, D.V.D.; Silva‐Alves, K.S.; Santos, P.L. Geraniol induces antinociceptive effect in mice evaluated in behavioural and electrophysiological models. Basic & Clinical Pharmacology & Toxicology 2016, 120.

Young, H.Y.; Luo, Y.L.; Cheng, H.Y.; Hsieh, W.C.; Liao, J.C.; Peng, W.H. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology 2005, 96, 207-210.

Choi, J.; Shin, K.M.; Park, H.J.; Jung, H.J.; Kim, H.J.; Lee, Y.S.; Rew, J.H.; Lee, K.T. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Medica 2004, 70, 1027-1032.

Liao, J.C.; Deng, J.S.; Lin, Y.C.; Lee, C.Y.; Lee, M.M.; Hou, W.C.; Huang, S.S.; Huang, G.J. Antioxidant, antinociceptive, and anti-inflammatory activities from Actinidia callosa var. callosa in vitro and in vivo. Evid Based Complement Alternat Med 2012, 2012, 1325-1325.

Chen, Y.F.; Tsai, H.Y.; Wu, T.S. Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Medica 1995, 61, 2.

Ye, H.; Xiong, X.; Qiu, W.; Wang, Z.; Xiao, H.; He, W.; Liu, J.; Zeng, J. Analgesic effect of daphnetin in mice with pain due to acetic acid, hot board and electric stimulation.Chinese Journal of Clinical Rehabilitation 2005, 9, 174-176.

Choi, S.S.; Han, K.J.; Lee, J.K.; Lee, H.K.; Han, E.J.; Kim, D.H.; Suh, H.W. Antinociceptive mechanisms of orally administered decursinol in the mouse. Life Sciences 2003, 73, 471-485.

Wu, L.; Li, P.; Wang, X.; Zhuang, Z.; Farzaneh, F.; Xu, R. Evaluation of anti-inflammatory and antinociceptive activities of Murraya exotica. Pharm Biol 2010, 48, 1344-1353.

Li, R.; Zhao, C.; Yao, M.; Song, Y.; Wu, Y.; Wen, A. Analgesic effect of coumarins from Radix angelicae pubescentis is mediated by inflammatory factors and TRPV1 in a spared nerve injury model of neuropathic pain. Journal of Ethnopharmacology 2016, 195, 81-88.

Chang, T.N.; Deng, J.S.; Chang, Y.C.; Lee, C.Y.; Liao, J.C.; Lee, M.M.; Peng, W.H.; Huang, S.S.; Huang, G.J. Ameliorative effects of scopoletin from Crossostephium chinensis against inflammation pain and its mechanisms in mice. Evidence-Based Complementray and Alternative Medicine,2012,(2012-9-6) 2012, 2012, 595603.

Mahendran, S.; Badami, S.; Ravi, S.; Thippeswamy, B.S.; Veerapur, V.P. Synthesis and evaluation of analgesic and anti-inflammatory activities of most active free radical scavenging derivatives of embelin-a structure-activity relationship. Chemical & Pharmaceutical Bulletin 2011, 59, 913-919.

Zheng, L; Tan,J.; Tang, X. Analgesic,antipyretic effects and no addictive of Tetrandrine. Academic Journal of Second Military Medical University 1984.

Küpeli, E.; Koşar, M.; Yeşilada, E.; Hüsnü, K.; Başer, C. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish berberis species. Life Sciences 2002, 72, 645.

Zhao, H.; Luo, F.; Li, H.; Zhang, L.; Yi, Y.; Wan, J. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE₂ pathway in mice. Plos One 2014, 9, e94586.

Zhang, M. Pharmacological effects of sinomenine. Shaanxi Medical Journal 1981.

Zhu, Q.; Sun, Y.; Mao, L.; Liu, C.; Jiang, B.; Zhang, W.; Li, J.X. Antinociceptive effects of sinomenine in a rat model of postoperative pain. British Journal of Pharmacology 2016, 173, 1693.

Gao, T.; Hao, J.; Wiesenfeld-Hallin, Z.; Wang, D.Q.; Xu, X.J. Analgesic effect of sinomenine in rodents after inflammation and nerve injury. European Journal of Pharmacology 2013, 721, 5-11.

Kang, D.W.; Moon, J.Y.; Choi, J.G.; Kang, S.Y.; Ryu, Y.; Jin, B.P.; Lee, J.H.; Kim, H.W. Antinociceptive profile of levo-tetrahydropalmatine in acute and chronic pain mice models: role of spinal sigma-1 receptor. Sci Rep 2016, 6, 37850.

