Smart Oncolytic Adenovirotherapy to Induce Killing of Cancer Cells and Elicit Antitumor Immunity

Authors

  • Laura Enekegho Biochemistry
  • David Stuart Department of Biochemistry

DOI:

https://doi.org/10.29173/eureka28752

Abstract

Cancer is one of the leading causes of death in the world, accounting for over 30% of all deaths in Canada. Various chemotherapy and therapeutic agents are currently in practice to help combat and treat cancerous growths and to lead to cancer remission. Virotherapy is an emerging treatment that uses biotechnology to convert viruses into therapeutic agents for the treatment of specific types of cancer. This process reprograms viruses to become oncolytic and target tumor cells in the body for lysis. It also uses these viruses to recruit inflammatory and vaccination responses by the immune system to help kill surrounding tumor cells while also establishing a long immune memory to help in the case of later infections. Adenoviruses are a group of viruses that infect the membranes of the respiratory tract, eyes, intestines, urinary tract, and nervous system of humans and causing fever as well as many cold symptoms. It is also a commonly used oncolytic virus and has been demonstrated in recent studies to be a great potential tool for eliciting appropriate inflammatory responses from the immune system to kill cancer cells and inducing cell-mediated immunity to prevent against later re-infection by the specific cancer type. Advances to this virotherapy has progressed towards overcoming tumor-mediated immunosuppression, which usually allows cancerous cells to evade the immune system and escape cell destruction, especially when combined with other therapy treatments. (Goradel et al., 2019). This review will focus on the mechanism as to how engineered modified viruses stimulate the immune system for cell killing and cell-mediated immunity. There will also be an examination of several research papers with some evidence to understand the synergy being oncolytic adenovirotherapy and the immune system function to kill cancer cells. Some disadvantages and issues with using this form of therapeutic treatment will also be presented, as well as some present and future research operating to fix these issues as well as increase the overall efficacy of this cancer treatment oncolytic adenovirotherapy.

Downloads

Download data is not yet available.

Author Biography

David Stuart, Department of Biochemistry

Dr. David Stuart is a professor and the graduate program coordinator at the department of biochemistry here at the University of Alberta.

References

Andarini, S., Kikuchi, T., Nukiwa, M., Pradono, P., Suzuki, T., Ohkouchi, S., Inoue, A., Maemondo, M., Ishii, N., Saijo, Y., Sugamura, K., & Nukiwa, T. (2004). Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer research, 64(9), 3281–3287. https://doi.org/10.1158/0008-5472.can-03-3911

Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., & Finberg, R. W. (1997). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science (New York, N.Y.), 275(5304), 1320–1323. https://doi.org/10.1126/science.275.5304.1320

Berk A. J. (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52), 7673–7685. https://doi.org/10.1038/sj.onc.120904

Bullock T. (2021). CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cellular & molecular immunology, 10.1038/s41423-021-00734-4. Advance online publication. https://doi.org/10.1038/s41423-021-00734-4

Bunuales, M., Ballesteros-Briones, M. C., Gonzalez-Aparicio, M., Hervas-Stubbs, S., Martisova, E., Mancheno, U., Ricobaraza, A., Lumbreras, S., Smerdou, C., & Hernandez-Alcoceba, R. (2021). Adenovirus-Mediated Inducible Expression of a PD-L1 Blocking Antibody in Combination with Macrophage Depletion Improves Survival in a Mouse Model of Peritoneal Carcinomatosis. International journal of molecular sciences, 22(8), 4176. https://doi.org/10.3390/ijms22084176

Chaplin D. D. (2010). Overview of the immune response. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980

Chen, Y., Hu, S., Shu, Y., Qi, Z., Zhang, B., Kuang, Y., Ma, J., & Cheng, P. (2021). Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Human gene therapy, 10.1089/hum.2021.048. Advance online publication. https://doi.org/10.1089/hum.2021.048

Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012

Chhabra, N., & Kennedy, J. (2021). A Review of Cancer Immunotherapy Toxicity II: Adoptive Cellular Therapies, Kinase Inhibitors, Monoclonal Antibodies, and Oncolytic Viruses. Journal of medical toxicology: official journal of the American College of Medical Toxicology, 1–13. Advance online publication. https://doi.org/10.1007/s13181-021-00835-6

