The biomechanical significance of bifurcated cervical ribs in apatosaurine sauropods
DOI:
https://doi.org/10.18435/vamp29394Abstract
Bifurcated cervical ribs have evolved infrequently in dinosaurs. Previously documented examples include those in abelisaurid theropods, leptoceratopsid ceratopsians, and turiasaurian sauropods. In apatosaurine sauropods a spectrum of cervical rib morphologies exists, from cervical ribs with small dorsal processes extending from the shafts to completely bifurcated cervical ribs. Similar dorsal processes are present in the dicraeosaurid Dicraeosaurus. The presence of dorsal processes and bifurcated cervical ribs suggests that the hypaxial neck muscles that inserted on the cervical ribs were oriented in divergent directions. In all the dinosaurian examples we have found, the cervical ribs are maximally bifurcated in the middle of the cervical series. We hypothesize that bifurcated cervical ribs are traces of diverging neck muscles that provided improved control in the middle of the neck, at some distance from both the head and the trunk.
Downloads
References
Baumel, J.J. and L.M. Witmer. 1993. Osteologia; pp. 45–132 in J.J. Baumel (ed.). Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd edition. Publications of the Nuttall Ornithological Club No. 23, Cambridge.
Beck, C., 1905. The surgical importance of the cervical rib. Journal of the American Medical Association, 44(24):1913−1915. DOI: https://doi.org/10.1001/jama.1905.92500510021001d
Bonaparte, J.F., F.E. Novas, and R.A. Coria. 1990. Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contributions in Science, Natural History Museum of Los Angeles County 416:1–41. DOI: https://doi.org/10.5962/p.226819
Britt, B.B., R.D. Scheetz, M.F. Whiting, and D.R Wilhite. 2017. Moabosaurus utahensis, n. gen., n. sp., a new sauropod from the Early Cretaceous (Aptian) of North America. Contributions from the Museum of Paleontology, University of Michigan 32(11):189–243.
Brum, A.S., K.L. Bandeira, B. Holgado, L.G. Souza, R.V. Pêgas, J.M. Sayão, D.A. Campos, and A.W.A. Kellner. 2021. Palaeohistology and palaeopathology of an Aeolosaurini (Sauropoda: Titanosauria) from Morro do Cambambe (Upper Cretaceous, Brazil). Spanish Journal of Palaeontology 36(1):1−17. DOI: https://doi.org/10.7203/sjp.36.1.20305
Campos, D. D. A., W.A. Alexander, R. Kellner, J. Bertini, M. Rodrigo., and R.M. Santucci. 2005. On a titanosaurid (Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late Cretaceous of Brazil. Arquivos do Museu Nacional, Rio de Janeiro 63(3):565–593.
Carpenter, K. 2013. History, sedimentology, and taphonomy of the Carnegie Quarry, Dinosaur National Monument, Utah. Annals of the Carnegie Museum 81(3):153–232. DOI: https://doi.org/10.2992/007.081.0301
Cerda, I.A. 2009. Consideraciones sobre la histogenesis de las costillas cervicales en los dinosaurios sauropodos. Ameghiniana 46:193–198.
Foster, J.R., R.K. Hunt-Foster, M.A. Gorman, K.C. Trujillo, C. Suarez, J.B. McHugh, J.E. Peterson, J.P. Warnock, and H.E. Schoenstein. 2018. Paleontology, taphonomy, and sedimentology of the Mygatt-Moore Quarry, a large dinosaur bonebed in the Morrison Formation, western Colorado — Implications for Upper Jurassic dinosaur preservation modes. Geology of the Intermountain West 5:23−93. doi:10.31711/GIW.V5I0.19 DOI: https://doi.org/10.31711/giw.v5.pp23-93
Gilmore, C.W. 1936. Osteology of Apatosaurus with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV. DOI: https://doi.org/10.5962/p.234849
Hatcher, J.B. 1901. Diplodocus (Marsh): its osteology, taxonomy and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1−63 and plates I-XIII. DOI: https://doi.org/10.5962/p.234818
Henry, B.M., J. Vikse, B. Sanna, D. Taterra, M. Gomulska, P.A. Pękala, R.S. Tubbs, and K.A. Tomaszewski. 2018. Cervical rib prevalence and its association with thoracic outlet syndrome: a meta-analysis of 141 studies with surgical considerations. World Neurosurgery 110:e965-e978. DOI: https://doi.org/10.1016/j.wneu.2017.11.148
Janensch, W. 1929. Die Wirbelsäule der Gattung Dicraeosaurus. Palaeontographica, Supplement 7, 2:39–133 and plates I–VII.