Cao, F.L.; Shang, G.W.; Wang, Y.; Yang, F.; Li, C.L.; Chen, J. Antinociceptive effects of intragastric DL-tetrahydropalmatine on visceral and somatic persistent nociception and pain hypersensitivity in rats. Pharmacology Biochemistry & Behavior 2011, 100, 199.

Tan, J.; Qiu, C.; Zheng, L. Analgesic effect and no tolerance of gelsemide, Pharmacology and Clinics of Chinese Materia Medica 1988.

Xu, Y.; Qiu, H.Q.; Liu, H.; Liu, M.; Huang, Z.Y.; Yang, J.; Su, Y.P.; Yu, C.X. Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacology Biochemistry & Behavior 2012, 101, 504-514.

Ling, Q.; Liu, M.; Wu, M.X.; Xu, Y.; Yang, J.; Huang, H. H.; Yu, C.X. Anti-allodynic and neuroprotective effects of koumine, a benth alkaloid, in a rat model of diabetic neuropathy. Biological & Pharmaceutical Bulletin 2014, 37, 858-864.

Okuyama, E.; Gao, L.H.; Yamazaki, M. Analgesic components from bornean medicinal plants, Tabernaemontana pauciflora blume and Tabernaemontana pandacaqui poir. Chemical & Pharmaceutical Bulletin 1992, 40, 2075-2079.

Matsuda, H.; Wu, J.X.; Tanaka, T.; Iinuma, M.; Kubo, M. Antinociceptive activities of 70% methanol extract of evodiae fructus (fruit of Evodia rutaecarpa var. bodinieri) and its alkaloidal components. Biological & Pharmaceutical Bulletin 1997, 20, 243-248.

Zhao, D.; Shi, Y.; Zhu, X.; Liu, L.; Ji, P.; Long, C.; Shen, Y.; Kennelly, E.J. Identification of potential biomarkers from Aconitum carmichaelii, a traditional chinese medicine, using a metabolomic approach. Planta Medica 2017.

Suzuki, Y.; Oyama, T.; Ishige, A.; Isono, T.; Asami, A.; Ikeda, Y.; Noguchi, M.; Omiya, Y. Antinociceptive mechanism of the aconitine alkaloids mesaconitine and benzoylmesaconine. Planta Medica 1994, 60, 391-394.

Oyama, T.; Isono, T.; Suzuki, Y.; Hayakawa, Y. Anti-nociceptive effects of aconiti tuber and its alkaloids. American Journal of Chinese Medicine 1994, 22, 175-182.

Nesterova, Y.V.; Povet’Yeva, T.N.; Suslov, N.I.; Zyuz’Kov, G.N.; Pushkarskii, S.V.; Aksinenko, S.G.; Schultz, E.E.; Kravtsova, S.S.; Krapivin, A.V. Analgesic activity of diterpene alkaloids from Aconitum Baikalensis. Bulletin of Experimental Biology & Medicine 2014, 157, 488-491.

Lin, Z.; Cai, W.; Tang, X. Anti-inflammatory and analgesic effects of yunaeonitine. Chinese Journal of Pharmacology and Toxicology 1987.

Gutser, U.T.; Friese, J.; Heubach, J.F.; Matthiesen, T.; Selve, N.; Wilffert, B.; Gleitz, J. Mode of antinociceptive and toxic action of alkaloids of Aconitum spec. Naunyn-Schmiedeberg's Archives of Pharmacology 1997, 357, 39-48.

Ono, M.; Satoh, T. Pharmacological studies of lappaconitine. Analgesia produced by intracerebroventricular, intracisternal and intrathecal injections. Journal of pharmacobio-dynamics 1990, 13, 374.

Bello Ramirez, A.M.; Nava Ocampo, A. A. A QSAR analysis of toxicity of Aconitum alkaloids. Fundamental & Clinical Pharmacology 2004, 18, 699-704.

Zhu, L.; Wu, J.; Zhao, M.; Song, W.; Qi, X.; Wang, Y.; Lu, L.; Liu, Z. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics. Toxicology & Applied Pharmacology 2017, 320, 32-39.

Haiyan, W.; Yuxiang, L.; Linglu, D.; Tingting, X.; Yinju, H.; Hongyan, L.; Lin, M.; Yuanxu, J.; Yanrong, W.; Jianqiang, Y. Antinociceptive effects of matrine on neuropathic pain induced by chronic constriction injury. Pharmaceutical Biology 2013, 51, 844-850.