Contardi, E., Palmisano, G. L., Tazzari, P. L., Martelli, A. M., Falà, F., Fabbi, M., Kato, T., Lucarelli, E., Donati, D., Polito, L., Bolognesi, A., Ricci, F., Salvi, S., Gargaglione, V., Mantero, S., Alberghini, M., Ferrara, G. B., & Pistillo, M. P. (2005). CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. International journal of cancer, 117(4), 538–550. https://doi.org/10.1002/ijc.21155

Croft, M., So, T., Duan, W., & Soroosh, P. (2009). The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological reviews, 229(1), 173–191. https://doi.org/10.1111/j.1600-065X.2009.00766.x

Diaconu, I., Cerullo, V., Hirvinen, M. L., Escutenaire, S., Ugolini, M., Pesonen, S. K., Bramante, S., Parviainen, S., Kanerva, A., Loskog, A. S., Eliopoulos, A. G., Pesonen, S., & Hemminki, A. (2012). Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer research, 72(9), 2327–2338. https://doi.org/10.1158/0008-5472.CAN-11-2975

Dias, J. D., Hemminki, O., Diaconu, I., Hirvinen, M., Bonetti, A., Guse, K., Escutenaire, S., Kanerva, A., Pesonen, S., Löskog, A., Cerullo, V., & Hemminki, A. (2012). Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene therapy, 19 (10), 988–998. https://doi.org/10.1038/gt.2011.176

Doronin, K., Toth, K., Kuppuswamy, M., Krajcsi, P., Tollefson, A. E., & Wold, W. S. (2003). Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology, 305(2), 378–387. https://doi.org/10.1006/viro.2002.1772

Duan, Q., Zhang, H., Zheng, J., & Zhang, L. (2020). Turning Cold into Hot: Firing up the Tumor Microenvironment. Trends in cancer, 6(7), 605–618. https://doi.org/10.1016/j.trecan.2020.02.022

Elmusrati, A., Wang, J., & Wang, C. Y. (2021). Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. International journal of oral science, 13(1), 24. https://doi.org/10.1038/s41368-021-00131-7

Engeland, C. E., Grossardt, C., Veinalde, R., Bossow, S., Lutz, D., Kaufmann, J. K., Shevchenko, I., Umansky, V., Nettelbeck, D. M., Weichert, W., Jäger, D., von Kalle, C., & Ungerechts, G. (2014). CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Molecular therapy: the journal of the American Society of Gene Therapy, 22(11), 1949–1959. https://doi.org/10.1038/mt.2014.160

Farlow, J. L., Brenner, J. C., Lei, Y. L., & Chinn, S. B. (2021). Immune deserts in head and neck squamous cell carcinoma: A review of challenges and opportunities for modulating the tumor immune microenvironment. Oral oncology, 120, 105420. https://doi.org/10.1016/j.oraloncology.2021.105420

Farrera-Sal, M., Moya-Borrego, L., Bazan-Peregrino, M., & Alemany, R. (2021). Evolving Status of Clinical Immunotherapy with Oncolytic Adenovirus. Clinical cancer research: an official journal of the American Association for Cancer Research, 27(11), 2979–2988. https://doi.org/10.1158/1078-0432.CCR-20-1565

Fernández-Ulibarri, I., Hammer, K., Arndt, M. A., Kaufmann, J. K., Dorer, D., Engelhardt, S., Kontermann, R. E., Hess, J., Allgayer, H., Krauss, J., & Nettelbeck, D. M. (2015). Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. International journal of cancer, 136(9), 2228–2240. https://doi.org/10.1002/ijc.29258

Freytag, S. O., Rogulski, K. R., Paielli, D. L., Gilbert, J. D., & Kim, J. H. (1998). A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Human gene therapy, 9(9), 1323–1333. https://doi.org/10.1089/hum.1998.9.9-1323

Gallardo, J., Pérez-Illana, M., Martín-González, N., & San Martín, C. (2021). Adenovirus Structure: What Is New?. International journal of molecular sciences, 22(10), 5240. https://doi.org/10.3390/ijms22105240

Gao, C., Xu, P., Ye, C., Chen, X., & Liu, L. (2019). Genetic Circuit-Assisted Smart Microbial Engineering. Trends in microbiology, 27(12), 1011–1024. https://doi.org/10.1016/j.tim.2019.07.005

