Smart Oncolytic Adenovirotherapy to Induce Killing of Cancer Cells and Elicit Antitumor Immunity
DOI:
https://doi.org/10.29173/eureka28752Abstract
Cancer is one of the leading causes of death in the world, accounting for over 30% of all deaths in Canada. Various chemotherapy and therapeutic agents are currently in practice to help combat and treat cancerous growths and to lead to cancer remission. Virotherapy is an emerging treatment that uses biotechnology to convert viruses into therapeutic agents for the treatment of specific types of cancer. This process reprograms viruses to become oncolytic and target tumor cells in the body for lysis. It also uses these viruses to recruit inflammatory and vaccination responses by the immune system to help kill surrounding tumor cells while also establishing a long immune memory to help in the case of later infections. Adenoviruses are a group of viruses that infect the membranes of the respiratory tract, eyes, intestines, urinary tract, and nervous system of humans and causing fever as well as many cold symptoms. It is also a commonly used oncolytic virus and has been demonstrated in recent studies to be a great potential tool for eliciting appropriate inflammatory responses from the immune system to kill cancer cells and inducing cell-mediated immunity to prevent against later re-infection by the specific cancer type. Advances to this virotherapy has progressed towards overcoming tumor-mediated immunosuppression, which usually allows cancerous cells to evade the immune system and escape cell destruction, especially when combined with other therapy treatments. (Goradel et al., 2019). This review will focus on the mechanism as to how engineered modified viruses stimulate the immune system for cell killing and cell-mediated immunity. There will also be an examination of several research papers with some evidence to understand the synergy being oncolytic adenovirotherapy and the immune system function to kill cancer cells. Some disadvantages and issues with using this form of therapeutic treatment will also be presented, as well as some present and future research operating to fix these issues as well as increase the overall efficacy of this cancer treatment oncolytic adenovirotherapy.
Downloads
References
Andarini, S., Kikuchi, T., Nukiwa, M., Pradono, P., Suzuki, T., Ohkouchi, S., Inoue, A., Maemondo, M., Ishii, N., Saijo, Y., Sugamura, K., & Nukiwa, T. (2004). Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer research, 64(9), 3281–3287. https://doi.org/10.1158/0008-5472.can-03-3911
Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., & Finberg, R. W. (1997). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science (New York, N.Y.), 275(5304), 1320–1323. https://doi.org/10.1126/science.275.5304.1320
Berk A. J. (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52), 7673–7685. https://doi.org/10.1038/sj.onc.120904
Bullock T. (2021). CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cellular & molecular immunology, 10.1038/s41423-021-00734-4. Advance online publication. https://doi.org/10.1038/s41423-021-00734-4
Bunuales, M., Ballesteros-Briones, M. C., Gonzalez-Aparicio, M., Hervas-Stubbs, S., Martisova, E., Mancheno, U., Ricobaraza, A., Lumbreras, S., Smerdou, C., & Hernandez-Alcoceba, R. (2021). Adenovirus-Mediated Inducible Expression of a PD-L1 Blocking Antibody in Combination with Macrophage Depletion Improves Survival in a Mouse Model of Peritoneal Carcinomatosis. International journal of molecular sciences, 22(8), 4176. https://doi.org/10.3390/ijms22084176
Chaplin D. D. (2010). Overview of the immune response. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980
Chen, Y., Hu, S., Shu, Y., Qi, Z., Zhang, B., Kuang, Y., Ma, J., & Cheng, P. (2021). Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Human gene therapy, 10.1089/hum.2021.048. Advance online publication. https://doi.org/10.1089/hum.2021.048
Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012
Chhabra, N., & Kennedy, J. (2021). A Review of Cancer Immunotherapy Toxicity II: Adoptive Cellular Therapies, Kinase Inhibitors, Monoclonal Antibodies, and Oncolytic Viruses. Journal of medical toxicology: official journal of the American College of Medical Toxicology, 1–13. Advance online publication. https://doi.org/10.1007/s13181-021-00835-6