Linglu, D.; Yuxiang, L.; Yaqiong, X.; Ru, Z.; Lin, M.; Shaoju, J.; Juan, D.; Tao, S.; Jianqiang, Y. Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurological Sciences Official Journal of the Italian Neurological Society & of the Italian Society of Clinical Neurophysiology 2014, 35, 815-821.

Kamei, J.; Xiao, P.; Ohsawa, M.; Kubo, H.; Higashiyama, K.; Takahashi, H.; Li, J.; Nagase, H.; Ohmiya, S. Antinociceptive effects of (+)-matrine in mice. European Journal of Pharmacology 1997, 337, 223-226.

Menéndez, L.; Lastra, A.; Hidalgo, A.N.; Baamonde, A. The analgesic effect induced by capsaicin is enhanced in inflammatory states. Life Sciences 2004, 74, 3235-3244.

Ma, X.L.; Zhang, F.X.; Dong, F.; Bao, L.; Zhang, X. Experimental evidence for alleviating nociceptive hypersensitivity by single application of capsaicin. Molecular Pain 2015, 11, 22.

Chang, Z.Q.; Wang, S.L.; Hao, C.Y.; Liu, F.; Bian, C.F.; Chen, J.M. Analgesic, antispastic and sedative effects of skimmianine. Zhongguo Yao Li Xue Bao 1982, 3, 163-165.

Viswanathan, S.; Sambantham, P.T.; Reddy, K.; Kameswaran, L. Gossypin-induced analgesia in mice. Eur J Pharmacol 1984, 98, 289-291.

Déciga-Campos, M.; Mata, R.; Rivero-Cruz, I. Antinociceptive pharmacological profile of Dysphania graveolens in mouse. Biomedicine & pharmacotherapy 2017, 89, 933.

Velázquez-González, C.; Cariño-Cortés, R.; Lucio, J.A.G.D.; Ortiz, M.I.; Arciniega, M.D.L.O.; Altamirano-Báez, D.A.; Jiménez-Ángeles, L.; Bautista-Ávila, M. Antinociceptive and anti-inflammatory activities of Geranium bellum and its isolated compounds. Bmc Complementary & Alternative Medicine 2014, 14, 506.

Kaur, R.; Singh, D.; Chopra, K. Participation of alpha2 receptors in the antinociceptive activity of quercetin. Journal of Medicinal Food 2005, 8, 529.

Calixtocampos, C.; Corrêa, M.P.; Carvalho, T.T.; Zarpelon, A.C.; Hohmann, M.S.N.; Rossaneis, A.C.; Coelhosilva, L.; Pavanelli, W.R.; Pingefilho, P.; Crespigio, J. Quercetin reduces ehrlich tumor-induced cancer pain in mice. Analytical Cellular Pathology,2015,(2015-8-13) 2015, 2015, 285708.

Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27, 1001-1005.

Filho, A.W.; Filho, V.C.; Olinger, L.; de Souza, M.M. Quercetin: further investigation of its antinociceptive properties and mechanisms of action. Archives of Pharmacal Research 2008, 31, 713-721.

Guazelli, C.; Staurengoferrari, L.; Zarpelon, A.C.; Pinhoribeiro, F.A.; Ruizmiyazawa, K.W.; Vicentini, F.; Vignoli, J.A.; Camiliosneto, D.; Georgetti, S.R.; Baracat, M.M. Quercetin attenuates zymosan-induced arthritis in mice. Biomedicine & pharmacotherapy 2018, 102, 175.

Ruiz-Miyazawa, K.W.; Staurengo-Ferrari, L.; Mizokami, S.S.; Domiciano, T.P.; Vicentini, F.T.M.C.; Camilios-Neto, D.; Pavanelli, W.R.; Pinge-Filho, P.; Amaral, F.A.; Teixeira, M.M. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017, 1-16.

Hernandez-Leon, A.; Fernández-Guasti, A.; González-Trujano, M.E. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. European Journal of Pain 2016, 20, 274.

Alonso‐Castro, A.J.; Isiordia‐Espinoza, M.A.; Aragon‐Martinez, O.H. Synergism between naproxen and rutin in a mouse model of visceral pain. Drug Development Research 2017, 78, 184.

Kim, S.H.; Park, J.G.; Sung, G.H.; Yang, S.; Yang, W.S.; Kim, E.; Kim, J.H.; Ha, V.T.; Kim, H.G.; Yi, Y.S. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Molecular Nutrition & Food Research 2015, 59, 1400.

Martínez, A.L.; González-Trujano, M.E.; Chávez, M.; Pellicer, F.; Moreno, J.; López-Muñoz, F.J. Hesperidin produces antinociceptive response and synergistic interaction with ketorolac in an arthritic gout-type pain in rats. Pharmacology Biochemistry & Behavior 2011, 97, 683-689.

