Proteomic analysis of higher & lower altitude cultivars of Coffea arabica reveals differences related to environmental adaptations and coffee bean flavour

Authors

  • Caitlin Fenrich University of Alberta
  • Phil Lauman University of Alberta
  • Prabashi Wickramasinghe University of Alberta

DOI:

https://doi.org/10.29173/eureka28796

Keywords:

Coffee, Proteomics, Mass Spectrometry, Coffea arabica, Altitude Adaptation, Disease Resistance, Coffee Bean Flavour

Abstract

Coffee ranks among the most popular beverages worldwide and is an important commodity in developing nations. While coffee beans harvested from Coffea arabica are considered to have a superior rich and balanced flavour, they are susceptible to disease and climatic variables like temperature, precipitation, and oxygen availability, each of which varies with altitude. We performed a comprehensive proteomic comparison of two C. arabica cultivars, the high-altitude Rwanda Shyira (RS) and the lower-altitude Brazil Flor de Ipe (BFDI), using liquid chromatography MS/MS analysis. Five of the identified 531 proteins exhibited statistically significant differences in expressional intensity between the two cultivars. These differences may correspond to bitter flavonoid concentrations along with adaptations to cold, hypoxic, and disease stressors at different altitudes and geographic niches. These substantial proteomic differences identified between these elevations provide a greater understanding of the effects of altitude on the C. arabica plant and its coffee, which has implications for the global market.

Downloads

Download data is not yet available.

References

Allard, S. T. M., Giraud, M. F., & Naismith, J. H. (2001). Epimerases: Structure, function and mechanism. Cellular and Molecular Life Sciences, 58(11), 1650–1665. https://doi.org/10.1007/PL00000803

Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85(11), 1869–1876. https://doi.org/10.1002/jsfa.2188

Bäckström, S., Elfving, N., Nilsson, R., Wingsle, G., & Björklund, S. (2007). Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit. Molecular Cell, 26(5), 717–729. https://doi.org/10.1016/j.molcel.2007.05.007

Baumann, T. W., & Gabriel, H. (1984). Metabolism and excretion of caffeine during germination of coffea arabica l. Plant and Cell Physiology, 25(8), 1431–1436. https://doi.org/10.1093/oxfordjournals.pcp.a076854

Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015). The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 53(8), 474–485.

Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239–1248. https://doi.org/10.1093/treephys/26.9.1239

Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., & He, P. (2013). Differential temperature operation of plant immune responses. Nature Communications, 4(2530). https://doi.org/10.1038/ncomms3530

Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367–1372. https://doi.org/10.1038/nbt.1511

Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., & Flicek, P. (2022). Ensembl 2022. Nucleic Acids Research, 50(D1), 988–995.

Dagan-Wiener, A., Di Pizio, A., Nissim, I., Bahia, M. S., Dubovski, N., Margulis, E., & Niv, M. Y. (2019). Bitterdb: Taste ligands and receptors database in 2019. Nucleic Acids Research, 47(D1), D1179–D1185. https://doi.org/10.1093/nar/gky974

Daviron, B., & Ponte, S. (2005). The Coffee Paradox: Global Markets, Commodity Trade and the Elusive Promise of Development. Zed Books.

Decazy, F., Avelino, J., Guyot, B., Perriot, J., Pineda, C., & Cilas, C. (2006). Quality of Different Honduran Coffees in Relation to Several Environments. Journal of Food Science, 68(7), 2356–2361.

Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé, R. (2021). Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 229(2), 712–734. https://doi.org/10.1111/nph.16965

Dragon, F., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., Wormsley, S., Settlage, R. E., Shabanowitz, J., Osheim, Y., Beyer, A. L., Hunt, D. F., & Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967–970. https://doi.org/10.1038/nature00769

Frischknecht, P. M., Ulmer-Dufek, J., & Baumann, T. W. (1986). Purine alkaloid formation in buds and developing leaflets of Coffea arabica: Expression of an optimal defence strategy? Phytochemistry, 25(3), 613–616. https://doi.org/10.1016/0031-9422(86)88009-8

Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001

Garrett, R., Schmidt, E. M., Pereira, L. F. P., Kitzberger, C. S. G., Scholz, M. B. S., Eberlin, M. N., & Rezende, C. M. (2013). Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. Lwt, 50(2), 496–502. https://doi.org/10.1016/j.lwt.2012.08.016

Gonzalez, D., Fraichard, S., Grassein, P., Delarue, P., Senet, P., Nicolaï, A., Chavanne, E., Mucher, E., Artur, Y., Ferveur, J. F., Heydel, J. M., Briand, L., & Neiers, F. (2018). Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology, 95(March), 33–43. https://doi.org/10.1016/j.ibmb.2018.03.004

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), 1178–1186. https://doi.org/10.1093/nar/gkr944

Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2004). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88.