Contardi, E., Palmisano, G. L., Tazzari, P. L., Martelli, A. M., Falà, F., Fabbi, M., Kato, T., Lucarelli, E., Donati, D., Polito, L., Bolognesi, A., Ricci, F., Salvi, S., Gargaglione, V., Mantero, S., Alberghini, M., Ferrara, G. B., & Pistillo, M. P. (2005). CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. International journal of cancer, 117(4), 538–550. https://doi.org/10.1002/ijc.21155
Croft, M., So, T., Duan, W., & Soroosh, P. (2009). The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological reviews, 229(1), 173–191. https://doi.org/10.1111/j.1600-065X.2009.00766.x
Diaconu, I., Cerullo, V., Hirvinen, M. L., Escutenaire, S., Ugolini, M., Pesonen, S. K., Bramante, S., Parviainen, S., Kanerva, A., Loskog, A. S., Eliopoulos, A. G., Pesonen, S., & Hemminki, A. (2012). Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer research, 72(9), 2327–2338. https://doi.org/10.1158/0008-5472.CAN-11-2975
Dias, J. D., Hemminki, O., Diaconu, I., Hirvinen, M., Bonetti, A., Guse, K., Escutenaire, S., Kanerva, A., Pesonen, S., Löskog, A., Cerullo, V., & Hemminki, A. (2012). Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene therapy, 19 (10), 988–998. https://doi.org/10.1038/gt.2011.176
Doronin, K., Toth, K., Kuppuswamy, M., Krajcsi, P., Tollefson, A. E., & Wold, W. S. (2003). Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology, 305(2), 378–387. https://doi.org/10.1006/viro.2002.1772
Duan, Q., Zhang, H., Zheng, J., & Zhang, L. (2020). Turning Cold into Hot: Firing up the Tumor Microenvironment. Trends in cancer, 6(7), 605–618. https://doi.org/10.1016/j.trecan.2020.02.022
Elmusrati, A., Wang, J., & Wang, C. Y. (2021). Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. International journal of oral science, 13(1), 24. https://doi.org/10.1038/s41368-021-00131-7
Engeland, C. E., Grossardt, C., Veinalde, R., Bossow, S., Lutz, D., Kaufmann, J. K., Shevchenko, I., Umansky, V., Nettelbeck, D. M., Weichert, W., Jäger, D., von Kalle, C., & Ungerechts, G. (2014). CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Molecular therapy: the journal of the American Society of Gene Therapy, 22(11), 1949–1959. https://doi.org/10.1038/mt.2014.160
Farlow, J. L., Brenner, J. C., Lei, Y. L., & Chinn, S. B. (2021). Immune deserts in head and neck squamous cell carcinoma: A review of challenges and opportunities for modulating the tumor immune microenvironment. Oral oncology, 120, 105420. https://doi.org/10.1016/j.oraloncology.2021.105420
Farrera-Sal, M., Moya-Borrego, L., Bazan-Peregrino, M., & Alemany, R. (2021). Evolving Status of Clinical Immunotherapy with Oncolytic Adenovirus. Clinical cancer research: an official journal of the American Association for Cancer Research, 27(11), 2979–2988. https://doi.org/10.1158/1078-0432.CCR-20-1565
Fernández-Ulibarri, I., Hammer, K., Arndt, M. A., Kaufmann, J. K., Dorer, D., Engelhardt, S., Kontermann, R. E., Hess, J., Allgayer, H., Krauss, J., & Nettelbeck, D. M. (2015). Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. International journal of cancer, 136(9), 2228–2240. https://doi.org/10.1002/ijc.29258
Freytag, S. O., Rogulski, K. R., Paielli, D. L., Gilbert, J. D., & Kim, J. H. (1998). A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Human gene therapy, 9(9), 1323–1333. https://doi.org/10.1089/hum.1998.9.9-1323
Gallardo, J., Pérez-Illana, M., Martín-González, N., & San Martín, C. (2021). Adenovirus Structure: What Is New?. International journal of molecular sciences, 22(10), 5240. https://doi.org/10.3390/ijms22105240
Gao, C., Xu, P., Ye, C., Chen, X., & Liu, L. (2019). Genetic Circuit-Assisted Smart Microbial Engineering. Trends in microbiology, 27(12), 1011–1024. https://doi.org/10.1016/j.tim.2019.07.005
Gomes, E. M., Rodrigues, M. S., Phadke, A. P., Butcher, L. D., Starling, C., Chen, S., Chang, D., Hernandez-Alcoceba, R., Newman, J. T., Stone, M. J., & Tong, A. W. (2009). Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clinical cancer research: an official journal of the American Association for Cancer Research, 15(4), 1317–1325. https://doi.org/10.1158/1078-0432.CCR-08-1360
Goradel, N. H., Mohajel, N., Malekshahi, Z. V., Jahangiri, S., Najafi, M., Farhood, B., Mortezaee, K., Negahdari, B., & Arashkia, A. (2019). Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. Journal of cellular physiology, 234 (6), 8636–8646.