Gomes, E. M., Rodrigues, M. S., Phadke, A. P., Butcher, L. D., Starling, C., Chen, S., Chang, D., Hernandez-Alcoceba, R., Newman, J. T., Stone, M. J., & Tong, A. W. (2009). Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clinical cancer research: an official journal of the American Association for Cancer Research, 15(4), 1317–1325. https://doi.org/10.1158/1078-0432.CCR-08-1360

Goradel, N. H., Mohajel, N., Malekshahi, Z. V., Jahangiri, S., Najafi, M., Farhood, B., Mortezaee, K., Negahdari, B., & Arashkia, A. (2019). Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. Journal of cellular physiology, 234 (6), 8636–8646.

https://doi.org/10.1002/jcp.27850

Goradel, N. H., Negahdari, B., Ghorghanlu, S., Jahangiri, S., & Arashkia, A. (2020). Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacology & therapeutics, 213, 107586. https://doi.org/10.1016/j.pharmthera.2020.107586

Hays, E., & Bonavida, B. (2019). YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 43, 10–28. https://doi.org/10.1016/j.drup.2019.04.001

Heidbuechel, J., & Engeland, C. E. (2021). Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. Journal of hematology & oncology, 14(1), 63. https://doi.org/10.1186/s13045-021-01075-5

Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L., & Kirn, D. (2000). An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature medicine, 6(10), 1134–1139. https://doi.org/10.1038/80474

Heise, C., & Kirn, D. H. (2000). Replication-selective adenoviruses as oncolytic agents. The Journal of clinical investigation, 105(7), 847–851. https://doi.org/10.1172/JCI9762

Huang, J. L., LaRocca, C. J., & Yamamoto, M. (2016). Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts. Biomedicines, 4(3), 23. https://doi.org/10.3390/biomedicines4030023

Huang, H., Liu, Y., Liao, W., Cao, Y., Liu, Q., Guo, Y., Lu, Y., & Xie, Z. (2019). Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nature communications, 10(1), 4801. https://doi.org/10.1038/s41467-019-12794-2

Jiang, H., Rivera-Molina, Y., Gomez-Manzano, C., Clise-Dwyer, K., Bover, L., Vence, L. M., Yuan, Y., Lang, F. F., Toniatti, C., Hossain, M. B., & Fueyo, J. (2017). Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer research, 77(14), 3894–3907. https://doi.org/10.1158/0008-5472.CAN-17-0468

Kabzinski, J., Maczynska, M., & Majsterek, I. (2021). MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules, 11(6), 844. https://doi.org/10.3390/biom11060844

Kangas, C., Krawczyk, E., & He, B. (2021). Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses, 13(7), 1408. https://doi.org/10.3390/v13071408

Killcoyne, S., Yusuf, A., & Fitzgerald, R. C. (2021). Genomic instability signals offer diagnostic possibility in early cancer detection. Trends in genetics: TIG, 37(11), 966–972. https://doi.org/10.1016/j.tig.2021.06.009

Kellish, P., Shabashvili, D., Rahman, M. M., Nawab, A., Guijarro, M. V., Zhang, M., Cao, C., Moussatche, N., Boyle, T., Antonia, S., Reinhard, M., Hartzell, C., Jantz, M., Mehta, H. J., McFadden, G., Kaye, F. J., & Zajac-Kaye, M. (2019). Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. The Journal of clinical investigation, 129(6), 2279–2292. https://doi.org/10.1172/JCI121323

Kim, S. G., Noh, M. H., Lim, H. G., Jang, S., Jang, S., Koffas, M., & Jung, G. Y. (2018). Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS microbiology letters, 365(17), 10.1093/femsle/fny187. https://doi.org/10.1093/femsle/fny187

Kirkwood, J. M., Lorigan, P., Hersey, P., Hauschild, A., Robert, C., McDermott, D., Marshall, M. A., Gomez-Navarro, J., Liang, J. Q., & Bulanhagui, C. A. (2010). Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 16(3), 1042–1048. https://doi.org/10.1158/1078-0432.CCR-09-2033

Kiyotani, K., Toyoshima, Y., & Nakamura, Y. (2021). Personalized immunotherapy in cancer precision medicine. Cancer biology & medicine, 18(4), 955–965. Advance online publication. https://doi.org/10.20892/j.issn.2095-3941.2021.0032

