Proteomic analysis of higher & lower altitude cultivars of Coffea arabica reveals differences related to environmental adaptations and coffee bean flavour
DOI:
https://doi.org/10.29173/eureka28796Keywords:
Coffee, Proteomics, Mass Spectrometry, Coffea arabica, Altitude Adaptation, Disease Resistance, Coffee Bean FlavourAbstract
Coffee ranks among the most popular beverages worldwide and is an important commodity in developing nations. While coffee beans harvested from Coffea arabica are considered to have a superior rich and balanced flavour, they are susceptible to disease and climatic variables like temperature, precipitation, and oxygen availability, each of which varies with altitude. We performed a comprehensive proteomic comparison of two C. arabica cultivars, the high-altitude Rwanda Shyira (RS) and the lower-altitude Brazil Flor de Ipe (BFDI), using liquid chromatography MS/MS analysis. Five of the identified 531 proteins exhibited statistically significant differences in expressional intensity between the two cultivars. These differences may correspond to bitter flavonoid concentrations along with adaptations to cold, hypoxic, and disease stressors at different altitudes and geographic niches. These substantial proteomic differences identified between these elevations provide a greater understanding of the effects of altitude on the C. arabica plant and its coffee, which has implications for the global market.
Downloads
References
Allard, S. T. M., Giraud, M. F., & Naismith, J. H. (2001). Epimerases: Structure, function and mechanism. Cellular and Molecular Life Sciences, 58(11), 1650–1665. https://doi.org/10.1007/PL00000803
Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85(11), 1869–1876. https://doi.org/10.1002/jsfa.2188
Bäckström, S., Elfving, N., Nilsson, R., Wingsle, G., & Björklund, S. (2007). Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit. Molecular Cell, 26(5), 717–729. https://doi.org/10.1016/j.molcel.2007.05.007
Baumann, T. W., & Gabriel, H. (1984). Metabolism and excretion of caffeine during germination of coffea arabica l. Plant and Cell Physiology, 25(8), 1431–1436. https://doi.org/10.1093/oxfordjournals.pcp.a076854
Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015). The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 53(8), 474–485.
Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239–1248. https://doi.org/10.1093/treephys/26.9.1239
Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., & He, P. (2013). Differential temperature operation of plant immune responses. Nature Communications, 4(2530). https://doi.org/10.1038/ncomms3530
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367–1372. https://doi.org/10.1038/nbt.1511
Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., & Flicek, P. (2022). Ensembl 2022. Nucleic Acids Research, 50(D1), 988–995.
Dagan-Wiener, A., Di Pizio, A., Nissim, I., Bahia, M. S., Dubovski, N., Margulis, E., & Niv, M. Y. (2019). Bitterdb: Taste ligands and receptors database in 2019. Nucleic Acids Research, 47(D1), D1179–D1185. https://doi.org/10.1093/nar/gky974
Daviron, B., & Ponte, S. (2005). The Coffee Paradox: Global Markets, Commodity Trade and the Elusive Promise of Development. Zed Books.
Decazy, F., Avelino, J., Guyot, B., Perriot, J., Pineda, C., & Cilas, C. (2006). Quality of Different Honduran Coffees in Relation to Several Environments. Journal of Food Science, 68(7), 2356–2361.
Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé, R. (2021). Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 229(2), 712–734. https://doi.org/10.1111/nph.16965
Dragon, F., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., Wormsley, S., Settlage, R. E., Shabanowitz, J., Osheim, Y., Beyer, A. L., Hunt, D. F., & Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967–970. https://doi.org/10.1038/nature00769
Frischknecht, P. M., Ulmer-Dufek, J., & Baumann, T. W. (1986). Purine alkaloid formation in buds and developing leaflets of Coffea arabica: Expression of an optimal defence strategy? Phytochemistry, 25(3), 613–616. https://doi.org/10.1016/0031-9422(86)88009-8
Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001
Garrett, R., Schmidt, E. M., Pereira, L. F. P., Kitzberger, C. S. G., Scholz, M. B. S., Eberlin, M. N., & Rezende, C. M. (2013). Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. Lwt, 50(2), 496–502. https://doi.org/10.1016/j.lwt.2012.08.016
Gonzalez, D., Fraichard, S., Grassein, P., Delarue, P., Senet, P., Nicolaï, A., Chavanne, E., Mucher, E., Artur, Y., Ferveur, J. F., Heydel, J. M., Briand, L., & Neiers, F. (2018). Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology, 95(March), 33–43. https://doi.org/10.1016/j.ibmb.2018.03.004
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), 1178–1186. https://doi.org/10.1093/nar/gkr944
Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2004). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88.