Janensch, W. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica, Supplement 7, 3:27−93 and plates I–V.
Klein, N., A. Christian, and P.M. Sander. 2012. Histology shows that elongated neck ribs in sauropod dinosaurs are ossified tendons. Biology Letters 8:1032–1035. doi:10.1098/rsbl.2012.0778 DOI: https://doi.org/10.1098/rsbl.2012.0778
Lacovara, K. J., L.M. Ibiricu, M.C. Lamanna, J.C. Poole, E.R. Schroeter, P.V. Ullmann, K.K. Voegele, Z.M. Boles, V.M. Egerton, J.D. Harris, R.D. Martínez, and F.E. Novas. 2014. A gigantic, exceptionally complete titanosaurian sauropod dinosaur from southern Patagonia, Argentina. Scientific Reports. doi:10.1038/srep06196. DOI: https://doi.org/10.1038/srep06196
Marsh, O.C. 1896. The dinosaurs of North America. Extract from the 16th annual report of the U. S. Geological Survey, 1894-95, part I, pp. 133–244 and plates II–LXXXV. doi:10.5962/bhl.title.60562 DOI: https://doi.org/10.5962/bhl.title.60562
McIntosh, J.S. 1981. Annotated catalogue of the dinosaurs (Reptilia, Archosauria) in the collections of Carnegie Museum of Natural History. Bulletin of the Carnegie Museum 18:1–67. DOI: https://doi.org/10.5962/p.228597
O’Connor, P.M. 2007. The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 27(S2):127–163. DOI: https://doi.org/10.1671/0272-4634(2007)27[127:TPASOM]2.0.CO;2
Peterson, O.A., and C.W. Gilmore. 1902. Elosaurus parvus: a new genus and species of the Sauropoda. Annals of Carnegie Museum 1:490–499. DOI: https://doi.org/10.5962/p.78087
Royo-Torres, R., A. Cobos, and L. Alcalá. 2006. A giant European dinosaur and a new sauropod clade. Science 314:1925–1927. DOI: https://doi.org/10.1126/science.1132885
Royo-Torres, R., P. Upchurch, J.I. Kirkland, D.D. DeBlieux, J.R. Foster, A. Cobos, and L. Alcalá. 2017. Descendants of the Jurassic turiasaurs from Iberia found refuge in the Early Cretaceous of western USA. Scientific Reports 7:14311. doi:10.1038/s41598-017-14677-2 DOI: https://doi.org/10.1038/s41598-017-14677-2
Russell, D.A., and Z. Zheng. 1993. A large mamenchisaurid from the Junggar Basin, Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30(10):2082–2095. doi:10.1139/e93-180 DOI: https://doi.org/10.1139/e93-180
Sampson, S.D., L.M. Witmer, C.A. Forster, D.W. Krause, P.M. O’Connor, P. Dodson and F. Ravoavy. 1998. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280(5366):1048–1051. DOI: https://doi.org/10.1126/science.280.5366.1048
Sander, P.M. 2013. An evolutionary cascade model for sauropod dinosaur gigantism – overview, update and tests. PLOS ONE 8(10):e78573. doi:10.1371/journal.pone.0078573 DOI: https://doi.org/10.1371/journal.pone.0078573
Sander, P.M., A. Christian, M. Clauss, R. Fechner, C.T. Gee, E.-M. Griebeler, H.-C. Gunga, J. Hummel, H. Mallison, S. F. Perry, H. Preuschoft, O.W.M. Rauhut, K. Remes, T. Tütken, O. Wings, and U. Witzel. 2010. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86:117–155. doi:10.1111/j.1469-185X.2010.00137.x DOI: https://doi.org/10.1111/j.1469-185X.2010.00137.x
Sanders, R.J. and S.L. Hammond. 2002. Management of cervical ribs and anomalous first ribs causing neurogenic thoracic outlet syndrome. Journal of Vascular Surgery 36(1):51−56. DOI: https://doi.org/10.1067/mva.2002.123750
Schaefer, M., S.M. Black, and L. Scheuer. 2009. Juvenile Osteology: A Laboratory and Field Manual. Academic Press, Cambridge, MA, 384 pp.