Koski, A., Kangasniemi, L., Escutenaire, S., Pesonen, S., Cerullo, V., Diaconu, I., Nokisalmi, P., Raki, M., Rajecki, M., Guse, K., Ranki, T., Oksanen, M., Holm, S. L., Haavisto, E., Karioja-Kallio, A., Laasonen, L., Partanen, K., Ugolini, M., Helminen, A., Karli, E., … Hemminki, A. (2010). Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Molecular therapy: the journal of the American Society of Gene Therapy, 18(10), 1874–1884. https://doi.org/10.1038/mt.2010.161

Lees, A., Sessler, T., & McDade, S. (2021). Dying to Survive-The p53 Paradox. Cancers, 13(13), 3257. https://doi.org/10.3390/cancers13133257

Li, Y., Jin, J., & Bai, F. (2021). Cancer biology deciphered by single-cell transcriptomic sequencing. Protein & cell, 10.1007/s13238-021-00868-1. Advance online publication. https://doi.org/10.1007/s13238-021-00868-1

Loskog A. (2015). Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles. Viruses, 7(11), 5780–5791. https://doi.org/10.3390/v7112899

Lou, J., Dong, J., Xu, R., Zeng, H., Fang, L., Wu, Y., Liu, Y., & Wang, S. (2021). Remodeling of the tumor microenvironment using an engineered oncolytic vaccinia virus improves PD-L1 inhibition outcomes. Bioscience reports, 41(6), BSR20204186. https://doi.org/10.1042/BSR20204186

Malogolovkin, A., Gasanov, N., Egorov, A., Weener, M., Ivanov, R., & Karabelsky, A. (2021). Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses, 13(7), 1271. https://doi.org/10.3390/v13071271

Marelli, G., Howells, A., Lemoine, N. R., & Wang, Y. (2018). Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Frontiers in immunology, 9, 866. https://doi.org/10.3389/fimmu.2018.00866

Martínez-Sánchez, M., Hernandez-Monge, J., Rangel, M., & Olivares-Illana, V. (2021). Retinoblastoma: from discovery to clinical management. The FEBS journal, 10.1111/febs.16035. Advance online publication. https://doi.org/10.1111/febs.16035

Menyailo, M. E., Bokova, U. A., Ivanyuk, E. E., Khozyainova, A. A., & Denisov, E. V. (2021). Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Molecular diagnosis & therapy, 25(5), 549–562. https://doi.org/10.1007/s40291-021-00543-5

Moaven, O., W Mangieri, C., A Stauffer, J., Anastasiadis, P. Z., & Borad, M. J. (2021). Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice. JCO precision oncology, 5, PO.20.00395. https://doi.org/10.1200/PO.20.00395

Moxley, A. H., & Reisman, D. (2021). Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell biochemistry and function, 39(2), 235–247. https://doi.org/10.1002/cbf.3590

Oosenbrug, T., van den Wollenberg, D., Duits, E. W., Hoeben, R. C., & Ressing, M. E. (2021). Induction of Robust Type I Interferon Levels by Oncolytic Reovirus Requires Both Viral Replication and Interferon-α/β Receptor Signaling. Human gene therapy, 32(19-20), 1171–1185. https://doi.org/10.1089/hum.2021.140

Panagioti, E., Kurokawa, C., Viker, K., Ammayappan, A., Anderson, S. K., Sotiriou, S., Chatzopoulos, K., Ayasoufi, K., Johnson, A. J., Iankov, I. D., & Galanis, E. (2021). Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy. The Journal of clinical investigation, 131(13), e141614. https://doi.org/10.1172/JCI141614

Pandha, H. S. (2016). Science in Focus - Oncolytic Viruses: New Multifunctional Immunotherapeutics. Clinical oncology (Royal College of Radiologists (Great Britain)), 28 (10), 615-618. https://doi.org/10.1016/j.clon.2016.06.014

Pardoll D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature reviews. Cancer, 12(4), 252–264. https://doi.org/10.1038/nrc3239

Parkin, J., & Cohen, B. (2001). An overview of the immune system. Lancet (London, England), 357(9270), 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7

Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. Signal transduction and targeted therapy, 1, 15004. https://doi.org/10.1038/sigtrans.2015.4