Hemsley, P. A., Hurst, C. H., Kaliyadasa, E., Lamb, R., Knight, M. R., De Cothi, E. A., Steele, J. F., & Knight, H. (2014). The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell, 26(1), 465–484. https://doi.org/10.1105/tpc.113.117796
Hooper, C., Castleden, I., Tanz, S., Grasso, S., Aryamanesh, N., & Millar, A. (2022). Subcellular Localisation database for Arabidopsis proteins version 5. https://doi.org/10.26182/8dht-4017
Jain, M., Ghanashyam, C., & Bhattacharjee, A. (2010). Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 11(1), 1–17. https://doi.org/10.1186/1471-2164-11-73
Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., kochko, A. de, & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701. https://doi.org/10.1016/j.foodchem.2009.05.048
Kabirigi, M., Musana, B., Ngetich, F., Mugwe, J., Mukuralinda, A., & Nabahungu, N. L. (2015). Applicability of conservation agriculture for climate change adaptation in Rwanda’s situation. Journal of Soil Science and Environmental Management, 6(9), 241–248. https://doi.org/10.5897/JSSEM15.0508
Kobayashi, S., Kidou, S., & Ejiri, S. (2001). Detection and Characterization of Glutathione S-Transferase Activity in Rice EF-1BB’y and EF-1y Expressed in Escherichia coli. Biochemical and Biophysical Research Communications, 288(3), 509–514.
Koonin, E. V., Tatusov, R. L., Altschul, S. F., Bryant, S. H., Mushegian, A. R., Bork, P., & Valencia, A. (1994). Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse, ancient protein super family using motif search and structural modeling. Protein Science, 3(11), 2045–2055. https://doi.org/10.1002/pro.5560031117
Kung, C. C. S., Huang, W. N., Huang, Y. C., & Yeh, K. C. (2006). Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics, 6(9), 2746–2758. https://doi.org/10.1002/pmic.200500108
Livramento, K., Borém, F., Torres, L., Silva, F., Livramento, D., & Paiva, L. (2017). Proteomic Analysis of Natural and Demucilaged Coffee Beans from Plantations at Different Altitudes in the Mantiqueira Mountains. Journal of Experimental Agriculture International, 19(4), 1–15. https://doi.org/10.9734/jeai/2017/38343
Loza-Muller, L., Rodríguez-Corona, U., Sobol, M., Rodríguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Frontiers in Plant Science, 6(NOVEMBER), 1–11. https://doi.org/10.3389/fpls.2015.00976
Marques, I., Gouveia, D., Gaillard, J. C., Martins, S., Semedo, M. C., Lidon, F. C., Damatta, F. M., Ribeiro-Barros, A. I., Armengaud, J., & Ramalho, J. C. (2022). Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010148
Matsuo, R. (2000). Role of Saliva in the Maintenance of Taste Sensitivity. Critical Reviews in Oral Biology & Medicine, 11(2), 216–229.
Mohammed, M. J., & Al-Bayati, F. A. (2009). Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: A combination antibacterial study. International Journal of Green Pharmacy, 3(1), 52–57. https://doi.org/10.4103/0973-8258.49375
Naidu, R. A., Bottenberg, H., Subrahmanyam, P., Kimmins, F. M., Robinson, D. J., & Thresh, J. M. (1998). Epidemiology of groundnut rosette virus disease: Current status and future research needs. Annals of Applied Biology, 132(3), 525–548. https://doi.org/10.1111/j.1744-7348.1998.tb05227.x
Nathanson, J. . (1984). Caffeine and Related Methylxanthines: Possible Naturally Occuring Pesticides. Science, 226(4), 184–187.