https://doi.org/10.1002/jcp.27850
Goradel, N. H., Negahdari, B., Ghorghanlu, S., Jahangiri, S., & Arashkia, A. (2020). Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacology & therapeutics, 213, 107586. https://doi.org/10.1016/j.pharmthera.2020.107586
Hays, E., & Bonavida, B. (2019). YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 43, 10–28. https://doi.org/10.1016/j.drup.2019.04.001
Heidbuechel, J., & Engeland, C. E. (2021). Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. Journal of hematology & oncology, 14(1), 63. https://doi.org/10.1186/s13045-021-01075-5
Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L., & Kirn, D. (2000). An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature medicine, 6(10), 1134–1139. https://doi.org/10.1038/80474
Heise, C., & Kirn, D. H. (2000). Replication-selective adenoviruses as oncolytic agents. The Journal of clinical investigation, 105(7), 847–851. https://doi.org/10.1172/JCI9762
Huang, J. L., LaRocca, C. J., & Yamamoto, M. (2016). Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts. Biomedicines, 4(3), 23. https://doi.org/10.3390/biomedicines4030023
Huang, H., Liu, Y., Liao, W., Cao, Y., Liu, Q., Guo, Y., Lu, Y., & Xie, Z. (2019). Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nature communications, 10(1), 4801. https://doi.org/10.1038/s41467-019-12794-2
Jiang, H., Rivera-Molina, Y., Gomez-Manzano, C., Clise-Dwyer, K., Bover, L., Vence, L. M., Yuan, Y., Lang, F. F., Toniatti, C., Hossain, M. B., & Fueyo, J. (2017). Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer research, 77(14), 3894–3907. https://doi.org/10.1158/0008-5472.CAN-17-0468
Kabzinski, J., Maczynska, M., & Majsterek, I. (2021). MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules, 11(6), 844. https://doi.org/10.3390/biom11060844
Kangas, C., Krawczyk, E., & He, B. (2021). Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses, 13(7), 1408. https://doi.org/10.3390/v13071408
Killcoyne, S., Yusuf, A., & Fitzgerald, R. C. (2021). Genomic instability signals offer diagnostic possibility in early cancer detection. Trends in genetics: TIG, 37(11), 966–972. https://doi.org/10.1016/j.tig.2021.06.009
Kellish, P., Shabashvili, D., Rahman, M. M., Nawab, A., Guijarro, M. V., Zhang, M., Cao, C., Moussatche, N., Boyle, T., Antonia, S., Reinhard, M., Hartzell, C., Jantz, M., Mehta, H. J., McFadden, G., Kaye, F. J., & Zajac-Kaye, M. (2019). Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. The Journal of clinical investigation, 129(6), 2279–2292. https://doi.org/10.1172/JCI121323
Kim, S. G., Noh, M. H., Lim, H. G., Jang, S., Jang, S., Koffas, M., & Jung, G. Y. (2018). Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS microbiology letters, 365(17), 10.1093/femsle/fny187. https://doi.org/10.1093/femsle/fny187
Kirkwood, J. M., Lorigan, P., Hersey, P., Hauschild, A., Robert, C., McDermott, D., Marshall, M. A., Gomez-Navarro, J., Liang, J. Q., & Bulanhagui, C. A. (2010). Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 16(3), 1042–1048. https://doi.org/10.1158/1078-0432.CCR-09-2033
Kiyotani, K., Toyoshima, Y., & Nakamura, Y. (2021). Personalized immunotherapy in cancer precision medicine. Cancer biology & medicine, 18(4), 955–965. Advance online publication. https://doi.org/10.20892/j.issn.2095-3941.2021.0032
Koski, A., Kangasniemi, L., Escutenaire, S., Pesonen, S., Cerullo, V., Diaconu, I., Nokisalmi, P., Raki, M., Rajecki, M., Guse, K., Ranki, T., Oksanen, M., Holm, S. L., Haavisto, E., Karioja-Kallio, A., Laasonen, L., Partanen, K., Ugolini, M., Helminen, A., Karli, E., … Hemminki, A. (2010). Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Molecular therapy: the journal of the American Society of Gene Therapy, 18(10), 1874–1884. https://doi.org/10.1038/mt.2010.161
Lees, A., Sessler, T., & McDade, S. (2021). Dying to Survive-The p53 Paradox. Cancers, 13(13), 3257. https://doi.org/10.3390/cancers13133257
Li, Y., Jin, J., & Bai, F. (2021). Cancer biology deciphered by single-cell transcriptomic sequencing. Protein & cell, 10.1007/s13238-021-00868-1. Advance online publication. https://doi.org/10.1007/s13238-021-00868-1
Loskog A. (2015). Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles. Viruses, 7(11), 5780–5791. https://doi.org/10.3390/v7112899