Pesonen, S., Diaconu, I., Kangasniemi, L., Ranki, T., Kanerva, A., Pesonen, S. K., Gerdemann, U., Leen, A. M., Kairemo, K., Oksanen, M., Haavisto, E., Holm, S. L., Karioja-Kallio, A., Kauppinen, S., Partanen, K. P., Laasonen, L., Joensuu, T., Alanko, T., Cerullo, V., & Hemminki, A. (2012). Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer research, 72(7), 1621–1631. https://doi.org/10.1158/0008-5472.CAN-11-3001

Peter, M., & Kühnel, F. (2020). Oncolytic Adenovirus in Cancer Immunotherapy. Cancers, 12(11), 3354. https://doi.org/10.3390/cancers12113354

Petrina, M., Martin, J., & Basta, S. (2021). Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine & growth factor reviews, 59, 101–110. https://doi.org/10.1016/j.cytogfr.2021.01.001

Ramachandra, M., Rahman, A., Zou, A., Vaillancourt, M., Howe, J. A., Antelman, D., Sugarman, B., Demers, G. W., Engler, H., Johnson, D., & Shabram, P. (2001). Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nature biotechnology, 19(11), 1035–1041. https://doi.org/10.1038/nbt1101-1035

Ramachandran, M., Yu, D., Dyczynski, M., Baskaran, S., Zhang, L., Lulla, A., Lulla, V., Saul, S., Nelander, S., Dimberg, A., Merits, A., Leja-Jarblad, J., & Essand, M. (2017). Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical cancer research: an official journal of the American Association for Cancer Research, 23(6), 1519–1530. https://doi.org/10.1158/1078-0432.CCR-16-0925

Ranki, T., Pesonen, S., Hemminki, A., Partanen, K., Kairemo, K., Alanko, T., Lundin, J., Linder, N., Turkki, R., Ristimäki, A., Jäger, E., Karbach, J., Wahle, C., Kankainen, M., Backman, C., von Euler, M., Haavisto, E., Hakonen, T., Heiskanen, R., Jaderberg, M., … Joensuu, T. (2016). Phase I study with ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune markers. Journal for immunotherapy of cancer, 4, 17. https://doi.org/10.1186/s40425-016-0121-5

Riezebos-Brilman, A., Walczak, M., Regts, J., Rots, M. G., Kamps, G., Dontje, B., Haisma, H. Y., Wilschut, J., & Daemen, T. (2007). A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene therapy, 14(24), 1695–1704. https://doi.org/10.1038/sj.gt.3303036

Rovira-Rigau, M., Raimondi, G., Marín, M. Á., Gironella, M., Alemany, R., & Fillat, C. (2019). Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Molecular therapy: the journal of the American Society of Gene Therapy, 27(1), 230–243. https://doi.org/10.1016/j.ymthe.2018.09.016

Russell W. C. (2009). Adenoviruses: update on structure and function. The Journal of general virology, 90(Pt 1), 1–20. https://doi.org/10.1099/vir.0.003087-0

Russell, S. J., Peng, K. W., & Bell, J. C. (2012). Oncolytic virotherapy. Nature biotechnology, 30(7), 658–670. https://doi.org/10.1038/nbt.2287

Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer Statistics, 2015. CA: a cancer journal for clinicians, 65 (1), 5-29. https://doi.org/10.3322/caac.21254

Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448–452. https://doi.org/10.1038/nbt.2510

Sobhani, N., Tardiel-Cyril, D. R., Davtyan, A., Generali, D., Roudi, R., & Li, Y. (2021). CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 13(6), 1440. https://doi.org/10.3390/cancers13061440

Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases. 2019 Aug 26;7(16):2143-2154. doi: 10.12998/wjcc.v7.i16.2143. PMID: 31531310; PMCID: PMC6718777.