Okello, D., Akello, L., Tukamuhabwa, P., Odong, T., Ochwo-Ssemakula, M., Adriko, J., & Deom, C. (2014). Groundnut rosette disease symptoms types distribution and management of the disease in Uganda. African Journal of Plant Science, 8(3), 153–163. https://doi.org/10.5897/ajps2014.1164
Olechno, E., Puścion-Jakubik, A., Zujko, M. E., & Socha, K. (2021). Influence of various factors on caffeine content in coffee brews. Foods, 10(6), 1–29. https://doi.org/10.3390/foods10061208
Partell, F. L., Vieira, H. D., Rodrigues, A. P. D., Pais, I., Campostrini, E., Chaves, M. M. C. C., & Ramalho, J. C. (2010). Cold induced changes on sugar contents and respiratory enzyme activities in coffee genotypes. Ciencia Rural, 40(4), 781–786. https://doi.org/10.1590/s0103-84782010005000041
Pereira, P. V, da Silveira, D. L., Schwan, R. F., de Assis Silva, S., Coelho, J. M., & Bernardes, P. C. (2020). Effect of altitude and terrain aspect on the chemical composition of Coffea canephora cherries and sensory characteristics of the beverage. Journal of Science of Food and Agriculture, 101(6), 2570–2575.
Ramalho, J. C., Quartin, V. L., Leitão, E., Campos, P. S., Carelli, M. L. C., Fahl, J. I., & Nunes, M. A. (2003). Cold Acclimation Ability and Photosynthesis among Species of the Tropical Coffea Genus. Plant Biology, 5(6), 631–641. https://doi.org/10.1055/s-2003-44688
Roasti Coffee Co. (2023). Roasti Coffee.
Rodriguez-Corona, U., Pereira-Santana, A., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2017). Novel ribonuclease activity differs between fibrillarins from arabidopsis thaliana. Frontiers in Plant Science, 8(October), 1–10. https://doi.org/10.3389/fpls.2017.01878
Rodriguez-Corona, U., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin from Archaea to human. Biology of the Cell, 107(6), 159–174. https://doi.org/10.1111/boc.201400077
Sang, H. K., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., Haupt, S., Brown, J. W. S., & Taliansky, M. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11115–11120. https://doi.org/10.1073/pnas.0704632104
Schwartz, M., Boichot, V., Fraichard, S., Muradova, M., Senet, P., Nicolai, A., Lirussi, F., Bas, M., Canon, F., Heydel, J. M., & Neiers, F. (2023). Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules, 13(2), 1–18. https://doi.org/10.3390/biom13020322
Schwartz, M., Brignot, H., Feron, G., Hummel, T., Zhu, Y., von Koskull, D., Heydel, J. M., Lirussi, F., Canon, F., & Neiers, F. (2022). Role of human salivary enzymes in bitter taste perception. Food Chemistry, 386. https://doi.org/10.1016/j.foodchem.2022.132798
Sreerama, L., Hedge, M. W., & Sladek, N. E. (1995). Identification Saliva Subjects and Who of a Class Increased and 3 Aldehyde of This Ingest Dehydrogenase Enzyme , in the Large Saliva of in Human Levels Glutathione Continually Quantities of Coffee or Broccoli ’. 1.
Takken, F. L. W., Albrecht, M., & Tameling, W. I. L. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9(4), 383–390.
Talbot, J. M. (2004). Grounds for Agreement: The Political Economy of the Coffee Commodity Chain. Rowman & Littlefield.