Carballo-Villalobos, A.I.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J. Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. Biomed Res Int 2016, 2016, 8263463.

Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. European Journal of Pharmacology 2014, 723, 202-206.

Nurullahoglu, K.E.; Okudan, N.; Belviranli, M.; Oz, M. The comparison of preemptive analgesic effects of curcumin and diclofenac. Bratisl Lek Listy 2014, 115, 757-760.

Sahbaie, P.; Sun, Y.; Liang, D.Y.; Shi, X.Y.; Clark, J.D. Curcumin treatment attenuates pain and enhances functional recovery after incision. Anesthesia & Analgesia 2014, 118, 1336-1344.

Córdova, M.M.; Werner, M.F.D.P.; Silva, M.D.D.; Ruani, A.P.; Pizzolatti, M.G.; Santos, A.R.S. Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neuroscience Letters 2011, 495, 173-177.

Meotti, F.C.; Missau, F.C.; Ferreira, J.; Pizzolatti, M.G.; Mizuzaki, C.; Nogueira, C.W.; Santos, A.R. Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochemical Pharmacology 2006, 72, 1707-1713.

Santos, F.A.; Rao, V.S. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytotherapy Research Ptr 2000, 14, 240.

Almeida, J.R.; Souza, G.R.; Silva, J.C.; Saraiva, S.R.; Quintans, J.S.; Barreto, R.S.; Bonjardim, L.R.; Cavalcanti, S.C.; Jr, Q.L. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice. Thescientificworldjournal 2013, 2013, 808460.

Jaishree, V.; Badami, S.; Rupesh, K.M.; Tamizhmani, T. Antinociceptive activity of swertiamarin isolated from Enicostemma axillare. Phytomedicine 2009, 16, 227-232.

Heesung, C.; Kang, O.H.; Youngseob, L.; Janggi, C.; Youchang, O.; Hyejin, J.; Minsan, K.; Jonghak, K.; Seungil, J.; Dongyeul, K. Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the mapks inactivation in RAW 264.7 cells. American Journal of Chinese Medicine 2009, 37, 181.

Chou, T.C.; Chang, L.P.; Li, C.Y.; Wong, C.S.; Yang, S.P. The antiinflammatory and analgesic effects of baicalin in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 2003, 139, 1724-1729.

Okuyama, E.; Hasegawa, T.; Matsushita, T.; Fujimoto, H.; Ishibashi, M.; Yamazaki, M. Analgesic components of Saposhnikovia root (Saposhnikovia divaricata). Chemical & Pharmaceutical Bulletin 2001, 49, 154-160.

Ma, Y.; Li, C.; Li, L.; Zhao, B.; Guo, S.; Huo, H. Experimental study on antipyretic, analgesic and anti-inflammatory actions of cinnamaldehyde. Chinese Journal of Clinical Pharmacology and Therapeutics,2006, 11, 1336-1339.

Okuyama, E.; Nishimura, S.; Ohmori, S.; Ozaki, Y.; Satake, M.; Yamazaki, M. Analgesic component of Notopterygium incisum Ting. Chemical & Pharmaceutical Bulletin 1993, 41, 926.

Barros, T.A.; de Freitas, L.A.; Filho, J.M.; Nunes, X.P.; Giulietti, A.M.; de Souza, G.E.; dos Santos, R.R.; Soares, M.B.; Villarreal, C.F. Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. Journal of Pharmacy & Pharmacology 2010, 62, 205-213.

Singh, G.; Bhatti, R.; Mannan, R.; Singh, D.; Kesavan, A.; Singh, P. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. 2018.

Shakya, A.; Singh, G.K.; Chatterjee, S.S.; Kumar, V. Role of fumaric acid in anti-inflammatory and analgesic activities of a Fumaria indica extracts. Journal of Intercultural Ethnopharmacology 2014, 3, 173-178.

Jung, H.J.; Park, H.J.; Kim, R.G.; Shin, K.M.; Ha, J.; Choi, J.W.; Kim, H.J.; Lee, Y.S.; Lee, K.T. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus. Planta Med 2003, 69, 610-616.

Downloads

Published

2018-11-22

How to Cite

Wang, R., Han, L., Gao, Q., Chen, D., Wang, Y., Zhang, X., … Bai, C. (2018). Progress on Active Analgesic Components and Mechanisms of Commonly Used Traditional Chinese Medicines: A Comprehensive Review. Journal of Pharmacy & Pharmaceutical Sciences, 21(1), 437–480. https://doi.org/10.18433/jpps30212

Issue

Section

Review Articles