Proteomic analysis of higher & lower altitude cultivars of Coffea arabica reveals differences related to environmental adaptations and coffee bean flavour


  • Caitlin Fenrich University of Alberta
  • Phil Lauman University of Alberta
  • Prabashi Wickramasinghe University of Alberta



Coffee, Proteomics, Mass Spectrometry, Coffea arabica, Altitude Adaptation, Disease Resistance, Coffee Bean Flavour


Coffee ranks among the most popular beverages worldwide and is an important commodity in developing nations. While coffee beans harvested from Coffea arabica are considered to have a superior rich and balanced flavour, they are susceptible to disease and climatic variables like temperature, precipitation, and oxygen availability, each of which varies with altitude. We performed a comprehensive proteomic comparison of two C. arabica cultivars, the high-altitude Rwanda Shyira (RS) and the lower-altitude Brazil Flor de Ipe (BFDI), using liquid chromatography MS/MS analysis. Five of the identified 531 proteins exhibited statistically significant differences in expressional intensity between the two cultivars. These differences may correspond to bitter flavonoid concentrations along with adaptations to cold, hypoxic, and disease stressors at different altitudes and geographic niches. These substantial proteomic differences identified between these elevations provide a greater understanding of the effects of altitude on the C. arabica plant and its coffee, which has implications for the global market.


Download data is not yet available.


Allard, S. T. M., Giraud, M. F., & Naismith, J. H. (2001). Epimerases: Structure, function and mechanism. Cellular and Molecular Life Sciences, 58(11), 1650–1665.

Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85(11), 1869–1876.

Bäckström, S., Elfving, N., Nilsson, R., Wingsle, G., & Björklund, S. (2007). Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit. Molecular Cell, 26(5), 717–729.

Baumann, T. W., & Gabriel, H. (1984). Metabolism and excretion of caffeine during germination of coffea arabica l. Plant and Cell Physiology, 25(8), 1431–1436.

Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015). The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 53(8), 474–485.

Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239–1248.

Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., & He, P. (2013). Differential temperature operation of plant immune responses. Nature Communications, 4(2530).

Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367–1372.

Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., & Flicek, P. (2022). Ensembl 2022. Nucleic Acids Research, 50(D1), 988–995.

Dagan-Wiener, A., Di Pizio, A., Nissim, I., Bahia, M. S., Dubovski, N., Margulis, E., & Niv, M. Y. (2019). Bitterdb: Taste ligands and receptors database in 2019. Nucleic Acids Research, 47(D1), D1179–D1185.

Daviron, B., & Ponte, S. (2005). The Coffee Paradox: Global Markets, Commodity Trade and the Elusive Promise of Development. Zed Books.

Decazy, F., Avelino, J., Guyot, B., Perriot, J., Pineda, C., & Cilas, C. (2006). Quality of Different Honduran Coffees in Relation to Several Environments. Journal of Food Science, 68(7), 2356–2361.

Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé, R. (2021). Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 229(2), 712–734.

Dragon, F., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., Wormsley, S., Settlage, R. E., Shabanowitz, J., Osheim, Y., Beyer, A. L., Hunt, D. F., & Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967–970.

Frischknecht, P. M., Ulmer-Dufek, J., & Baumann, T. W. (1986). Purine alkaloid formation in buds and developing leaflets of Coffea arabica: Expression of an optimal defence strategy? Phytochemistry, 25(3), 613–616.

Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48.

Garrett, R., Schmidt, E. M., Pereira, L. F. P., Kitzberger, C. S. G., Scholz, M. B. S., Eberlin, M. N., & Rezende, C. M. (2013). Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. Lwt, 50(2), 496–502.

Gonzalez, D., Fraichard, S., Grassein, P., Delarue, P., Senet, P., Nicolaï, A., Chavanne, E., Mucher, E., Artur, Y., Ferveur, J. F., Heydel, J. M., Briand, L., & Neiers, F. (2018). Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology, 95(March), 33–43.

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), 1178–1186.

Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2004). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88.

Hemsley, P. A., Hurst, C. H., Kaliyadasa, E., Lamb, R., Knight, M. R., De Cothi, E. A., Steele, J. F., & Knight, H. (2014). The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell, 26(1), 465–484.