Lou, J., Dong, J., Xu, R., Zeng, H., Fang, L., Wu, Y., Liu, Y., & Wang, S. (2021). Remodeling of the tumor microenvironment using an engineered oncolytic vaccinia virus improves PD-L1 inhibition outcomes. Bioscience reports, 41(6), BSR20204186. https://doi.org/10.1042/BSR20204186
Malogolovkin, A., Gasanov, N., Egorov, A., Weener, M., Ivanov, R., & Karabelsky, A. (2021). Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses, 13(7), 1271. https://doi.org/10.3390/v13071271
Marelli, G., Howells, A., Lemoine, N. R., & Wang, Y. (2018). Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Frontiers in immunology, 9, 866. https://doi.org/10.3389/fimmu.2018.00866
Martínez-Sánchez, M., Hernandez-Monge, J., Rangel, M., & Olivares-Illana, V. (2021). Retinoblastoma: from discovery to clinical management. The FEBS journal, 10.1111/febs.16035. Advance online publication. https://doi.org/10.1111/febs.16035
Menyailo, M. E., Bokova, U. A., Ivanyuk, E. E., Khozyainova, A. A., & Denisov, E. V. (2021). Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Molecular diagnosis & therapy, 25(5), 549–562. https://doi.org/10.1007/s40291-021-00543-5
Moaven, O., W Mangieri, C., A Stauffer, J., Anastasiadis, P. Z., & Borad, M. J. (2021). Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice. JCO precision oncology, 5, PO.20.00395. https://doi.org/10.1200/PO.20.00395
Moxley, A. H., & Reisman, D. (2021). Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell biochemistry and function, 39(2), 235–247. https://doi.org/10.1002/cbf.3590
Oosenbrug, T., van den Wollenberg, D., Duits, E. W., Hoeben, R. C., & Ressing, M. E. (2021). Induction of Robust Type I Interferon Levels by Oncolytic Reovirus Requires Both Viral Replication and Interferon-α/β Receptor Signaling. Human gene therapy, 32(19-20), 1171–1185. https://doi.org/10.1089/hum.2021.140
Panagioti, E., Kurokawa, C., Viker, K., Ammayappan, A., Anderson, S. K., Sotiriou, S., Chatzopoulos, K., Ayasoufi, K., Johnson, A. J., Iankov, I. D., & Galanis, E. (2021). Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy. The Journal of clinical investigation, 131(13), e141614. https://doi.org/10.1172/JCI141614
Pandha, H. S. (2016). Science in Focus - Oncolytic Viruses: New Multifunctional Immunotherapeutics. Clinical oncology (Royal College of Radiologists (Great Britain)), 28 (10), 615-618. https://doi.org/10.1016/j.clon.2016.06.014
Pardoll D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature reviews. Cancer, 12(4), 252–264. https://doi.org/10.1038/nrc3239
Parkin, J., & Cohen, B. (2001). An overview of the immune system. Lancet (London, England), 357(9270), 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7
Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. Signal transduction and targeted therapy, 1, 15004. https://doi.org/10.1038/sigtrans.2015.4
Pesonen, S., Diaconu, I., Kangasniemi, L., Ranki, T., Kanerva, A., Pesonen, S. K., Gerdemann, U., Leen, A. M., Kairemo, K., Oksanen, M., Haavisto, E., Holm, S. L., Karioja-Kallio, A., Kauppinen, S., Partanen, K. P., Laasonen, L., Joensuu, T., Alanko, T., Cerullo, V., & Hemminki, A. (2012). Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer research, 72(7), 1621–1631. https://doi.org/10.1158/0008-5472.CAN-11-3001
Peter, M., & Kühnel, F. (2020). Oncolytic Adenovirus in Cancer Immunotherapy. Cancers, 12(11), 3354. https://doi.org/10.3390/cancers12113354
Petrina, M., Martin, J., & Basta, S. (2021). Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine & growth factor reviews, 59, 101–110. https://doi.org/10.1016/j.cytogfr.2021.01.001
Ramachandra, M., Rahman, A., Zou, A., Vaillancourt, M., Howe, J. A., Antelman, D., Sugarman, B., Demers, G. W., Engler, H., Johnson, D., & Shabram, P. (2001). Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nature biotechnology, 19(11), 1035–1041. https://doi.org/10.1038/nbt1101-1035
Ramachandran, M., Yu, D., Dyczynski, M., Baskaran, S., Zhang, L., Lulla, A., Lulla, V., Saul, S., Nelander, S., Dimberg, A., Merits, A., Leja-Jarblad, J., & Essand, M. (2017). Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical cancer research: an official journal of the American Association for Cancer Research, 23(6), 1519–1530. https://doi.org/10.1158/1078-0432.CCR-16-0925
