Mapping SDGs by Faculty to Find New Interdisciplinary Collaborations, a Type of Linked Literature Analysis

Authors

  • Jeffrey Demaine Ingenium Canada

DOI:

https://doi.org/10.29173/cais1885

Keywords:

academic librarianship, bibliometrics, discovery, human-computer interaction

Abstract

Leveraging the Dimensions bibliographic database, publications that have been assigned to SDG categories in Dimensions are matched by DOI to their authors' faculty affiliations in the Research Information Management System of McMaster University. This gives an SDG-by-Faculty profile of research at McMaster University. Moreover, inter-faculty collaborations can be identified in each SDG category. This gives management a picture of the collaboration patterns across campus and to understand the broader impact of inter-faculty collaborations.

Intriguingly, the same metadata can be recombined to identify which faculty (who have not previously co-authored together) could collaborate on new research. Essentially, researchers from different faculties may be working in closely-related topics unbeknownst to each other. By combining data-analytical techniques with the domain knowledge of academic leadership this approach helps to overcome institutional silos, enabling management to be proactive by fostering new inter-faculty collaborations in order to investigate specific topics within a given SDG.

 

Cartographier les ODD par faculté pour trouver de nouvelles collaborations interdisciplinaires, un type d'analyse de la littérature liée

Résumé
En exploitant la base de données bibliographiques Dimensions, les publications qui ont été assignées aux catégories ODD dans Dimensions sont appariées d'un DOI qui rejoint la faculté affiliée des auteurs dans le système de gestion de l'information sur la recherche de l'Université McMaster. On obtient ainsi un profil de la recherche à l'Université McMaster par ODD et par faculté. En outre, les collaborations interfacultés peuvent être identifiées dans chaque catégorie d'ODD. Cela permet à la direction de se faire une idée des modes de collaboration sur le campus et de comprendre l'impact des collaborations interfacultés. Il est intéressant de noter que les mêmes métadonnées peuvent être recombinées pour identifier les facultés, qui n'ont jamais collaboré, qui pourraient collaborer à de nouvelles recherches. En fait, des chercheurs de différentes facultés peuvent travailler à leur insu sur des sujets étroitement liés. En combinant des techniques d'analyse de données avec la connaissance du domaine des leaders académiques, cette approche aide à surmonter les silos institutionnels, permettant ainsi à la direction d'être proactive en favorisant de nouvelles collaborations interfacultés pour étudier des sujets spécifiques dans le cadre d'un ODD donné.

Mots-clés
Bibliothéconomie universitaire; bibliométrie; découverte; interaction humain-machine

References

Alkan, A. K., Sourav, S., Jablonska, M., Astarita, S., Chakrabarty, R., Garuda, N., Khetarpal, P., et al. (2025). A survey on hypothesis generation for scientific discovery in the era of Large Language Models. arXiv. https://doi.org/10.48550/arXiv.2504.05496.

Australian Bureau of Statistics. (2020). Australian and New Zealand Standard Research Classification (ANZSRC). Retrieved from https://www.abs.gov.au/statistics/classifications/australian-and-new-zealand-standard-research-classification-anzsrc/latest-release

Baek, S. H., Lee, D., Kim, M., Lee, J, H., & Song, M. (2017). Enriching plausible new hypothesis generation in PubMed. PloS One, 12(7): e0180539. https://doi.org/10.1371/journal.pone.0180539.

Demaine, J., Martin, J., & De Bruijn, B. (2003). Haystacks and hypotheses. Proceedings of the American Society for Information Science and Technology, 40(1), 59–64. https://doi.org/10.1002/meet.1450400107

Demaine, J., Bhatia, Y., & Whalen, K. (2024). Mapping publications by sustainable development goal at the faculty level to highlight inter-faculty collaborations. International Journal of Sustainability in Higher Education. https://doi.org/10.1108/IJSHE-01-2024-0058

Hossain, M. S., Gresock, J., Edmonds, Y., Helm, R., Potts, M., & Ramakrishnan, N. (2012). Connecting the dots between PubMed abstracts. PLOS ONE, 7(1): e29509. https://doi.org/10.1371/journal.pone.0029509

Sebastian, Y., Siew, E., & Orimaye, S. O. (2017). Learning the heterogeneous bibliographic information network for literature-based discovery. Knowledge-Based Systems, 115, 66–79. https://doi.org/10.1016/j.knosys.2016.10.015

Smalheiser, N. R. (2017). Rediscovering Don Swanson: The past, present and future of literature-based discovery. Journal of Data and Information Science, 2(4), 43–64. https://doi.org/10.1515/jdis-2017-0019

Spasser, M. A. (1997). The enacted fate of undiscovered public knowledge. Journal of the American Society for Information Science, 48(8), 707–17. https://doi.org/10.1002/(SICI)1097-4571(199708)48:8<707::AID-ASI4>3.0.CO;2-W

Swanson, D. R. (1986). Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine, 30(1), 7–18. https://doi.org/10.1353/pbm.1986.0087

Swanson, D. R. (1988). Migraine and magnesium: Eleven neglected connections. Perspectives in Biology and Medicine, 31(4), 526–557. https://doi.org/10.1353/pbm.1988.0009

Swanson, D. R. (1990). Somatomedin C and arginine; Implicit connections between mutually-isolated literatures. Perspectives in Biology and Medicine, 33(2), 157-186. https://doi.org/10.1353/pbm.1990.0031

Times Higher Education. (2022, June 8). About the Times Higher Education World University Rankings. Retrieved from Times Higher Education World University Rankings.

United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development.

Wren, J. D., Bekeredjian, R., Stewart, J. A., Shohet, R. V., & Garner, H. R. (2004). Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics, 20(3), 389–98. https://doi.org/10.1093/bioinformatics/btg421

Zheng, C., Zhang, Y., Huang, Z., Shi, C., Xu, M., & Ma, X. (2024). DiscipLink: Unfolding interdisciplinary information seeking process via human-AI co-exploration. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, 1–20. UIST ’24. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3654777.3676366.

Downloads

Published

2025-05-23

How to Cite

Demaine, J. (2025). Mapping SDGs by Faculty to Find New Interdisciplinary Collaborations, a Type of Linked Literature Analysis. Proceedings of the Annual Conference of CAIS Actes Du congrès Annuel De l’ACSI. https://doi.org/10.29173/cais1885

Issue

Section

Articles