Sova, P., Ren, X. W., Ni, S., Bernt, K. M., Mi, J., Kiviat, N., & Lieber, A. (2004). A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Molecular therapy: the journal of the American Society of Gene Therapy, 9(4), 496–509. https://doi.org/10.1016/j.ymthe.2003.12.008

Storey, M., & Jordan, S. (2008). An overview of the immune system. Nursing standard (Royal College of Nursing (Great Britain): 1987), 23(15-17), 47–60. https://doi.org/10.7748/ns2008.12.23.15.47.c6738

Swanner J., Meisen W.H., McCormack R.M., Lewis C.T., Hong B., & Kaur B. (2019) Current Challenges and Applications of Oncolytic Viruses in Overcoming the Development of Resistance to Therapies in Cancer. In Szewczuk M., Qorri B., & Sambi M. (Eds.), Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_3

Tazawa, H., Kagawa, S., & Fujiwara, T. (2013). Advances in adenovirus-mediated p53 cancer gene therapy. Expert opinion on biological therapy, 13(11), 1569–1583. https://doi.org/10.1517/14712598.2013.845662

Tian, T., Olson, S., Whitacre, J. M., & Harding, A. (2011). The origins of cancer robustness and evolvability. Integrative biology: quantitative biosciences from nano to macro, 3 (1), 17-30. https://doi.org/10.1039/c0ib00046a

Toes, R. E., Hoeben, R. C., van der Voort, E. I., Ressing, M. E., van der Eb, A. J., Melief, C. J., & Offringa, R. (1997). Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14660–14665. https://doi.org/10.1073/pnas.94.26.14660

Tong, A. W., & Stone, M. J. (2003). Prospects for CD40-directed experimental therapy of human cancer. Cancer gene therapy, 10(1), 1–13. https://doi.org/10.1038/sj.cgt.7700527

Tripodi, L., Vitale, M., Cerullo, V., & Pastore, L. (2021). Oncolytic Adenoviruses for Cancer Therapy. International journal of molecular sciences, 22(5), 2517. https://doi.org/10.3390/ijms22052517

Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature immunology, 9(5), 503–510. https://doi.org/10.1038/ni1582

Wang, Y., Xue, P., Cao, M., Yu, T., Lane, S. T., & Zhao, H. (2021). Directed Evolution: Methodologies and Applications. Chemical reviews, 121(20), 12384–12444. https://doi.org/10.1021/acs.chemrev.1c00260

Wang, X., Zhong, L., & Zhao, Y. (2021). Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncology reports, 45(4), 49. https://doi.org/10.3892/or.2021.8000

Wildner, O., Blaese, R. M., & Morris, J. C. (1999). Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer research, 59(2), 410–413.

Wold, W. S. M. & Horowitz, M. S. (2007). Adenoviruses. In D. M. Knipe & P. M. Howley (Eds.), Fields Virology (pp. 2395-2436). Philadelphia, PA., Lippincott Williams & Wilkins.

Woo, Y., Warner, S. G., Geha, R., Stanford, M. M., Decarolis, P., Rahman, M. M., Singer, S., McFadden, G., & Fong, Y. (2021). The Oncolytic Activity of Myxoma Virus against Soft Tissue Sarcoma Is Mediated by the Overexpression of Ribonucleotide Reductase. Clinical Medicine Insights. Oncology, 15, 1179554921993069. https://doi.org/10.1177/1179554921993069

Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science (New York, N.Y.), 333(6047), 1307–1311. https://doi.org/10.1126/science.1205527

Yang, Y. F., Xue, S. Y., Lu, Z. Z., Xiao, F. J., Yin, Y., Zhang, Q. W., Wu, C. T., Wang, H., & Wang, L. S. (2014). Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer. Gene therapy, 21(8), 723–731. https://doi.org/10.1038/gt.2014.46

Zhang, Q., & Liu, F. (2020). Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell death & disease, 11(6), 485. https://doi.org/10.1038/s41419-020-2696-5

Zhang, M., Xian, H. C., Dai, L., Tang, Y. L., & Liang, X. H. (2021). MicroRNAs: emerging driver of cancer perineural invasion. Cell & bioscience, 11(1), 117. https://doi.org/10.1186/s13578-021-00630-4

Zhao, Y., Liu, Z., Li, L., Wu, J., Zhang, H., Zhang, H., Lei, T., & Xu, B. (2021). Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Frontiers in microbiology, 12, 707290. https://doi.org/10.3389/fmicb.2021.707290

Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science translational medicine, 8(328), 328rv4. https://doi.org/10.1126/scitranslmed.aad7118

Downloads

Published

2022-01-24

How to Cite

Enekegho, L., & Stuart, D. (2022). Smart Oncolytic Adenovirotherapy to Induce Killing of Cancer Cells and Elicit Antitumor Immunity. Eureka, 7(1). https://doi.org/10.29173/eureka28752

Issue

Section

Reviews