Tessarz, P., Santos-Rosa, H., Robson, S. C., Sylvestersen, K. B., Nelson, C. J., Nielsen, M. L., & Kouzarides, T. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 505(7484), 564–568. https://doi.org/10.1038/nature12819
Thoden, J. B., Wohlers, T. M., Fridovich-Keil, J. L., & Holden, H. M. (2001). Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. Journal of Biological Chemistry, 276(18), 15131–15136. https://doi.org/10.1074/jbc.M100220200
Thottappilly, G. (1992). Plant Virus Diseases of Importance to African Agriculture. Journal of Phytopathology, 134(4), 265–288. https://doi.org/10.1111/j.1439-0434.1992.tb01236.x
Tollervey, D., Lehtonen, H., Jansen, F., Kern, H., & Hurt, E. C. (1993). Temperature-Sensitive Mutations Demonstrate Roles for Yeast Fibrillarin in Pre-rRNA Processing, Pre-rRNA Methylation, and Ribosome Assembly. Cell, 72, 443–457.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. https://doi.org/10.1038/nmeth.3901
United States Department of Agriculture. (2022). Coffee : World Markets and Trade Ending Stocks to Rise. December, 1–9. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Genard, M. (2005). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204.
van der Biezen, E. A., & Jones, J. D. . (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8(7), 226–228.
Van Dijk, K., Fouts, D. E., Rehm, A. H., Hill, A. R., Collmer, A., & Alfano, J. R. (1999). The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. Journal of Bacteriology, 181(16), 4790–4797. https://doi.org/10.1128/jb.181.16.4790-4797.1999
Van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045
Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105(March 2017), 278–285. https://doi.org/10.1016/j.foodres.2017.11.016
WorldData.info. (2023a). Climate in Minas Gerais.
WorldData.info. (2023b). Climate in Western Province Rwanda.
Wu, L., Chen, H., Curtis, C., & Fu, Z. Q. (2014). Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 5(7), 710–721. https://doi.org/10.4161/viru.29755
Wu, R., Lev-Yadun, S., Sun, L., Sun, H., & Song, B. (2021). Higher Elevations Tend to Have Higher Proportion of Plant Species With Glandular Trichomes. Frontiers in Plant Science, 12(April), 1–10. https://doi.org/10.3389/fpls.2021.632464
Wulfert, S., Schilasky, S., & Krueger, S. (2020). Transcriptional and biochemical characterization of cytosolic pyruvate kinases in Arabidopsis thaliana. Plants, 9(3). https://doi.org/10.3390/plants9030353
Yildirim, S., Castano, E., Sobol, M., Philimonenko, V. V., Dzijak, R., Venit, T., & Hozák, P. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Journal of Cell Science, 126(12), 2730–2739. https://doi.org/10.1242/jcs.123661
Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6(4), 1–12. https://doi.org/10.1371/journal.ppat.1000844
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eureka
This work is licensed under a Creative Commons Attribution 4.0 International License.
By signing the Eureka publication agreement, authors agree to the following:
- The work has not been previously published in any format;
- Eureka is granted the royalty-free right to publish and disseminate the work in current and future formats;
- The work will be published in Eureka under a Creative Commons license. Eureka encourages authors to publish the work under a Creative Commons Attribution 4.0 International license (CC BY 4.0) that allows others to distribute, tweak, and build upon the work, even commercially, as long as they credit the Author(s) for the original creation.
Authors may however choose to have their work distributed under any of the Creative Commons licenses currently available by specifying their preferred license in the publication agreement. A description of the Creative Commons licenses is available here: https://creativecommons.org/licenses/
- Authors retain their copyright, including the right to subsequently publish or disseminate their work elsewhere, provided that they make reasonable efforts to ensure that the publication in Eureka is acknowledged.
- Authors agree to determine, prior to publication, whether it is necessary to obtain permissions from any third party who hold rights with respect to any photographs, illustrations, drawings, text, or any other material (“third party work”) to be published in connection with your work. Copyright permission will not be necessary if the use is determined to be fair dealing, if the work is in the public domain, or if the rights-holder has granted a Creative Commons or similar license.
- All co-authors and investigators (e.g. faculty supervisors) with claims to the intellectual property have read and signed the agreement, thereby providing their consent for the submission to be published in Eureka.
Unless otherwise specified, authors guarantee that all parts of the submission are the author’s original work. Submissions containing evidence of plagiarism will not be eligible for publication.