Hemsley, P. A., Hurst, C. H., Kaliyadasa, E., Lamb, R., Knight, M. R., De Cothi, E. A., Steele, J. F., & Knight, H. (2014). The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell, 26(1), 465–484. https://doi.org/10.1105/tpc.113.117796

Hooper, C., Castleden, I., Tanz, S., Grasso, S., Aryamanesh, N., & Millar, A. (2022). Subcellular Localisation database for Arabidopsis proteins version 5. https://doi.org/10.26182/8dht-4017

Jain, M., Ghanashyam, C., & Bhattacharjee, A. (2010). Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 11(1), 1–17. https://doi.org/10.1186/1471-2164-11-73

Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., kochko, A. de, & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701. https://doi.org/10.1016/j.foodchem.2009.05.048

Kabirigi, M., Musana, B., Ngetich, F., Mugwe, J., Mukuralinda, A., & Nabahungu, N. L. (2015). Applicability of conservation agriculture for climate change adaptation in Rwanda’s situation. Journal of Soil Science and Environmental Management, 6(9), 241–248. https://doi.org/10.5897/JSSEM15.0508

Kobayashi, S., Kidou, S., & Ejiri, S. (2001). Detection and Characterization of Glutathione S-Transferase Activity in Rice EF-1BB’y and EF-1y Expressed in Escherichia coli. Biochemical and Biophysical Research Communications, 288(3), 509–514.

Koonin, E. V., Tatusov, R. L., Altschul, S. F., Bryant, S. H., Mushegian, A. R., Bork, P., & Valencia, A. (1994). Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse, ancient protein super family using motif search and structural modeling. Protein Science, 3(11), 2045–2055. https://doi.org/10.1002/pro.5560031117

Kung, C. C. S., Huang, W. N., Huang, Y. C., & Yeh, K. C. (2006). Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics, 6(9), 2746–2758. https://doi.org/10.1002/pmic.200500108

Livramento, K., Borém, F., Torres, L., Silva, F., Livramento, D., & Paiva, L. (2017). Proteomic Analysis of Natural and Demucilaged Coffee Beans from Plantations at Different Altitudes in the Mantiqueira Mountains. Journal of Experimental Agriculture International, 19(4), 1–15. https://doi.org/10.9734/jeai/2017/38343

Loza-Muller, L., Rodríguez-Corona, U., Sobol, M., Rodríguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Frontiers in Plant Science, 6(NOVEMBER), 1–11. https://doi.org/10.3389/fpls.2015.00976

Marques, I., Gouveia, D., Gaillard, J. C., Martins, S., Semedo, M. C., Lidon, F. C., Damatta, F. M., Ribeiro-Barros, A. I., Armengaud, J., & Ramalho, J. C. (2022). Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010148

Matsuo, R. (2000). Role of Saliva in the Maintenance of Taste Sensitivity. Critical Reviews in Oral Biology & Medicine, 11(2), 216–229.

Mohammed, M. J., & Al-Bayati, F. A. (2009). Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: A combination antibacterial study. International Journal of Green Pharmacy, 3(1), 52–57. https://doi.org/10.4103/0973-8258.49375

Naidu, R. A., Bottenberg, H., Subrahmanyam, P., Kimmins, F. M., Robinson, D. J., & Thresh, J. M. (1998). Epidemiology of groundnut rosette virus disease: Current status and future research needs. Annals of Applied Biology, 132(3), 525–548. https://doi.org/10.1111/j.1744-7348.1998.tb05227.x

Nathanson, J. . (1984). Caffeine and Related Methylxanthines: Possible Naturally Occuring Pesticides. Science, 226(4), 184–187.

Okello, D., Akello, L., Tukamuhabwa, P., Odong, T., Ochwo-Ssemakula, M., Adriko, J., & Deom, C. (2014). Groundnut rosette disease symptoms types distribution and management of the disease in Uganda. African Journal of Plant Science, 8(3), 153–163. https://doi.org/10.5897/ajps2014.1164

Olechno, E., Puścion-Jakubik, A., Zujko, M. E., & Socha, K. (2021). Influence of various factors on caffeine content in coffee brews. Foods, 10(6), 1–29. https://doi.org/10.3390/foods10061208

Partell, F. L., Vieira, H. D., Rodrigues, A. P. D., Pais, I., Campostrini, E., Chaves, M. M. C. C., & Ramalho, J. C. (2010). Cold induced changes on sugar contents and respiratory enzyme activities in coffee genotypes. Ciencia Rural, 40(4), 781–786. https://doi.org/10.1590/s0103-84782010005000041

Pereira, P. V, da Silveira, D. L., Schwan, R. F., de Assis Silva, S., Coelho, J. M., & Bernardes, P. C. (2020). Effect of altitude and terrain aspect on the chemical composition of Coffea canephora cherries and sensory characteristics of the beverage. Journal of Science of Food and Agriculture, 101(6), 2570–2575.

Ramalho, J. C., Quartin, V. L., Leitão, E., Campos, P. S., Carelli, M. L. C., Fahl, J. I., & Nunes, M. A. (2003). Cold Acclimation Ability and Photosynthesis among Species of the Tropical Coffea Genus. Plant Biology, 5(6), 631–641. https://doi.org/10.1055/s-2003-44688

Roasti Coffee Co. (2023). Roasti Coffee.