Sereno, P.C., A.L. Beck, D.B. Dutheil, H.C.E. Larsson, G.H. Lyon, B. Moussa, R.W. Sadleir, C.A. Sidor, D.J. Varricchio, G. P. Wilson, and J.A. Wilson. 1999. Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution among dinosaurs. Science 282:1342–1347. DOI: https://doi.org/10.1126/science.286.5443.1342
Snively, E. and A.P. Russell. 2007a. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs. The Anatomical Record 290(8):934–957. DOI: https://doi.org/10.1002/ar.20563
Snively, E. and A.P. Russell. 2007b. Functional morphology of neck musculature in the Tyrannosauridae (Dinosauria, Theropoda) as determined via a hierarchical inferential approach. Zoological Journal of the Linnean Society 151(4):759–808. DOI: https://doi.org/10.1111/j.1096-3642.2007.00334.x
Spiekman, S.N.F. and T.M. Scheyer. 2019. A taxonomic revision of the genus Tanystropheus (Archosauromorpha, Tanystropheidae). Palaeontologia Electronica 22.3.80:1–46. DOI: https://doi.org/10.26879/1038
Taylor, M.P., and M.J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. doi:10.7717/peerj.36 DOI: https://doi.org/10.7717/peerj.36
Todd, T.W., 1912. “Cervical rib”: Factors controlling its presence and its size. Its bearing on the morphology and development of the shoulder. Journal of Anatomy and Physiology 46:244−288.
Tschopp, E., O. Mateus, and R.B.J. Benson. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 2:e857. doi:10.7717/peerj.857 DOI: https://doi.org/10.7717/peerj.857
Tsuihiji, T. 2007. Homologies of the longissimus, iliocostalis, and hypaxial muscles in the anterior presacral region of extant Diapsida. Journal of Morphology 268:986–1020. doi:10.1002/jmor.10565 DOI: https://doi.org/10.1002/jmor.10565
Upchurch, P., T. Yukimitsu, and P.M. Barrett. 2004. A new specimen of Apatosaurus ajax (Sauropoda: Diplodocidae) from the Morrison Formation (Upper Jurassic) of Wyoming, USA. National Science Museum Monographs 26:1−108.
Wedel, M.J., and R.K. Sanders. 2002. Osteological correlates of cervical musculature in Aves and Sauropoda (Dinosauria: Saurischia), with comments on the cervical ribs of Apatosaurus. PaleoBios 22(3):1–12.
Wedel, M.J., R.L. Cifelli, and R.K. Sanders. 2000. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45(4):343–388.
White, T.D., M.T. Black, and P.A. Folkens. 2011. Human Osteology, 3rd edition. Academic Press, Cambridge, MA, 688 pp.
Xu Xing, K. Wang, X. Zhao, C. Sullivan, and S. Chen. 2010. A new leptoceratopsid (Ornithischia: Ceratopsia) from the Upper Cretaceous of Shandong, China and its implications for neoceratopsian evolution. PLOS ONE 5(11):e13835. doi:10.1371/journal.pone.0013835 DOI: https://doi.org/10.1371/journal.pone.0013835
Young, C.-C. and X. Zhao. 1972. [Chinese title. Paper is a description of the type material of Mamenchisaurus hochuanensis]. Institute of Vertebrate Paleontology and Paleoanthropology Monograph Series I, 8:1–30.
Zhang, X.-Q., L.-D. Qing, X. Yan and H.-L. You. 2018. Redescription of the cervical vertebrae of the mamenchisaurid mauropod Xinjiangtitan shanshanesis Wu et al. 2013. Historical Biology 32(6):803–822. doi:10.1080/08912963.2018.1539970 DOI: https://doi.org/10.1080/08912963.2018.1539970
Zweers, G.A., J.C. Vanden Berge and R. Koppendraier. 1987. Avian cranio-cervical systems. Part I: Anatomy of the cervical column in the chicken (Gallus gallus L.). Acta Morphologica Neerlando-Scandinavica 25:131–155.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Matt Wedel, Mike Taylor
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission of an article to Vertebrate Anatomy Morphology Palaeontology will be taken to mean that the article is an original work and not previously published or under consideration for publication elsewhere.
If the article is accepted for publication, it will be published on-line under Creative Commons Attribution 4.0 International (CC By 4.0) meaning:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.