Ranki, T., Pesonen, S., Hemminki, A., Partanen, K., Kairemo, K., Alanko, T., Lundin, J., Linder, N., Turkki, R., Ristimäki, A., Jäger, E., Karbach, J., Wahle, C., Kankainen, M., Backman, C., von Euler, M., Haavisto, E., Hakonen, T., Heiskanen, R., Jaderberg, M., … Joensuu, T. (2016). Phase I study with ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune markers. Journal for immunotherapy of cancer, 4, 17. https://doi.org/10.1186/s40425-016-0121-5
Riezebos-Brilman, A., Walczak, M., Regts, J., Rots, M. G., Kamps, G., Dontje, B., Haisma, H. Y., Wilschut, J., & Daemen, T. (2007). A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene therapy, 14(24), 1695–1704. https://doi.org/10.1038/sj.gt.3303036
Rovira-Rigau, M., Raimondi, G., Marín, M. Á., Gironella, M., Alemany, R., & Fillat, C. (2019). Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Molecular therapy: the journal of the American Society of Gene Therapy, 27(1), 230–243. https://doi.org/10.1016/j.ymthe.2018.09.016
Russell W. C. (2009). Adenoviruses: update on structure and function. The Journal of general virology, 90(Pt 1), 1–20. https://doi.org/10.1099/vir.0.003087-0
Russell, S. J., Peng, K. W., & Bell, J. C. (2012). Oncolytic virotherapy. Nature biotechnology, 30(7), 658–670. https://doi.org/10.1038/nbt.2287
Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer Statistics, 2015. CA: a cancer journal for clinicians, 65 (1), 5-29. https://doi.org/10.3322/caac.21254
Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448–452. https://doi.org/10.1038/nbt.2510
Sobhani, N., Tardiel-Cyril, D. R., Davtyan, A., Generali, D., Roudi, R., & Li, Y. (2021). CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 13(6), 1440. https://doi.org/10.3390/cancers13061440
Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases. 2019 Aug 26;7(16):2143-2154. doi: 10.12998/wjcc.v7.i16.2143. PMID: 31531310; PMCID: PMC6718777.
Sova, P., Ren, X. W., Ni, S., Bernt, K. M., Mi, J., Kiviat, N., & Lieber, A. (2004). A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Molecular therapy: the journal of the American Society of Gene Therapy, 9(4), 496–509. https://doi.org/10.1016/j.ymthe.2003.12.008
Storey, M., & Jordan, S. (2008). An overview of the immune system. Nursing standard (Royal College of Nursing (Great Britain): 1987), 23(15-17), 47–60. https://doi.org/10.7748/ns2008.12.23.15.47.c6738
Swanner J., Meisen W.H., McCormack R.M., Lewis C.T., Hong B., & Kaur B. (2019) Current Challenges and Applications of Oncolytic Viruses in Overcoming the Development of Resistance to Therapies in Cancer. In Szewczuk M., Qorri B., & Sambi M. (Eds.), Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_3
Tazawa, H., Kagawa, S., & Fujiwara, T. (2013). Advances in adenovirus-mediated p53 cancer gene therapy. Expert opinion on biological therapy, 13(11), 1569–1583. https://doi.org/10.1517/14712598.2013.845662
Tian, T., Olson, S., Whitacre, J. M., & Harding, A. (2011). The origins of cancer robustness and evolvability. Integrative biology: quantitative biosciences from nano to macro, 3 (1), 17-30. https://doi.org/10.1039/c0ib00046a
Toes, R. E., Hoeben, R. C., van der Voort, E. I., Ressing, M. E., van der Eb, A. J., Melief, C. J., & Offringa, R. (1997). Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14660–14665. https://doi.org/10.1073/pnas.94.26.14660
Tong, A. W., & Stone, M. J. (2003). Prospects for CD40-directed experimental therapy of human cancer. Cancer gene therapy, 10(1), 1–13. https://doi.org/10.1038/sj.cgt.7700527
Tripodi, L., Vitale, M., Cerullo, V., & Pastore, L. (2021). Oncolytic Adenoviruses for Cancer Therapy. International journal of molecular sciences, 22(5), 2517. https://doi.org/10.3390/ijms22052517
Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature immunology, 9(5), 503–510. https://doi.org/10.1038/ni1582
Wang, Y., Xue, P., Cao, M., Yu, T., Lane, S. T., & Zhao, H. (2021). Directed Evolution: Methodologies and Applications. Chemical reviews, 121(20), 12384–12444. https://doi.org/10.1021/acs.chemrev.1c00260
Wang, X., Zhong, L., & Zhao, Y. (2021). Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncology reports, 45(4), 49. https://doi.org/10.3892/or.2021.8000
Wildner, O., Blaese, R. M., & Morris, J. C. (1999). Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer research, 59(2), 410–413.