Hooper, C., Castleden, I., Tanz, S., Grasso, S., Aryamanesh, N., & Millar, A. (2022). Subcellular Localisation database for Arabidopsis proteins version 5.

Jain, M., Ghanashyam, C., & Bhattacharjee, A. (2010). Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 11(1), 1–17.

Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., kochko, A. de, & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701.

Kabirigi, M., Musana, B., Ngetich, F., Mugwe, J., Mukuralinda, A., & Nabahungu, N. L. (2015). Applicability of conservation agriculture for climate change adaptation in Rwanda’s situation. Journal of Soil Science and Environmental Management, 6(9), 241–248.

Kobayashi, S., Kidou, S., & Ejiri, S. (2001). Detection and Characterization of Glutathione S-Transferase Activity in Rice EF-1BB’y and EF-1y Expressed in Escherichia coli. Biochemical and Biophysical Research Communications, 288(3), 509–514.

Koonin, E. V., Tatusov, R. L., Altschul, S. F., Bryant, S. H., Mushegian, A. R., Bork, P., & Valencia, A. (1994). Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse, ancient protein super family using motif search and structural modeling. Protein Science, 3(11), 2045–2055.

Kung, C. C. S., Huang, W. N., Huang, Y. C., & Yeh, K. C. (2006). Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics, 6(9), 2746–2758.

Livramento, K., Borém, F., Torres, L., Silva, F., Livramento, D., & Paiva, L. (2017). Proteomic Analysis of Natural and Demucilaged Coffee Beans from Plantations at Different Altitudes in the Mantiqueira Mountains. Journal of Experimental Agriculture International, 19(4), 1–15.

Loza-Muller, L., Rodríguez-Corona, U., Sobol, M., Rodríguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Frontiers in Plant Science, 6(NOVEMBER), 1–11.

Marques, I., Gouveia, D., Gaillard, J. C., Martins, S., Semedo, M. C., Lidon, F. C., Damatta, F. M., Ribeiro-Barros, A. I., Armengaud, J., & Ramalho, J. C. (2022). Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora. Agronomy, 12(1).

Matsuo, R. (2000). Role of Saliva in the Maintenance of Taste Sensitivity. Critical Reviews in Oral Biology & Medicine, 11(2), 216–229.

Mohammed, M. J., & Al-Bayati, F. A. (2009). Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: A combination antibacterial study. International Journal of Green Pharmacy, 3(1), 52–57.

Naidu, R. A., Bottenberg, H., Subrahmanyam, P., Kimmins, F. M., Robinson, D. J., & Thresh, J. M. (1998). Epidemiology of groundnut rosette virus disease: Current status and future research needs. Annals of Applied Biology, 132(3), 525–548.

Nathanson, J. . (1984). Caffeine and Related Methylxanthines: Possible Naturally Occuring Pesticides. Science, 226(4), 184–187.

Okello, D., Akello, L., Tukamuhabwa, P., Odong, T., Ochwo-Ssemakula, M., Adriko, J., & Deom, C. (2014). Groundnut rosette disease symptoms types distribution and management of the disease in Uganda. African Journal of Plant Science, 8(3), 153–163.

Olechno, E., Puścion-Jakubik, A., Zujko, M. E., & Socha, K. (2021). Influence of various factors on caffeine content in coffee brews. Foods, 10(6), 1–29.

Partell, F. L., Vieira, H. D., Rodrigues, A. P. D., Pais, I., Campostrini, E., Chaves, M. M. C. C., & Ramalho, J. C. (2010). Cold induced changes on sugar contents and respiratory enzyme activities in coffee genotypes. Ciencia Rural, 40(4), 781–786.

Pereira, P. V, da Silveira, D. L., Schwan, R. F., de Assis Silva, S., Coelho, J. M., & Bernardes, P. C. (2020). Effect of altitude and terrain aspect on the chemical composition of Coffea canephora cherries and sensory characteristics of the beverage. Journal of Science of Food and Agriculture, 101(6), 2570–2575.

Ramalho, J. C., Quartin, V. L., Leitão, E., Campos, P. S., Carelli, M. L. C., Fahl, J. I., & Nunes, M. A. (2003). Cold Acclimation Ability and Photosynthesis among Species of the Tropical Coffea Genus. Plant Biology, 5(6), 631–641.