Rodriguez-Corona, U., Pereira-Santana, A., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2017). Novel ribonuclease activity differs between fibrillarins from arabidopsis thaliana. Frontiers in Plant Science, 8(October), 1–10. https://doi.org/10.3389/fpls.2017.01878

Rodriguez-Corona, U., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin from Archaea to human. Biology of the Cell, 107(6), 159–174. https://doi.org/10.1111/boc.201400077

Sang, H. K., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., Haupt, S., Brown, J. W. S., & Taliansky, M. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11115–11120. https://doi.org/10.1073/pnas.0704632104

Schwartz, M., Boichot, V., Fraichard, S., Muradova, M., Senet, P., Nicolai, A., Lirussi, F., Bas, M., Canon, F., Heydel, J. M., & Neiers, F. (2023). Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules, 13(2), 1–18. https://doi.org/10.3390/biom13020322

Schwartz, M., Brignot, H., Feron, G., Hummel, T., Zhu, Y., von Koskull, D., Heydel, J. M., Lirussi, F., Canon, F., & Neiers, F. (2022). Role of human salivary enzymes in bitter taste perception. Food Chemistry, 386. https://doi.org/10.1016/j.foodchem.2022.132798

Sreerama, L., Hedge, M. W., & Sladek, N. E. (1995). Identification Saliva Subjects and Who of a Class Increased and 3 Aldehyde of This Ingest Dehydrogenase Enzyme , in the Large Saliva of in Human Levels Glutathione Continually Quantities of Coffee or Broccoli ’. 1.

Takken, F. L. W., Albrecht, M., & Tameling, W. I. L. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9(4), 383–390.

Talbot, J. M. (2004). Grounds for Agreement: The Political Economy of the Coffee Commodity Chain. Rowman & Littlefield.

Tessarz, P., Santos-Rosa, H., Robson, S. C., Sylvestersen, K. B., Nelson, C. J., Nielsen, M. L., & Kouzarides, T. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 505(7484), 564–568. https://doi.org/10.1038/nature12819

Thoden, J. B., Wohlers, T. M., Fridovich-Keil, J. L., & Holden, H. M. (2001). Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. Journal of Biological Chemistry, 276(18), 15131–15136. https://doi.org/10.1074/jbc.M100220200

Thottappilly, G. (1992). Plant Virus Diseases of Importance to African Agriculture. Journal of Phytopathology, 134(4), 265–288. https://doi.org/10.1111/j.1439-0434.1992.tb01236.x

Tollervey, D., Lehtonen, H., Jansen, F., Kern, H., & Hurt, E. C. (1993). Temperature-Sensitive Mutations Demonstrate Roles for Yeast Fibrillarin in Pre-rRNA Processing, Pre-rRNA Methylation, and Ribosome Assembly. Cell, 72, 443–457.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. https://doi.org/10.1038/nmeth.3901

United States Department of Agriculture. (2022). Coffee : World Markets and Trade Ending Stocks to Rise. December, 1–9. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf

Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Genard, M. (2005). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204.

van der Biezen, E. A., & Jones, J. D. . (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8(7), 226–228.

Van Dijk, K., Fouts, D. E., Rehm, A. H., Hill, A. R., Collmer, A., & Alfano, J. R. (1999). The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. Journal of Bacteriology, 181(16), 4790–4797. https://doi.org/10.1128/jb.181.16.4790-4797.1999

Van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397. https://doi.org/10.1093/jxb/ern045

Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105(March 2017), 278–285. https://doi.org/10.1016/j.foodres.2017.11.016

WorldData.info. (2023a). Climate in Minas Gerais.

WorldData.info. (2023b). Climate in Western Province Rwanda.

Wu, L., Chen, H., Curtis, C., & Fu, Z. Q. (2014). Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 5(7), 710–721. https://doi.org/10.4161/viru.29755

Wu, R., Lev-Yadun, S., Sun, L., Sun, H., & Song, B. (2021). Higher Elevations Tend to Have Higher Proportion of Plant Species With Glandular Trichomes. Frontiers in Plant Science, 12(April), 1–10. https://doi.org/10.3389/fpls.2021.632464

Wulfert, S., Schilasky, S., & Krueger, S. (2020). Transcriptional and biochemical characterization of cytosolic pyruvate kinases in Arabidopsis thaliana. Plants, 9(3). https://doi.org/10.3390/plants9030353

Yildirim, S., Castano, E., Sobol, M., Philimonenko, V. V., Dzijak, R., Venit, T., & Hozák, P. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Journal of Cell Science, 126(12), 2730–2739. https://doi.org/10.1242/jcs.123661

Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6(4), 1–12. https://doi.org/10.1371/journal.ppat.1000844

Downloads

Published

2023-11-06

How to Cite

Fenrich, C., Lauman, P., & Wickramasinghe, P. (2023). Proteomic analysis of higher & lower altitude cultivars of Coffea arabica reveals differences related to environmental adaptations and coffee bean flavour . Eureka, 8(2). https://doi.org/10.29173/eureka28796

Issue

Section

Articles