Wold, W. S. M. & Horowitz, M. S. (2007). Adenoviruses. In D. M. Knipe & P. M. Howley (Eds.), Fields Virology (pp. 2395-2436). Philadelphia, PA., Lippincott Williams & Wilkins.
Woo, Y., Warner, S. G., Geha, R., Stanford, M. M., Decarolis, P., Rahman, M. M., Singer, S., McFadden, G., & Fong, Y. (2021). The Oncolytic Activity of Myxoma Virus against Soft Tissue Sarcoma Is Mediated by the Overexpression of Ribonucleotide Reductase. Clinical Medicine Insights. Oncology, 15, 1179554921993069. https://doi.org/10.1177/1179554921993069
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science (New York, N.Y.), 333(6047), 1307–1311. https://doi.org/10.1126/science.1205527
Yang, Y. F., Xue, S. Y., Lu, Z. Z., Xiao, F. J., Yin, Y., Zhang, Q. W., Wu, C. T., Wang, H., & Wang, L. S. (2014). Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer. Gene therapy, 21(8), 723–731. https://doi.org/10.1038/gt.2014.46
Zhang, Q., & Liu, F. (2020). Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell death & disease, 11(6), 485. https://doi.org/10.1038/s41419-020-2696-5
Zhang, M., Xian, H. C., Dai, L., Tang, Y. L., & Liang, X. H. (2021). MicroRNAs: emerging driver of cancer perineural invasion. Cell & bioscience, 11(1), 117. https://doi.org/10.1186/s13578-021-00630-4
Zhao, Y., Liu, Z., Li, L., Wu, J., Zhang, H., Zhang, H., Lei, T., & Xu, B. (2021). Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Frontiers in microbiology, 12, 707290. https://doi.org/10.3389/fmicb.2021.707290
Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science translational medicine, 8(328), 328rv4. https://doi.org/10.1126/scitranslmed.aad7118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eureka

This work is licensed under a Creative Commons Attribution 4.0 International License.
By signing the Eureka publication agreement, authors agree to the following:
- The work has not been previously published in any format;
- Eureka is granted the royalty-free right to publish and disseminate the work in current and future formats;
- The work will be published in Eureka under a Creative Commons license. Eureka encourages authors to publish the work under a Creative Commons Attribution 4.0 International license (CC BY 4.0) that allows others to distribute, tweak, and build upon the work, even commercially, as long as they credit the Author(s) for the original creation.
Authors may however choose to have their work distributed under any of the Creative Commons licenses currently available by specifying their preferred license in the publication agreement. A description of the Creative Commons licenses is available here: https://creativecommons.org/licenses/
- Authors retain their copyright, including the right to subsequently publish or disseminate their work elsewhere, provided that they make reasonable efforts to ensure that the publication in Eureka is acknowledged.
- Authors agree to determine, prior to publication, whether it is necessary to obtain permissions from any third party who hold rights with respect to any photographs, illustrations, drawings, text, or any other material (“third party work”) to be published in connection with your work. Copyright permission will not be necessary if the use is determined to be fair dealing, if the work is in the public domain, or if the rights-holder has granted a Creative Commons or similar license.
- All co-authors and investigators (e.g. faculty supervisors) with claims to the intellectual property have read and signed the agreement, thereby providing their consent for the submission to be published in Eureka.
Unless otherwise specified, authors guarantee that all parts of the submission are the author’s original work. Submissions containing evidence of plagiarism will not be eligible for publication.