Roasti Coffee Co. (2023). Roasti Coffee.

Rodriguez-Corona, U., Pereira-Santana, A., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2017). Novel ribonuclease activity differs between fibrillarins from arabidopsis thaliana. Frontiers in Plant Science, 8(October), 1–10.

Rodriguez-Corona, U., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P., & Castano, E. (2015). Fibrillarin from Archaea to human. Biology of the Cell, 107(6), 159–174.

Sang, H. K., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., Haupt, S., Brown, J. W. S., & Taliansky, M. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11115–11120.

Schwartz, M., Boichot, V., Fraichard, S., Muradova, M., Senet, P., Nicolai, A., Lirussi, F., Bas, M., Canon, F., Heydel, J. M., & Neiers, F. (2023). Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules, 13(2), 1–18.

Schwartz, M., Brignot, H., Feron, G., Hummel, T., Zhu, Y., von Koskull, D., Heydel, J. M., Lirussi, F., Canon, F., & Neiers, F. (2022). Role of human salivary enzymes in bitter taste perception. Food Chemistry, 386.

Sreerama, L., Hedge, M. W., & Sladek, N. E. (1995). Identification Saliva Subjects and Who of a Class Increased and 3 Aldehyde of This Ingest Dehydrogenase Enzyme , in the Large Saliva of in Human Levels Glutathione Continually Quantities of Coffee or Broccoli ’. 1.

Takken, F. L. W., Albrecht, M., & Tameling, W. I. L. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9(4), 383–390.

Talbot, J. M. (2004). Grounds for Agreement: The Political Economy of the Coffee Commodity Chain. Rowman & Littlefield.

Tessarz, P., Santos-Rosa, H., Robson, S. C., Sylvestersen, K. B., Nelson, C. J., Nielsen, M. L., & Kouzarides, T. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 505(7484), 564–568.

Thoden, J. B., Wohlers, T. M., Fridovich-Keil, J. L., & Holden, H. M. (2001). Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. Journal of Biological Chemistry, 276(18), 15131–15136.

Thottappilly, G. (1992). Plant Virus Diseases of Importance to African Agriculture. Journal of Phytopathology, 134(4), 265–288.

Tollervey, D., Lehtonen, H., Jansen, F., Kern, H., & Hurt, E. C. (1993). Temperature-Sensitive Mutations Demonstrate Roles for Yeast Fibrillarin in Pre-rRNA Processing, Pre-rRNA Methylation, and Ribosome Assembly. Cell, 72, 443–457.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740.

United States Department of Agriculture. (2022). Coffee : World Markets and Trade Ending Stocks to Rise. December, 1–9.

Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Genard, M. (2005). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204.

van der Biezen, E. A., & Jones, J. D. . (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8(7), 226–228.

Van Dijk, K., Fouts, D. E., Rehm, A. H., Hill, A. R., Collmer, A., & Alfano, J. R. (1999). The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. Journal of Bacteriology, 181(16), 4790–4797.

Van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., & Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397.

Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105(March 2017), 278–285. (2023a). Climate in Minas Gerais. (2023b). Climate in Western Province Rwanda.

Wu, L., Chen, H., Curtis, C., & Fu, Z. Q. (2014). Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 5(7), 710–721.

Wu, R., Lev-Yadun, S., Sun, L., Sun, H., & Song, B. (2021). Higher Elevations Tend to Have Higher Proportion of Plant Species With Glandular Trichomes. Frontiers in Plant Science, 12(April), 1–10.

Wulfert, S., Schilasky, S., & Krueger, S. (2020). Transcriptional and biochemical characterization of cytosolic pyruvate kinases in Arabidopsis thaliana. Plants, 9(3).

Yildirim, S., Castano, E., Sobol, M., Philimonenko, V. V., Dzijak, R., Venit, T., & Hozák, P. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Journal of Cell Science, 126(12), 2730–2739.

Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6(4), 1–12.




How to Cite

Fenrich, C., Lauman, P., & Wickramasinghe, P. (2023). Proteomic analysis of higher & lower altitude cultivars of Coffea arabica reveals differences related to environmental adaptations and coffee bean flavour . Eureka, 8(2).